
Page 1

CS 2130: Computer Systems and Organization 1
Xinyao Yi Ph.D.
Assistant Professor

Function Calls, Memory
Instruction Set Architectures

Page 2

Announcements

• Homework 3 due Wednesday at 11:59pm on Gradescope

• Midterm 1 Friday (October 3, 2025) in class

• Written, closed notes

• If you have SDAC, please schedule ASAP

Page 3

Quiz Questions – Quiz 1

Page 4

Quiz Questions – Quiz 3

Page 5

Encoding Instructions

Encoding of Instructions
• 3-bit icode (which operation to perform)
• Numeric mapping from icode to operation

• Which registers to use (2 bits each)
• Reserved bit for future expansion

Page 6

High-level Instructions

In general, 3 kinds of instructions

• moves - move values around without doing “work”

• math - broadly doing “work”

• jumps - jump to a new place in the code

Page 7

Memory

What kinds of things do we put in memory?
• Code: binary code like instructions in our example ISA

– Intel/AMD compatible: x86_64
– Apple Mx and Ax, ARM: ARM
– And others!

• Variables: we may have more variables that will fit in registers
• Data Structures: organized data, collection of data

– Arrays, lists, heaps, stacks, queues, ...

-
DitntcpusharediffrentISAs.IS/Adescribeshowtounderstand

thebinang

Page 8

Dealing with Variables and Memory

What if we have many variables? Compute: x += y ⼼

ㄨ =0N

yg readfommem.gr/=MIOxSoJ-s67sor2=MIOx8o7-s6B8liexecute
rlt-12-ee-zbowritetommgMIOxsotrl-ens.ro - 0×80 → 6080

M [10]=1 1 → 54i.m-o.MU
] = 12 -> 58

67806138 126 608054608158

Page 9

Arrays

Array: a sequence of values (collection of variables)

In Java, arrays have the following properties:

• Fixed number of values

• Not resizable

• All values are the same type

thgdohaveordermdexby.nugers ,

Page 10

Arrays

Array: a sequence of values (collection of variables)

In Java, arrays have the following properties:

• Fixed number of values

• Not resizable

• All values are the same type

How do we store them in memory?
1 1 1 1 1 1 1 1 1 1 1

0 1 2 3 4 5 6 7 8 9 1 0 - -_-

sequentially.nuemg

Page 11

Arrays

aN = 12 , 1 7 . 42 , 127 , 1 8 } @ 0×9 0

Iassumealltheseareonebyteothateachwillfitinoneoftheseslrs.la
117 1421 1271181

0 90 9 1 9 2 93 94 … … FF

arr [3] = 0× 9 0 -1 3 = 0✗ 93
mn ↑

nhhesposimofwhe.ro ourarrgstat

Page 12

Storing Arrays

In memory, store array sequentially
• Pick address to store array
• Subsequent elements stored at following addresses
• Access elements with math

Example: Store array !"" at 0x90
• Access !""[3] as 0x90 + 3 assuming 1-byte values

9⽇ [5] = 0亿7

M [90+5]=0×27

Page 13

What’s Missing?

What are we missing?
• Nothing says “this is an array” in memory
• Nothing says how long the array is

Memmgjuststoresabunchofbytes.Thgmight.bepartofthearrg7.Partofalargenumber7Partofann.tn
wn ?Idaitknowwhatthgare.Theyrejustvdues.S.meofourcodmglangugeslikejava.storesadditimalmfrmc.ton

about.gourarrgs.likehowlongtheyare.irhattypethgare

Page 14

Instructions

Page 15

Instructions Set Architecture

Instruction Set Architecture (ISA) is an abstract model of a computer defining how the

CPU is controlled by software

• Conceptually, set of instructions that are possible and how they should be encoded

• Results in many different machines to implement same ISA

– Example: How many machines implement our example ISA?

• Common in how we design hardware

weredesignedanInstructiondtArchitecture-eroere-e_ee.IMandAMDSCPUbnthusmgx86-64ISA.sothegcanrunthes.ae
i

Page 16

Instructions Set Architecture

Instruction Set Architecture (ISA) is an abstract model of a computer
defining how the CPU is controlled by software

• Provides an abstraction layer between:
– Everything computer is really doing (hardware)
– What programmer using the computer needs to know (software)

• Hardware and Software engineers have freedom of design, if conforming to
ISA

• Can change the machine without breaking any programs

fs
htsofflexibilityandfreedomtobuildthmgsthatwuldbefas.tor.lik

hyperthreadmg.Idaitwrryaboutonthesotneside.fiustmakesurethecodecanbecompiledtoISA.Icanrunit.cn
hardwǎe

Page 17

Instructions Set Architecture

Instruction Set Architecture (ISA) is an abstract model of a computer
defining how the CPU is controlled by software

• Provides an abstraction layer between:
– Everything computer is really doing (hardware)
– What programmer using the computer needs to know (software)

CSO: covering many of the times we’ll need to think across this barrier
Wérein generalatthispontghgtostartstgingjustabovet.msbarrierandtothesofwares.de

,

Page 18

Instructions Set Architecture

Backwards compatibility
• Include flexibility to add additional instructions later

• Original instructions will still work

• Same program can be run on PC from 10+ years ago and new PC today

Most manufacturers choose an ISA and stick with it

• Notable Exception: Apple

tegthrngr
ereservedIcanaddmorethmgs.mg
newmachnestillcanruntheoldcode.li

dinstructionsstillthere-Mynwm-achneietmuchfa.to
r

,

OnemhfaherethathaseioughITheremgrebsomeissues.butthatisanolherstongfollowmgtobe.cn
bletomakethesechangesandstilcomeout.ched

Page 19

Our Instructions Set Architecture

What about our ISA?

• Enough instructions to compute what we need

• As is, lot of things that are painful to do

– This was on purpose! So we can see limitations of ISAs early

Page 20

Our Instructions Set Architecture

What about our ISA?

• Enough instructions to compute what we need

• As is, lot of things that are painful to do

– This was on purpose! So we can see limitations of ISAs early

• Add any number of new instructions using the reserved bit (7)

Page 21

Our Instructions Set Architecture

What about our ISA?

• Enough instructions to compute what we need

• As is, lot of things that are painful to do

– This was on purpose! So we can see limitations of ISAs early

• Add any number of new instructions using the reserved bit (7)

• Missing something important: Help to put variables in memory

