
Page 1

CS 2130: Computer Systems and Organization 1 
Xinyao Yi Ph.D. 
Assistant Professor

Building to a Computer
Fetch, Decode, Execute



Page 2

Announcements

• Quiz 3 available today, due Sunday by 11:59pm 

• Homework 2 due Monday 



Page 3

Writing

R[j] = y - connect 𝑦 to input of registers based on index 𝑗



Page 4

Code 

How do we run code? What do we need? 

Consider the following code: 
... 
8:     x = 16 
9:     y = x 
10:   x += y 
... 

What is the value of 𝑥 after line 10?



Page 5

Bookkeeping 

What do we need to keep track of?

• Code - the program we are running 

• RAM (Random Access Memory) 

• State - things that may change value (i.e., variables) 

• Register file - can read and write values each cycle 

• Program Counter (PC) - where we are in our code 

• Single register - byte number in memory for next instruction



Page 6

Building a Computer

Code



Page 7

Encoding Instructions



Page 8

Building a Computer

Code



Page 9

Question

What happens if we get the 0-byte instruction? 00



Page 10

Our Computer’s Instructions

Toy ISA 3-bit icode



Page 11

Our Computer’s Instructions

Toy ISA 3-bit icode



Page 12

High-level Instructions

In general, 3 kinds of instructions 

• moves - move values around without doing “work” 

• math - broadly doing “work” 

• jumps - jump to a new place in the code



Page 13

Moves

Few forms 

• Register to register (icode 0), x = y 

• Register to/from memory (icodes 4-5), x = M[b], M[b] = x 

Memory 

• Address: an index into memory. 

• Addresses are just (large) numbers 

• Usually we will not look at the number and trust it exists and is stored in a 

register



Page 14

Moves



Page 15

Math

Broadly doing work

Note: We can implement other operations using these things!



Page 16

icodes 3 and 6

Special property of icodes 3 & 6: only one register used



Page 17

icodes 3 and 6

Special property of icodes 3 & 6: only one register used

• Side effect: all bytes between 0 and 127 are valid instructions! 

• As long as high-order bit is 0 

• No syntax errors, any instruction given is valid



Page 18

Immediate values

icode 6 provides literals, immediate values



Page 19

Encoding Instructions

Example 1: r1 += 19



Page 20

Instructions



Page 21

Encoding Instructions

Example 2: M[0x82] += r3 
Read memory at address 0x82, add r3, write back to memory at same address



Page 22

Instructions



Page 23

Jumps

• Moves and math are large portion of our code 

• We also need control constructs 

• Change what we are going to do next 

• if, while, for, functions, ... 

• Jumps provide mechanism to perform these control constructs 

• We jump by assigning a new value to the program counter PC



Page 24

Jumps

• For example, consider an if



Page 25

Jumps

• Real code will also provide an unconditional jump, but a conditional jump is sufficient



Page 26

Writing Code

We can now write any∗ program! 

• When you run code, it is being turned into instructions like ours 

• Modern computers use a larger pool of instructions than we have (we will get there) 

∗we do have some limitations, since we can only represent 8-bit values and some 

operations may be tedious.



Page 27

Our code to this machine code

How do we turn our control constructs into jump statements?



Page 28

if/else to jump



Page 29

while to jump



Page 30

Function Calls



Page 31

Encoding Instructions

Example 3: if r0 < 9 jump to 0x42



Page 32

Instructions


