

Circuits and Code

CS 2130: Computer Systems and Organization 1

Xinyao Yi Ph.D.

Assistant Professor

Announcements

- Homework 1 due tonight
- Homework 2 available today, due next Monday

™ University of Virginia

Another Counter

clock	K	Ŋ	Ri	RL
0	0	1	-1	-
	1	0		0
2		(D	-
3	2			1
4	3	2]	2
5	5	3		

x: Fibonacci seguence

Common Model in Computers

The register ignore

all the calculations/updates

until rising dock edge.

Code to Build Circuits from Gates

Write code to build circuits from gates

- Gates we already know: &, |, ^, ~
- Operations we can build from gates: +, -
- Others we can build:

Code to Build Circuits from Gates

Write code to build circuits from gates

- Gates we already know: &, |, ^, ~
- Operations we can build from gates: +, -
- Others we can build:
- Ternary operator: ?: a==0?b:C

Equals

Equals: =

- Attach with a wire (i.e., connect things)
- Ex: z = x * y

Equals

Equals: =

- Attach with a wire (i.e., connect things)
- Ex: z = x * y
- What about the following?

$$x = 1$$
$$x = 0$$

Equals

Equals: =

- Attach with a wire (i.e., connect things)
- Ex: z = x * y
- What about the following?

$$x = 1$$

$$x = 0$$

• Single assignment: each variable can only be assigned a value once