

More bits, circuits, adders (From the last class)

CS 2130: Computer Systems and Organization 1

Xinyao Yi Ph.D.

Assistant Professor

Announcements

- Quiz 2 out later today, due Sunday at 11:59pm
- Homework 1 due Monday
- Homework 2 available Monday

Adder

Can we use this in parallel to add multi-bit numbers?

What is missing?

Consider:

3-input Adder

Add 3 1-bit numbers: a, b, c

Ripple-Carry Adder

Ripple-Carry Adder: Lowest-order Bit

Ripple-Carry Adder: In General

Ripple-Carry Adder: In General

Clocks, Registers

CS 2130: Computer Systems and Organization 1

Xinyao Yi Ph.D.

Assistant Professor

What does this circuit do?

Increment Circuit

Gate Delay

What happens when I change my input?

Building a Counter

Building a Counter

Building a Counter - Waiting

1-bit Register Circuit

1-bit Register Circuit

1-bit Register Circuit

Building a Counter

Another Counter

Another Counter

Common Model in Computers

Code to Build Circuits from Gates

Write code to build circuits from gates

- Gates we already know: &, |, ^, ~
- Operations we can build from gates: +, -
- Others we can build:

Code to Build Circuits from Gates

Write code to build circuits from gates

- Gates we already know: &, |, ^, ~
- Operations we can build from gates: +, -
- Others we can build:
- Ternary operator: ?:

Equals

Equals: =

- Attach with a wire (i.e., connect things)
- Ex: z = x * y

Equals

Equals: =

- Attach with a wire (i.e., connect things)
- Ex: z = x * y
- What about the following?

$$x = 1$$

$$x = 0$$

Equals

Equals: =

- Attach with a wire (i.e., connect things)
- Ex: z = x * y
- What about the following?

$$\mathbf{x} = 1$$

x = 0

• Single assignment: each variable can only be assigned a value once

Any Questions?