
Page 1

CS 2130: Computer Systems and Organization 1 
Xinyao Yi Ph.D. 
Assistant Professor

Binary Arithmetic & Bitwise



Page 2

Two’s Complement

The scheme is called Two’s Complement 
Why do we need Two’s Complement?
• We want the computer to represent both positive and negative 

numbers.
• And we want addition and subtraction to use the same 

hardware (just one adder), instead of building a separate 
“subtractor.”

How does it work?
• The leftmost bit (MSB) is treated as negative.

• In normal binary: the leftmost bit is +128 (for 8-bit).
• In two’s complement: the leftmost bit is −128.

• That’s why 10000000₂ = −128 instead of +128.



Page 3

Values of Two’s Complement Numbers

Consider the following 8-bit binary number in Two’s Complement: 

11010011 

What is its value in decimal?



Page 4

Values of Two’s Complement Numbers

Consider the following 8-bit binary number in Two’s Complement: 

11010011 

What is its value in decimal?

1. Flip all bits 

2. Add 1



Page 5

Why “invert the bits and add 1”?

• Because in 8 bits, we have 256 total values (0–255).

• A negative number is stored as 256 − (its absolute value).

• The “invert + 1” trick is just a fast way to compute that.

Values of Two’s Complement Numbers



Page 6

Two’s Complement

two's complement definition: 

-a = ~a + 1 

0 = ~a + 1 + a 

-1 = ~a + a



Page 7

Consider the following decimal number: 

-117 

What is its value in 8-bit binary binary?

Values of Two’s Complement Numbers



Page 8

So far, we have discussed: 

• Addition: 𝑥 + 𝑦 

– Can get multiplication 

• Subtraction: 𝑥 − 𝑦 

– Can get division, but more difficult 

• Unary minus (negative): − 𝑥

– Flip the bits and add 1

Operations



Page 9

Bit vector: fixed-length sequence of bits (ex: bits in an integer) 

• Manipulated by bitwise operations 

Bitwise operations: operate over the bits in a bit vector 

• Bitwise not: ~x - flips all bits (unary) 

• Bitwise and: x & y - set bit to 1 if 𝑥, 𝑦 have 1 in same bit 

• Bitwise or: x | y - set bit to 1 if either 𝑥 or 𝑦 have 1 

• Bitwise xor: x ^ y - set bit to 1 if 𝑥, 𝑦 bit differs

Operations (on Integers)



Page 10

Example: Bitwise AND



Page 11

Example: Bitwise OR



Page 12

Example: Bitwise XOR



Page 13

Your Turn!

What is: 
0x1a ^ 0x72



Page 14

Operations (on Integers) 

Logical not: !𝑥 

• !0 = 1 and !𝑥 = 0, ∀𝑥 ≠ 0 

• Useful in C, no booleans 

• Some languages name this one differently



Page 15

Operations (on Integers)

Left shift: 𝑥 << 𝑦 - move bits to the left 

• Effectively multiply by powers of 2 

Right shift: 𝑥 >> 𝑦 - move bits to the right 

• Effectively divide by powers of 2 

• Signed (extend sign bit) vs unsigned (extend 0)



Page 16

Left Bit-shift Example

01011010 << 2



Page 17

Right Bit-shift Example

01011010 >> 3



Page 18

Bit-shift

Computing bit-shift effectively multiplies/divides by powers of 2 

Consider decimal:



Page 19

Right Bit-shift Example 2

11001010 >> 1



Page 20

Right Bit-shift Example 2

For signed integers, extend the sign bit (1) 

• Keeps negative value (if applicable) 

• Approximates divide by powers of 2 

11001010 >> 1



Page 21

Bit fiddling example



Page 22

Any Questions?


