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Two’s Complement

The scheme is called Two’s Complement

Why do we need Two’s Complement?

We want the computer to represent both positive and negative
numbers.

And we want addition and subtraction to use the same
hardware (just one adder), instead of building a separate
“subtractor.”

How does it work?

The leftmost bit (MSB) is treated as negative.
* In normal binary: the leftmost bit is +128 (for 8-bit).
* Intwo’s complement: the leftmost bit is —128.
That’s why 100000002 = —128 instead of +128.
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Values of Two’s Complement Numbers

Consider the following 8-bit binary number in Two’s Complement:

11010011

What is its value in decimal?
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Values of Two’s Complement Numbers

Consider the following 8-bit binary number in Two’s Complement:
11010011

What is its value in decimal?

1. Flip all bits
2. Add1
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Values of Two’s Complement Numbers

Why “invert the bits and add 1”?
* Because in 8 bits, we have 256 total values (0-255).

* A negative number is stored as 256 — (its absolute value).

* The “invert + 17 trick 1s just a fast way to compute that.
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Two’s Complement

two's complement definition:
-a=~a+1

O=~a+1+a

-l=~a+a
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Values of Two’s Complement Numbers

Consider the following decimal number:

-117

What is its value in 8-bit binary binary?
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Operations

So far, we have discussed:
» Addition: x +y
— Can get multiplication
 Subtraction: x —y
— Can get division, but more difficult
* Unary minus (negative): — x

— Flip the bits and add 1
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Operations (on Integers)

Bit vector: fixed-length sequence of bits (ex: bits in an integer)
* Manipulated by bitwise operations

Bitwise operations: operate over the bits in a bit vector
 Bitwise not: ~x - flips all bits (unary)
 Bitwise and: x & y - set bit to 1 if x, y have 1 in same bit
* Bitwise or: x | y - set bit to 1 if either x or y have 1

* Bitwise xor: x My - set bit to 1 1f x, y bit differs
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Example: Bitwise AND

11001010
& 01111100
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Example: Bitwise OR

11001010
| 01111100
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Example: Bitwise XOR

11001010
~ 01111100
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Your Turn!

What is:
Oxla” 0x72
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Operations (on Integers)

Logical not: !x
e I0=1land!x=0,Vx#0
e Useful in C, no booleans

* Some languages name this one differently
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Operations (on Integers)

Left shift: x <<y - move bits to the left
* Effectively multiply by powers of 2
Right shift: x >> y - move bits to the right
» Effectively divide by powers of 2
* Signed (extend sign bit) vs unsigned (extend 0)
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Left Bit-shift Example

01011010 << 2
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Right Bit-shift Example

01011010 >>3
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Bit-shift

Computing bit-shift effectively multiplies/divides by powers of 2

Consider decimal:

2130 <<y 2 = 213000 = 2130 x 100

2130 >>;; 1 = 213 = 2130 / 10
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Right Bit-shift Example 2

11001010 >> 1
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Right Bit-shift Example 2

For signed integers, extend the sign bit (1)

* Keeps negative value (if applicable)

* Approximates divide by powers of 2
11001010 >> 1
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Bit fiddling example
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Any Questions?




