UNIVERSITYsf VIRGINIA

Binary Arithmetic & Bitwise

CS 2130: Computer Systems and Organization 1

Xinyao Yi Ph.D.
Assistant Professor

il UNTERSITY | ENGINEERING




il UNIVERSITYo VIRGINIA

Two’s Complement

The scheme is called Two’s Complement

Why do we need Two’s Complement?

We want the computer to represent both positive and negative
numbers.

And we want addition and subtraction to use the same
hardware (just one adder), instead of building a separate
“subtractor.”

How does it work?

The leftmost bit (MSB) is treated as negative.
* In normal binary: the leftmost bit is +128 (for 8-bit).
* Intwo’s complement: the leftmost bit is —128.
That’s why 100000002 = —128 instead of +128.

1111 0001

+1 0010
-2 +2

0011
3
+4 0100

5
0101




UNIVERSITYsf VIRGINIA

Values of Two’s Complement Numbers

Consider the following 8-bit binary number in Two’s Complement:

11010011

What is its value in decimal?




UNIVERSITYsf VIRGINIA

Values of Two’s Complement Numbers

Consider the following 8-bit binary number in Two’s Complement:
11010011

What is its value in decimal?

1. Flip all bits
2. Add1




UNIVERSITYsf VIRGINIA

Values of Two’s Complement Numbers

Why “invert the bits and add 1”?
* Because in 8 bits, we have 256 total values (0-255).

* A negative number is stored as 256 — (its absolute value).

* The “invert + 17 trick 1s just a fast way to compute that.




UNIVERSITYsf VIRGINIA

Two’s Complement

two's complement definition:
-a=~a+1

O=~a+1+a

-l=~a+a




UNIVERSITYsf VIRGINIA

Values of Two’s Complement Numbers

Consider the following decimal number:

-117

What is its value in 8-bit binary binary?




UNIVERSITYsf VIRGINIA

Operations

So far, we have discussed:
» Addition: x +y
— Can get multiplication
 Subtraction: x —y
— Can get division, but more difficult
* Unary minus (negative): — x

— Flip the bits and add 1




il UNIVERSITYo VIRGINIA

Operations (on Integers)

Bit vector: fixed-length sequence of bits (ex: bits in an integer)
* Manipulated by bitwise operations

Bitwise operations: operate over the bits in a bit vector
 Bitwise not: ~x - flips all bits (unary)
 Bitwise and: x & y - set bit to 1 if x, y have 1 in same bit
* Bitwise or: x | y - set bit to 1 if either x or y have 1

* Bitwise xor: x My - set bit to 1 1f x, y bit differs




UNIVERSITYsf VIRGINIA

Example: Bitwise AND

11001010
& 01111100




UNIVERSITYsf VIRGINIA

Example: Bitwise OR

11001010
| 01111100




UNIVERSITYsf VIRGINIA

Example: Bitwise XOR

11001010
~ 01111100




UNIVERSITYsf VIRGINIA

Your Turn!

What is:
Oxla” 0x72




UNIVERSITYsf VIRGINIA

Operations (on Integers)

Logical not: !x
e I0=1land!x=0,Vx#0
e Useful in C, no booleans

* Some languages name this one differently




il UNIVERSITYo VIRGINIA

Operations (on Integers)

Left shift: x <<y - move bits to the left
* Effectively multiply by powers of 2
Right shift: x >> y - move bits to the right
» Effectively divide by powers of 2
* Signed (extend sign bit) vs unsigned (extend 0)




UNIVERSITYsf VIRGINIA

Left Bit-shift Example

01011010 << 2




UNIVERSITYsf VIRGINIA

Right Bit-shift Example

01011010 >>3




UNIVERSITYsf VIRGINIA

Bit-shift

Computing bit-shift effectively multiplies/divides by powers of 2

Consider decimal:

2130 <<y 2 = 213000 = 2130 x 100

2130 >>;; 1 = 213 = 2130 / 10




UNIVERSITYsf VIRGINIA

Right Bit-shift Example 2

11001010 >> 1




UNIVERSITYsf VIRGINIA

Right Bit-shift Example 2

For signed integers, extend the sign bit (1)

* Keeps negative value (if applicable)

* Approximates divide by powers of 2
11001010 >> 1




UNIVERSITYsf VIRGINIA

Bit fiddling example




UNIVERSITYsf VIRGINIA

Any Questions?




