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Binary Arithmetic & Bitwise
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Two’s Complement

The scheme is called Two’s Complement 
Why do we need Two’s Complement?
• We want the computer to represent both positive and negative 

numbers.
• And we want addition and subtraction to use the same 

hardware (just one adder), instead of building a separate 
“subtractor.”

How does it work?
• The leftmost bit (MSB) is treated as negative.

• In normal binary: the leftmost bit is +128 (for 8-bit).
• In two’s complement: the leftmost bit is −128.

• That’s why 10000000₂ = −128 instead of +128.
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Values of Two’s Complement Numbers

Consider the following 8-bit binary number in Two’s Complement: 

11010011 

What is its value in decimal?
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Values of Two’s Complement Numbers

Consider the following 8-bit binary number in Two’s Complement: 

11010011 

What is its value in decimal?

1. Flip all bits 

2. Add 1
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Why “invert the bits and add 1”?

• Because in 8 bits, we have 256 total values (0–255).

• A negative number is stored as 256 − (its absolute value).

• The “invert + 1” trick is just a fast way to compute that.

Values of Two’s Complement Numbers
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Two’s Complement

two's complement definition: 

-a = ~a + 1 

0 = ~a + 1 + a 

-1 = ~a + a
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Consider the following decimal number: 

-117 

What is its value in 8-bit binary binary?

Values of Two’s Complement Numbers
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So far, we have discussed: 

• Addition: 𝑥 + 𝑦 

– Can get multiplication 

• Subtraction: 𝑥 − 𝑦 

– Can get division, but more difficult 

• Unary minus (negative): − 𝑥

– Flip the bits and add 1

Operations
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Bit vector: fixed-length sequence of bits (ex: bits in an integer) 

• Manipulated by bitwise operations 

Bitwise operations: operate over the bits in a bit vector 

• Bitwise not: ~x - flips all bits (unary) 

• Bitwise and: x & y - set bit to 1 if 𝑥, 𝑦 have 1 in same bit 

• Bitwise or: x | y - set bit to 1 if either 𝑥 or 𝑦 have 1 

• Bitwise xor: x ^ y - set bit to 1 if 𝑥, 𝑦 bit differs

Operations (on Integers)
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Example: Bitwise AND
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Example: Bitwise OR
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Example: Bitwise XOR
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Your Turn!

What is: 
0x1a ^ 0x72
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Operations (on Integers) 

Logical not: !𝑥 

• !0 = 1 and !𝑥 = 0, ∀𝑥 ≠ 0 

• Useful in C, no booleans 

• Some languages name this one differently
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Operations (on Integers)

Left shift: 𝑥 << 𝑦 - move bits to the left 

• Effectively multiply by powers of 2 

Right shift: 𝑥 >> 𝑦 - move bits to the right 

• Effectively divide by powers of 2 

• Signed (extend sign bit) vs unsigned (extend 0)
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Left Bit-shift Example

01011010 << 2
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Right Bit-shift Example

01011010 >> 3
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Bit-shift

Computing bit-shift effectively multiplies/divides by powers of 2 

Consider decimal:
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Right Bit-shift Example 2

11001010 >> 1
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Right Bit-shift Example 2

For signed integers, extend the sign bit (1) 

• Keeps negative value (if applicable) 

• Approximates divide by powers of 2 

11001010 >> 1
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Bit fiddling example
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Any Questions?


