

# Mux, Binary Arithmetic

CS 2130: Computer Systems and Organization 1

Xinyao Yi Ph.D.

**Assistant Professor** 



# **UNIVERSITY** of VIRGINIA

#### Announcement

• Lab grading clarification: If you do not attend labs, the maximum score you can receive is 50%, not 90%.

#### • Slides updates:

- The annotated slides have been published on the course webpage.
- Please note that in the future, I may occasionally make small updates on the slides after class—for example, adding more detailed explanations if many students found certain concepts difficult. I will let you know about any such changes at the beginning of the next class.



From Last Class...

#### **Transistors**



- If we apply voltage, it switches **on**—current flows.
- If there's no voltage, it stays off.



#### p-type transistor: Push to open

- If we apply voltage, it actually switches **off**—it blocks the current.
- If there's no voltage, it stays on.



# **Circuit Diagram**







$$x=a?b:c$$

A multiplexer (mux) is commonly drawn as a trapezoid in circuit diagrams.





$$\begin{array}{c|cccc}
S & A & B & C \\
\hline
0 & B & if S \Rightarrow B \\
I & A & if S \Rightarrow A
\end{array}$$





True:

O. !SQ !AQB

D ! S & A & B

3 S&A&!B

(A) S& A&B

Combine:

(!SQ!A&B) | (!SQA&B)

(S& A&!B) (S&A&B)



(!s&!A&B) | (!s&A&B) | (S&A&!B) | (S&A&B)





# 2-bit Multiplexer (mux)

### 2-bit values instead of 1-bit values



In parallel.



### **Multi-bit Values**

So far, only talking about 2 things: 0 and 1

Next:

Numbers, strings, objects, ...



From our oldest cultures, how do we mark numbers?

- unary representation: make marks, one per "thing"
  - Awkward for large numbers, ex: CS 2130?
  - Hard to tell how many marks there are
- Update: group them!
- Romans used new symbols:

100 500 1000 (at least get this shorter



#### Arabic numerals

• Positional numbering system

the position means something.

decimals:
$$\uparrow \uparrow \uparrow \uparrow \uparrow$$

$$2 \mid 30$$

$$\uparrow \circ \downarrow \circ 5$$

$$2 \times 1000 + 1 \times 100 + 3 \times 10 + 0 \times 1 = 2130$$



#### Arabic numerals

- Positional numbering system
- The 10 is significant:
  - 10 symbols, using 10 as base of exponent



#### Arabic numerals

- Positional numbering system
- The 10 is significant:
  - 10 symbols, using 10 as base of exponent
- The 10 is arbitrary
  - We can use other bases!  $\pi$ , 2130, (2,)... binary.



## **Base-8 Example**

Try to turn 1348 into base-10:

$$|xb4+3x8+4x|=92_{10}$$



#### **Bases**

We will discuss a few in this class

- Base-10 (decimal) talking to humans
- Base-8 (octal) shows up occasionally
- Base-2 (binary) most important! (we've been discussing 2 things!)
- Base-16 (hexadecimal) nice grouping of bits

### **Binary**

2 digits: 0, 1

Try to turn 1100101<sub>2</sub> into base-10

# UNIVERSITY of VIRGINIA

### **Binary**

Any downsides to binary?

$$2'' 2'' 2^9 2^8 2^7 2^6 2^5 2^4 2^3 2^2 2' 2^0$$
 $2048 | 924 512 246 | 128 64 32 | 16 8 4 2 1$ 
 $1 0 0 0 0 0 | 0 | 0 0 0 0 0$ 
 $2130 - 2048 = 82$ 
 $82 - 647 = 18$ 
 $18 - 16 = 2$ 

Turn 2130<sub>10</sub> into base-2:

hint: find largest power of 2 and subtract



# **Long Numbers**

How do we deal with numbers too long to read?



## **Long Numbers**

How do we deal with numbers too long to read?

• Group them by 3 (right to left)