
Floating Point NumbersFloating Point Numbers

CS 2130: Computer Systems and Organization 1
September 8, 2025

Announcements

• Homework 1 due September 15
• Lab 2 tomorrow!

Floating Point Numbers | CS 2130: Computer Systems and Organization 1 | September 8, 2025 | 2

Operations

So far, we have discussed:
• Addition: x + y

– Can get multiplication
• Subtraction: x - y

– Can get division, but more difficult
• Unary minus (negative): -x

– Flip the bits and add 1

Floating Point Numbers | CS 2130: Computer Systems and Organization 1 | September 8, 2025 | 3

Operations (on Integers)

Bit vector: fixed-length sequence of bits (ex: bits in an integer)
• Manipulated by bitwise operations
Bitwise operations: operate over the bits in a bit vector
• Bitwise not: ~x - flips all bits (unary)
• Bitwise and: x & y - set bit to 1 if 𝑥, 𝑦 have 1 in same bit
• Bitwise or: x | y - set bit to 1 if either 𝑥 or 𝑦 have 1
• Bitwise xor: x ^ y - set bit to 1 if 𝑥, 𝑦 bit differs

Floating Point Numbers | CS 2130: Computer Systems and Organization 1 | September 8, 2025 | 4

Operations (on Integers)
• Logical not: !x

– !0 = 1 and !𝑥 = 0, ∀𝑥 ≠ 0
– Useful in C, no booleans
– Some languages name this one differently

• Left shift: x << y - move bits to the left
– Effectively multiply by powers of 2

• Right shift: x >> y - move bits to the right
– Effectively divide by powers of 2
– Signed (extend sign bit) vs unsigned (extend 0)

Floating Point Numbers | CS 2130: Computer Systems and Organization 1 | September 8, 2025 | 5

Right Bit-shift Example 2

11001010 >> 1

Floating Point Numbers | CS 2130: Computer Systems and Organization 1 | September 8, 2025 | 6

Right Bit-shift Example 2

For signed integers, extend the sign bit (1)
• Keeps negative value (if applicable)
• Approximates divide by powers of 2

11001010 >> 1

Floating Point Numbers | CS 2130: Computer Systems and Organization 1 | September 8, 2025 | 7

Quiz 1 Review

Floating Point Numbers | CS 2130: Computer Systems and Organization 1 | September 8, 2025 | 8

What about other kinds of numbers?

Floating Point Numbers | CS 2130: Computer Systems and Organization 1 | September 8, 2025 | 9

Non-Integer Numbers

Floating point numbers
• Decimal: 3.14159
• Binary: 11.10110
• With integers, the point is always fixed after all digits
• With floating point numbers, the point can move!

Floating Point Numbers | CS 2130: Computer Systems and Organization 1 | September 8, 2025 | 10

Non-Integer Numbers

Floating point numbers
• Decimal: 3.14159
• Binary: 11.10110
• With integers, the point is always fixed after all digits
• With floating point numbers, the point can move!

Floating Point Numbers | CS 2130: Computer Systems and Organization 1 | September 8, 2025 | 10

Non-Integer Numbers

Floating point numbers
• Decimal: 3.14159
• Binary: 11.10110
• With integers, the point is always fixed after all digits
• With floating point numbers, the point can move!

Floating Point Numbers | CS 2130: Computer Systems and Organization 1 | September 8, 2025 | 10

Non-Integer Numbers

Floating point numbers
• Decimal: 3.14159
• Binary: 11.10110
• With integers, the point is always fixed after all digits
• With floating point numbers, the point can move!
Challenge! only 2 symbols in binary

Floating Point Numbers | CS 2130: Computer Systems and Organization 1 | September 8, 2025 | 10

Scientific Notation

Convert the following decimal to scientific notation:

2130

Floating Point Numbers | CS 2130: Computer Systems and Organization 1 | September 8, 2025 | 11

Scientific Notation

Convert the following binary to scientific notation:

101101

Floating Point Numbers | CS 2130: Computer Systems and Organization 1 | September 8, 2025 | 12

Something to Notice
An interesting phenomenon:
• Decimal: first digit can be any number except 0

2.13 × 103

• Binary: first digit can be any number except 0 Wait!
1.01101 × 25

– First digit can only be 1

Floating Point Numbers | CS 2130: Computer Systems and Organization 1 | September 8, 2025 | 13

Something to Notice

An interesting phenomenon:
• Decimal: first digit can be any number except 0

2.13 × 103

• Binary: first digit can be any number except 0 Wait!
1.01101 × 25

– First digit can only be 1

Floating Point Numbers | CS 2130: Computer Systems and Organization 1 | September 8, 2025 | 13

Something to Notice

An interesting phenomenon:
• Decimal: first digit can be any number except 0

2.13 × 103

• Binary: first digit can be any number except 0 Wait!
1.01101 × 25

– First digit can only be 1

Floating Point Numbers | CS 2130: Computer Systems and Organization 1 | September 8, 2025 | 13

Floating Point in Binary

We must store 3 components
• sign (1-bit): 1 if negative, 0 if positive
• fraction or mantissa: (?-bits): bits after binary point
• exponent (?-bits): how far to move binary point
We do not need to store the value before the binary point. Why?

Floating Point Numbers | CS 2130: Computer Systems and Organization 1 | September 8, 2025 | 14

Floating Point in Binary

How do we store them?
• Originally many different systems
• IEEE standardized system (IEEE 754 and IEEE 854)
• Agreed-upon order, format, and number of bits for each

1.01101 × 25

Floating Point Numbers | CS 2130: Computer Systems and Organization 1 | September 8, 2025 | 15

Example

A rough example in Decimal:

6.42 × 103

Floating Point Numbers | CS 2130: Computer Systems and Organization 1 | September 8, 2025 | 16

Exponent

How do we store the exponent?
• Exponents can be negative

2−3 = 1
23 = 1

8

• Need positive and negative ints (but no minus sign)
• Don’t we always use Two’s Complement?

Floating Point Numbers | CS 2130: Computer Systems and Organization 1 | September 8, 2025 | 17

Exponent

How do we store the exponent?
• Exponents can be negative

2−3 = 1
23 = 1

8

• Need positive and negative ints (but no minus sign)
• Don’t we always use Two’s Complement?

Floating Point Numbers | CS 2130: Computer Systems and Organization 1 | September 8, 2025 | 17

Exponent

How do we store the exponent?
• Exponents can be negative

2−3 = 1
23 = 1

8

• Need positive and negative ints (but no minus sign)
• Don’t we always use Two’s Complement? Unfortunately Not

Floating Point Numbers | CS 2130: Computer Systems and Organization 1 | September 8, 2025 | 17

Exponent

How do we store the exponent?
• Biased integers

– Make comparison operations run more smoothly
– Hardware more efficient to build
– Other valid reasons

Floating Point Numbers | CS 2130: Computer Systems and Organization 1 | September 8, 2025 | 18

Biased Integers

Similar to Two’s Complement, but add
bias
• Two’s Complement: Define 0 as 00...0
• Biased: Define 0 as 0111...1
• Biased wraps from

000...0 to 111...1

Floating Point Numbers | CS 2130: Computer Systems and Organization 1 | September 8, 2025 | 19

Biased Integers

Two’s Complement Biased
Floating Point Numbers | CS 2130: Computer Systems and Organization 1 | September 8, 2025 | 20

Biased Integers Example

Calculate value of biased integers (4-bit example)

0010

Floating Point Numbers | CS 2130: Computer Systems and Organization 1 | September 8, 2025 | 21

Biased Integers

Floating Point Numbers | CS 2130: Computer Systems and Organization 1 | September 8, 2025 | 22

Floating Point Example

101.0112

Floating Point Numbers | CS 2130: Computer Systems and Organization 1 | September 8, 2025 | 23

Floating Point Example

101.0112

Floating Point Numbers | CS 2130: Computer Systems and Organization 1 | September 8, 2025 | 24

Floating Point Example

What does the following encode?

1 001110 1010101

Floating Point Numbers | CS 2130: Computer Systems and Organization 1 | September 8, 2025 | 25

Floating Point Example

What does the following encode?

1 001110 1010101

Floating Point Numbers | CS 2130: Computer Systems and Organization 1 | September 8, 2025 | 26

Floating Point Numbers | CS 2130: Computer Systems and Organization 1 | September 8, 2025 | 27

What about 0?

Floating Point Numbers | CS 2130: Computer Systems and Organization 1 | September 8, 2025 | 28

Floating Point Numbers

Four cases:
• Normalized: What we have seen today

𝑠 𝑒𝑒𝑒𝑒 𝑓𝑓𝑓𝑓 = ±1.𝑓𝑓𝑓𝑓 × 2𝑒𝑒𝑒𝑒−bias

• Denormalized: Exponent bits all 0
𝑠 𝑒𝑒𝑒𝑒 𝑓𝑓𝑓𝑓 = ±0.𝑓𝑓𝑓𝑓 × 21−bias

• Infinity: Exponent bits all 1, fraction bits all 0 (i.e., ±∞)
• Not a Number (NaN): Exponent bits all 1, fraction bits not all 0

Floating Point Numbers | CS 2130: Computer Systems and Organization 1 | September 8, 2025 | 29

1

x,y

x

y

x,y

$!0 = 1$

$!x = 0, �orall x
eq 0$

3.14159

11.10110

�egin {equation*}2.13 	imes 10^3end {equation*}

�egin {equation*}1.01101 	imes 2^5end {equation*}

$1.01101 	imes 2^5$

$6.42 	imes 10^3$

�egin {equation*}2^{-3} = �rac {1}{2^3} = �rac {1}{8}end {equation*}

0010

101.011_2

101.011_2

�egin {equation*}s ; eeee ; ffff = pm 1.ffff 	imes 2^{eeee-	extrm {bias}}end {equation*}

�egin {equation*}s ; eeee ; ffff = pm 0.ffff 	imes 2^{1-	extrm {bias}}end {equation*}

$pm infty $

The document was declared to be of type PDF/A-4f but hasn't any attachments. LaTeX therefore added this dummy file.

