C Introduction

CS 2130: Computer Systems and Organization 1

November 10, 2025

Announcements

- Homework 8 released tomorrow, due next Monday on
Gradescope

C Introduction CS 2130: Computer Systems and Organization 1 November 10, 2025 2

Calling Functions

The C code
long a = £(23, "yes", 34ul);
compiles to

movl $23, Yedi

leaq label of yes_string, %rsi
movq $34, Yrdx

callq £

Jirax is "long a" here

without respect to how f was defined. It is the calling convention,
not the type declaration of £, that controls this.

C Introduction CS 2130: Computer Systems and Organization 1 November 10, 2025

Calling Functions

But, if the C code has access to the type declaration of £, then it
might perform some implicit casting first; for example, if we
declared

long f(double a, const char *b, double c);
long a = £(23, "yes", 34ul);

then the call would be interpreted by C as having implicit casts in it:

long a = f((double)23, "yes", (double)34ul);

C Introduction CS 2130: Computer Systems and Organization 1 November 10, 2025 4

Calling Functions

and the arguments would be passed in floating-point registers, like

SO:
movl $23, Yeax
cvtsi2sd %eax, %xmmO # first floating-point argument

leaq label of yes_string, J%rdi # first integer/pointer argument

movl $34, %eax
cvtsi2sd %eax, Y%xmml # second floating-point argument

callq f
J%rax is "long a" here

C Introduction CS 2130: Computer Systems and Organization 1 November 10, 2025 5

Function Declaration

int f(int x);
- Declaration of the function
- Function header
- Function signature
- Function prototype
We want this in every file that invokes £ ()

C Introduction CS 2130: Computer Systems and Organization 1 November 10, 2025 6

Function Definition

int f(int x) {
return 2130 * x;
+

- Definition of the function
We only want this in one .c file
- Do not want 2 definitions
- Which one should the linker choose?

C Introduction CS 2130: Computer Systems and Organization 1 November 10, 2025 7

Header Files

C header files: .n files
- Written in C, so look like C
- Only put header information in them

- Function headers
- Macros

= typedefs

- struct definitions

- Essentially: information for the type checker that does not
produce any actual binary

- #include the header files in our .c files

C Introduction | CS 2130: Computer Systems and Organization 1 | November 10, 2025 8

Big Picture

Header files
- Things that tell the type checker how to work
- Do not generate any actual binary

C files
- Function definitions and implementation

- Include the header files

C Introduction CS 2130: Computer Systems and Organization 1 November 10, 2025 9

Including Headers

#include "myfile.h"

- Quotes: look for a file where I'm writing code
- Our header files
#include <string.h>
- Angle brackets: look in the standard place for includes
- Code that came with the compiler
- Likely in /usr/include

C Introduction CS 2130: Computer Systems and Organization 1 November 10, 2025 10

#define NAME something else

- Object-like macro

- Replaces NAME in source with something else
#define NAME(a,b) something b and a

* Function-like macro

- Replaces NAME(X,Y) with something Y and X

Lexical replacement, not semantic

C Introduction CS 2130: Computer Systems and Organization 1 November 10, 2025

Interesting Example

#define TIMES2(x) x * 2 /* bad practice x*/

#define TIMES2b(x) ((x) * 2) /* good practice */
- o
int x = ! TIMES2(2 ¥ 3);
—> o= a3y =2 XK=
- N - . -
’ ® ¢
b Y
ISl
int y = ! TIMES2b(2 + 3);

. . _ +7) 1)) = yjo)
__pr nt ﬁ - ((fﬁ;'ﬂ;ﬂ_
o

C Introduction CS 2130: Computer Systems and Organization 1 November 10, 2025 12

Examples and More

- header example
* string.h

- variadic functions

C Introduction CS 2130: Computer Systems and Organization 1 November 10, 2025 13

C Introduction CS 2130: Computer Systems and Organization 1 November 10, 2025 14

The heap: unorganized memory for our data

- Most code we write will use the heap
- Not a heap data structure...

C Introduction CS 2130: Computer Systems and Organization 1 November 10, 2025 15

The Heap: Requesting Memory

void *malloc(size t size);

- Ask for size bytes of memory
- Returns a (void *) pointer to the first byte
- It does not know what we will use the space for!

- Does not erase (or zero) the memory it returns

C Introduction CS 2130: Computer Systems and Organization 1 November 10, 2025 16

The Heap: Freeing Memory

Freeing memory: free

void free(void *ptr);

- Accepts a pointer returned by malloc
- Marks that memory as no longer in use, available to use later
- You should free() memory to avoid memory leaks

C Introduction CS 2130: Computer Systems and Organization 1 November 10, 2025 17

C Introduction CS 2130: Computer Systems and Organization 1 November 10, 2025 18

C Introduction CS 2130: Computer Systems and Organization 1 November 10, 2025 19

The document was declared to be of type PDF/A-4f but hasn't any attachments. LaTeX therefore added this dummy file.

