
C IntroductionC Introduction

CS 2130: Computer Systems and Organization 1
November 10, 2025



Announcements

• Homework 8 released tomorrow, due next Monday on
Gradescope

C Introduction | CS 2130: Computer Systems and Organization 1 | November 10, 2025 | 2



Calling Functions

The C code
long a = f(23, "yes", 34uL);

compiles to
movl $23, %edi
leaq label_of_yes_string, %rsi
movq $34, %rdx
callq f
# %rax is "long a" here

without respect to how f was defined. It is the calling convention,
not the type declaration of f, that controls this.

C Introduction | CS 2130: Computer Systems and Organization 1 | November 10, 2025 | 3



Calling Functions

But, if the C code has access to the type declaration of f, then it
might perform some implicit casting first; for example, if we
declared

long f(double a, const char *b, double c);

long a = f(23, "yes", 34uL);

then the call would be interpreted by C as having implicit casts in it:
long a = f((double)23, "yes", (double)34uL);

C Introduction | CS 2130: Computer Systems and Organization 1 | November 10, 2025 | 4



Calling Functions

and the arguments would be passed in floating-point registers, like
so:
movl $23, %eax
cvtsi2sd %eax, %xmm0 # first floating-point argument

leaq label_of_yes_string, %rdi # first integer/pointer argument

movl $34, %eax
cvtsi2sd %eax, %xmm1 # second floating-point argument

callq f
# %rax is "long a" here

C Introduction | CS 2130: Computer Systems and Organization 1 | November 10, 2025 | 5



Function Declaration

int f(int x);

• Declaration of the function
• Function header
• Function signature
• Function prototype

We want this in every file that invokes f()

C Introduction | CS 2130: Computer Systems and Organization 1 | November 10, 2025 | 6



Function Definition

int f(int x) {
return 2130 * x;

}

• Definition of the function
We only want this in one .c file
• Do not want 2 definitions
• Which one should the linker choose?

C Introduction | CS 2130: Computer Systems and Organization 1 | November 10, 2025 | 7



Header Files
C header files: .h files
• Written in C, so look like C
• Only put header information in them
– Function headers
– Macros
– typedefs
– struct definitions

• Essentially: information for the type checker that does not
produce any actual binary
• #include the header files in our .c files

C Introduction | CS 2130: Computer Systems and Organization 1 | November 10, 2025 | 8



Big Picture

Header files
• Things that tell the type checker how to work
• Do not generate any actual binary

C files
• Function definitions and implementation
• Include the header files

C Introduction | CS 2130: Computer Systems and Organization 1 | November 10, 2025 | 9



Including Headers

#include "myfile.h"

• Quotes: look for a file where I’m writing code
• Our header files

#include <string.h>

• Angle brackets: look in the standard place for includes
• Code that came with the compiler
• Likely in /usr/include

C Introduction | CS 2130: Computer Systems and Organization 1 | November 10, 2025 | 10



Macros

#define NAME something else

• Object-like macro
• Replaces NAME in source with something else

#define NAME(a,b) something b and a

• Function-like macro
• Replaces NAME(X,Y) with something Y and X

Lexical replacement, not semantic

C Introduction | CS 2130: Computer Systems and Organization 1 | November 10, 2025 | 11



Interesting Example

#define TIMES2(x) x * 2 /* bad practice */
#define TIMES2b(x) ((x) * 2) /* good practice */

int x = ! TIMES2(2 + 3);

int y = ! TIMES2b(2 + 3);

C Introduction | CS 2130: Computer Systems and Organization 1 | November 10, 2025 | 12



Examples and More

• header example
• string.h
• variadic functions

C Introduction | CS 2130: Computer Systems and Organization 1 | November 10, 2025 | 13



Memory

C Introduction | CS 2130: Computer Systems and Organization 1 | November 10, 2025 | 14



The Heap

The heap: unorganized memory for our data
• Most code we write will use the heap
• Not a heap data structure...

C Introduction | CS 2130: Computer Systems and Organization 1 | November 10, 2025 | 15



The Heap: Requesting Memory

void *malloc(size_t size);

• Ask for size bytes of memory
• Returns a (void *) pointer to the first byte
• It does not know what we will use the space for!
• Does not erase (or zero) the memory it returns

C Introduction | CS 2130: Computer Systems and Organization 1 | November 10, 2025 | 16



The Heap: Freeing Memory

Freeing memory: free
void free(void *ptr);

• Accepts a pointer returned by malloc
• Marks that memory as no longer in use, available to use later
• You should free() memory to avoid memory leaks

C Introduction | CS 2130: Computer Systems and Organization 1 | November 10, 2025 | 17



C Introduction | CS 2130: Computer Systems and Organization 1 | November 10, 2025 | 18



C Introduction | CS 2130: Computer Systems and Organization 1 | November 10, 2025 | 19





The document was declared to be of type PDF/A-4f but hasn't any attachments. LaTeX therefore added this dummy file.

