Logic Gates, Mux, Binary Arithmetic

CS 2130: Computer Systems and Organization 1 September 1, 2025

Announcements

Lab 1 tomorrow!

Putting it together

Overall idea:

- Only need two things (Shannon)
- We can do math with two things (Boole)

Putting it together

Overall idea:

- Only need two things (Shannon)
- We can do math with two things (Boole)

Now we need a physical device that deals in two levels

Transistors

Circuit Diagram

source of voltage

Circuit Diagram

Circuit Diagram

Other Gates (reading)

Building Up

Where we are now

- World with only 2 states: 0 and 1
- Re-developed Boolean logic (gates):
 - and, or, not
 - nand, nor, xor

Gives us everything Boole talked about

Next: build higher level ideas, something powerful!

General idea:

```
if ( ... ) {
    ...
} else {
    ...
}
```

Python: x = b if a else c

- Python: x = b if a else c
- Java: x = a ? b : c

Multiplexer (mux)

$$x = a ? b : c$$

Multiplexer (mux)

How can we build a mux out of what we have learned so far? x = a? b : c

Multiplexer (mux)

Can be built from and, or, and not

- Can be built using transistors
- Can physically put it in silicon!

Questions?

More bits!

2-bit Multiplexer (mux)

2-bit values instead of 1-bit values

Multi-bit Values

- So far, only talking about 2 things
- Numbers, strings, objects, ...

From our oldest cultures, how do we mark numbers?

• unary representation: make marks, one per "thing"

- unary representation: make marks, one per "thing"
 - Awkward for large numbers, ex: CS 2130?
 - Hard to tell how many marks there are

- unary representation: make marks, one per "thing"
 - Awkward for large numbers, ex: CS 2130?
 - Hard to tell how many marks there are
- Update: group them!

- unary representation: make marks, one per "thing"
 - Awkward for large numbers, ex: CS 2130?
 - Hard to tell how many marks there are
- Update: group them!
- Romans used new symbols:

- Arabic numerals
 - Positional numbering system

- Arabic numerals
 - Positional numbering system
 - The 10 is significant:
 - * 10 symbols, using 10 as base of exponent

- Arabic numerals
 - Positional numbering system
 - The 10 is significant:
 - * 10 symbols, using 10 as base of exponent
 - The 10 is arbitrary
 - We can use other bases! π , 2130, 2, ...

Base-8 Example

Try to turn 134_8 into base-10:

Bases

We will discuss a few in this class

- Base-10 (decimal) talking to humans
- Base-8 (octal) shows up occasionally
- Base-2 (binary) most important! (we've been discussing 2 things!)
- Base-16 (hexadecimal) nice grouping of bits

Binary

2 digits: 0, 1

Try to turn 1100101_2 into base-10:

Binary

Any downsides to binary?

Turn 2130_{10} into base-2: hint: find largest power of 2 and subtract

How do we deal with numbers too long to read?

How do we deal with numbers too long to read?

Group them by 3 (right to left)

How do we deal with numbers too long to read?

- Group them by 3 (right to left)
- In decimal, use commas: ,
- Numbers between commas: 000 999

How do we deal with numbers too long to read?

- Group them by 3 (right to left)
- In decimal, use commas: ,
- Numbers between commas: 000 999
- Effectively base-1000

- Typical to group by 3 or 4 bits
- No need for commas Why?

- Typical to group by 3 or 4 bits
- No need for commas Why?
- We can use a separate symbol per group
- How many do we need for groups of 3?

- Typical to group by 3 or 4 bits
- No need for commas Why?
- We can use a separate symbol per group
- How many do we need for groups of 3?
- Turn each group into decimal representation

- Typical to group by 3 or 4 bits
- No need for commas Why?
- We can use a separate symbol per group
- How many do we need for groups of 3?
- Turn each group into decimal representation
- Converts binary to octal

- Groups of 4 more common
- How many symbols do we need for groups of 4?

- Groups of 4 more common
- How many symbols do we need for groups of 4?
- Converts binary to hexadecimal
- Base-16 is very common in computing

Hexadecimal

Need more than 10 digits. What next?

Hexadecimal Exercise

Consider the following hexadecimal number:

852dab1e

Is it even or odd?

Using Different Bases in Code

		Old Languages	New Languages
binary			
octa			
decimal			
hexadecimal			