Logic Gates, Mux, Binary Arithmetic

CS 2130: Computer Systems and Organization 1 September 1, 2025

Announcements

Lab 1 tomorrow!

Putting it together

Overall idea:

- Only need two things (Shannon)
- We can do math with two things (Boole)

Putting it together

Overall idea:

- Only need two things (Shannon)
- We can do math with two things (Boole)

Now we need a physical device that deals in two levels

Transistors

push to close push to connect push to allow current flow

push to open push to disconnect push to stop current flow

Circuit Diagram

source of voltage

Circuit Diagram

Welcome! Try this W your neighbors!

Circuit Diagram

Other Gates (reading)

Building Up

Where we are now

- World with only 2 states: 0 and 1
- Re-developed Boolean logic (gates):
 - and, or, not
 - nand, nor, xor

Gives us everything Boole talked about

Next: build higher level ideas, something powerful!

General idea:

```
if ( ) {
} else {
} ...x=C
```

Python: x = b if a else c

- Python: x = b if a else c
- Java: x = a ? b : c

Multiplexer (mux)

$$x = a ? b : c$$

Multiplexer (mux)

Logic Gates, Mux. Binary Arithmetic

How can we build a mux out of what we have learned so far? (!a8!b&c) (!a& b&c) (a& b8!c) x = a ? b : c

CS 2130: Computer Systems and Organization 1

Multiplexer (mux)

Can be built from and, or, and not

- Can be built using transistors
- Can physically put it in silicon!

Questions?

More bits!

2-bit Multiplexer (mux)

2-bit values instead of 1-bit values

Multi-bit Values

- So far, only talking about 2 things
- Numbers, strings, objects, ...

From our oldest cultures, how do we mark numbers?

unary representation: make marks, one per "thing"

- unary representation: make marks, one per "thing"
 - Awkward for large numbers, ex: CS 2130?
 - Hard to tell how many marks there are

- unary representation: make marks, one per "thing"
 - Awkward for large numbers, ex: CS 2130?
 - Hard to tell how many marks there are
- Update: group them!

- unary representation: make marks, one per "thing"
 - Awkward for large numbers, ex: CS 2130?
 - Hard to tell how many marks there are
- Update: group them!
- Romans used new symbols: \bigvee \bigvee L C \bigvee

- Arabic numerals
 - Positional numbering system

- Arabic numerals
 - Positional numbering system
 - The 10 is significant:
 - * 10 symbols, using 10 as base of exponent

- Arabic numerals
 - Positional numbering system
 - The 10 is significant:
 - * 10 symbols, using 10 as base of exponent
 - The 10 is arbitrary
 - We can use other bases! π , 2130, 2, ...

Base-8 Example

Try to turn
$$134_{8}$$
 into base-10:

Bases

We will discuss a few in this class

- Base-10 (decimal) talking to humans
- Base-8 (octal) shows up occasionally
- Base-2 (binary) most important! (we've been discussing 2 things!)
- Base-16 (hexadecimal) nice grouping of bits