
ReviewReview

CS 2130: Computer Systems and Organization 1
November 5, 2025

Announcements

• Midterm 2 Friday (November 7, 2025) in class
– Written, closed notes
– If you have SDAC, please schedule ASAP

• No Quiz this Friday!
• No Homework this week!

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 2

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 3

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 4

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 5

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 6

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 7

The Stack

Stack - a last-in-first-out (LIFO) data structure
• The solution for solving this problem

rsp - Special register - the stack pointer
• Points to a special location in memory
• Two operations most ISAs support:
– push - put a new value on the stack
– pop - return the top value off the stack

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 8

The Stack: Push and Pop

push r0

• Put a value onto the “top” of the stack
rsp -= 1
M[rsp] = r0

pop r2

• Read value from “top”, save to register
r2 = M[rsp]
rsp += 1

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 9

Patents and Copyright

Copyright
• “Everyone is a copyright owner. Once you create an original
work and fix it, like taking a photograph, writing a poem or blog,
or recording a new song, you are the author and the owner.”

from https://www.copyright.gov/what-is-copyright/

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 10

https://www.copyright.gov/what-is-copyright/

Patents and Copyright

Patent
• “Whoever invents or discovers any new and useful process,
machine, manufacture, or composition of matter, or any new
and useful improvement thereof, may obtain a patent therefor,
subject to the conditions and requirements of this title.”

from 35 U.S.C. 101

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 11

Patents

In software and hardware, patents become messy
• Code is a description of a process we want the computer to do
• Do not have to implement the process to patent it

Question: Should we patent something like our ISA?
What is the current state of the art?

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 12

Common Approaches to Software

How can we get value from what we create?
• Copyright - distribute closed source software
• License Agreements (in contract law)
• Always innovate

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 13

Backdoors

Backdoor: secret way in to do new unexpected things
• Get around the normal barriers of behavior
• Ex: a way in to allow me to take complete control of your
computer

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 14

Backdoors

Exploit - a way to use a vulnerability or backdoor that has been
created
• Our exploit today: a malicious payload
– A passcode and program
– If it ever gets in memory, run my program regardless of what
you want to do

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 15

Our Hardware Backdoor

Our backdoor will have 2 components
• Passcode: need to recognize when we see the passcode
• Program: do something bad when I see the passcode

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 16

Our Hardware Backdoor

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 17

Our Hardware Backdoor

Will you notice this on your chip?
• Modern chips have billions of transistors
• We’re talking adding a few hundred transistors
• Maybe with a microscope? But you’d need to know where to
look!

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 18

Our Hardware Backdoor

Have you heard about something like this before?
• Sounds like something from the movies
• People claim this might be happening
• To the best of my knowledge, no one has ever admitted to
falling in this trap

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 19

Ethics, Business, Tech

Are there reasons to do this? Not to do this?
• No technical reason not to, it’s easy to do!
• Ethical implications
• Business implications (lawsuits, PR, etc)

Can we make a system where one bad actor can’t break it?
• Code reviews, double checks, verification systems, automated
verification systems, ...

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 20

Why?

Why does this work?
• It’s all bytes!
• Everything we store in computers are bytes
• We store code and data in the same place: memory

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 21

It’s all bytes

Memory, Code, Data... It’s all bytes!
• Enumerate - pick the meaning for each possible byte
• Adjacency - store bigger values together (sequentially)
• Pointers - a value treated as address of thing we are interested
in

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 22

Enumerate

Enumerate - pick the meaning for each possible byte

What is 8-bit 0x54?
Unsigned integer eighty-four
Signed integer positive eighty-four
Floating point w/ 4-bit exponent twelve
ASCII capital letter T: T
Bitvector sets The set {2, 3, 5}
Our example ISA Flip all bits of value in r1

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 23

Adjacency

Adjacency - store bigger values together (sequentially)
• An array: build bigger values out of many copies of the same
type of small values
– Store them next to each other in memory
– Arithmetic to find any given value based on index

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 24

Adjacency

Adjacency - store bigger values together (sequentially)
• Records, structures, classes
– Classes have fields! Store them adjacently
– Know how to access (add offsets from base address)
– If you tell me where object is, I can find fields

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 25

Pointers

Pointers - a value treated as address of thing we are interested in
• A value that really points to another value
• Easy to describe, hard to use properly
• We’ll be talking about these a lot in this class!

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 26

Pointers

Pointers - a value treated as address of thing we are interested in
• Give us strange new powers (represent more complicated
things), e.g.,
– Variable-sized lists
– Values that we don’t know their type without looking
– Dictionaries, maps

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 27

64-bit Machines
64-bit machine: The registers are 64-bits
• i.e., r0, but also PC

Important to have large values. Why?
• Most important: PC and memory addresses
• How much memory could our 8-bit machine access? 256 bytes
• Late 70s - 16 bits: 65,536 bytes
• 80s - 32 bits: ≈ 4 billion bytes
• Today’s processors - 64 bits: 264 addresses

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 28

Aside: Powers of Two

Powers of Two
Value base-10 Short form Pronounced

210 1024 Ki Kilo
220 1,048,576 Mi Mega
230 1,073,741,824 Gi Giga
240 1,099,511,627,776 Ti Tera
250 1,125,899,906,842,624 Pi Peta
260 1,152,921,504,606,846,976 Ei Exa

Example: 227 bytes = 27 × 220 bytes = 27 MiB = 128 MiB

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 29

64-bit Machines

How much can we address with 64-bits?
• 16 EiB (264 addresses = 24 × 260)
• But I only have 8 GiB of RAM

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 30

A Challenge

There is a disconnect:
• Registers: 64-bits values
• Memory: 8-bit values (i.e., 1 byte values)
– Each address addresses an 8-bit value in memory
– Each address points to a 1-byte slot in memory

• How do we store a 64-bit value in an 8-bit spot?

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 31

Rules

Rules to break “big values” into bytes (memory)
1. Break it into bytes
2. Store them adjacently
3. Address of the overall value = smallest address of its bytes
4. Order the bytes

• If parts are ordered (i.e., array), first goes in smallest address
• Else, hardware implementation gets to pick (!!)

– Little-endian
– Big-endian

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 32

Ordering Values

Little-endian
• Store the low order part/byte first
• Most hardware today is little-endian

Big-endian
• Store the high order part/byte first

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 33

Example

Store [0x1234, 0x5678] at address 0xF00

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 34

Endianness

Why do we study endianness?
• It is everywhere
• It is a source of weird bugs
• Ex: It’s likely your computer uses:
– Little-endian from CPU to memory
– Big-endian from CPU to network
– File formats are roughly half and half

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 35

Assembly

General principle of all assembly languages
• Code (text, not binary!)
• 1 line of code = 1 machine instruction
• One-to-one reversible mapping between binary and assembly
– We do not need to remember binary encodings!
– A program will turn text to binary for us!

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 36

Assembly
Features of assembly
• Automatic addresses - use labels to keep track of addresses
– Assembler will remember location of labels and use where
appropriate

– Labels will not exist in machine code
• Metadata - data about data
– Data that helps turn assembly into code the machine can
use

• As complicated as machine instructions
– There are a lot of instructions, and it is one-to-one!

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 37

Assembly Languages

There are many assembly languages
• But, they’re backed by hardware!
• Two big ones these days: x86-64 and ARM
– You likely have machines that use one of these

• Others: RISC-V, MIPS, ...
We will focus on x86-64

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 38

x86-64

x86-64 has a weird and long history
• Expansion of the 8086 series (Intel)
– 8086, 8286, 8386, 8486, x86

• AMD expanded it with AMD64
• Intel decide to use same build, but called it x86-64
• Backwards compatible with the 8086 series

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 39

x86-64

Two dialects - two ways to write the same thing
• Intel - likely using with Windows
mov QWORD PTR [rdx+0x227],rax

• AT&T - likely using with anything else
movq %rax,0x227(%rdx)

We will use AT&T dialect

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 40

AT&T x86-84 Assembly

instruction source, destination

• Instruction followed by 0 or more operands (arguments)
• 4 types of operands:
– Number (immediate value): $0x123
– Register: %rax
– Address of memory: (%rax) or 24 or labelname
– Value at an address in memory: (%rax) or 24 or labelname

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 41

AT&T x86-84 Assembly

mylabelname:

• Label - remember the address of next thing to use later
.something something

• Metadirective - extra information that is not code
• How the code works with other things (i.e., talk to OS)
• Ex: .globl main

// we can have comments!

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 42

Addressing Memory
2130(%rax, %rsp, 8)
• Address can have up to 4 parts: 2 numbers, 2 registers
• Combines as: 2130 + %rax + (%rsp * 8)
• Common usage from this example:

– rax - address of an object in memory
– 2130 - offset of an array into the object
– rsp - index into the array
– 8 - size of the values in the array

• Don’t need all parts: (%rax) or (%rax, 4) or 4(%rax)
• This is all one operand (one memory address)

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 43

Registers

rax is a 64-bit register

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 44

Instructions

Instructions have different versions depending on number of bits
to use
• movq - 64-bit move
– q = quad word

• movl - 32-bit move
– l = long

• There are encodings for shorter things, but we will mostly see
32- and 64-bit

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 45

More powerful than our ISA

Instructions can move/operate between memory and register
• movq %rax, %rcx - register to register
– Remember our icode 0

• movq (%rax), %rcx - memory to register
– Remember our icode 3

• movq %rax, (%rcx) - register to memory
– Remember our icode 4

• movq $21, %rax - Immediate to register
– Remember our icode 6 (b=0)

Note: at most one memory address per instruction
Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 46

Other Instructions

Other instructions work the same way
• addq %rax, %rcx — rcx += rax
• subq (%rbx), %rax — rax -= M[rbx]
• xor, and, and others work the same way!
• Assembly has virtually no 3-argument instructions
– All will be modifying something (i.e., +=, &=, ...)

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 47

Load Effective Address

Load effective address: leaq 4(%rcx), %rax

• Performs memory address calculation
• Stores address, not value at the address in memory

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 48

Jumps

jmp foo

• Unconditional jump to foo

• foo is a label or memory address
• Need jmp* to use register value

Conditional jumps
• jl, jle, je, jne, jg, jge, ja, jb, js, jo

Unlike our Toy ISA, these do not compare given register to 0

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 49

Jumps

Condition codes - 4 1-bit registers set by every math operation,
cmp, and test
• Result for the operation compared to 0 (if no overflow)
• Example:
addq $-5, %rax
// ...code that doesn't set condition codes...
je foo

– Sets condition codes from doing math (subtract 5 from rax)
– Tells whether result was positive, negative, 0, if there was
overflow, ...

– Then jump if the result of operation should have been = 0
Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 50

Jumps: compare...

cmpq %rax, %rdx

• Compare checks result of -= and sets condition codes
• How rdx - rax compares with 0
• Be aware of ordering!
– if rax is bigger, sets < flag
– if rdx is bigger, sets > flag

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 51

Jumps: ... and test

testq %rax, %rdx

• Sets the condition codes based on rdx & rax

• Less common
Neither save their result, just set condition codes!

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 52

Function Calls: Calling Conventions
callq myfun
• Push return address, then jump to myfun
• Convention: Store arguments in registers and stack before call
– First 6 arguments (in order): rdi, rsi, rdx, rcx, r8, r9
– If more arguments, pushed onto stack (last to first)

retq
• Pop return address from stack and jump back
• Convention: store return value in rax before calling retq

This is similar to our Toy ISA’s function calls in homework 4
Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 53

Calling Conventions: Registers
Calling conventions - recommendations for making function calls
• Where to put arguments/parameters for the function call?
• Where to put return value? in rax before calling retq
• What happens to values in the registers?
– Callee-save - The function should ensure the values in
these registers are unchanged when the function returns

* rbx, rsp, rbp, r12, r13, r14, r15
– Caller-save - Before making a function call, save the value,
since the function may change it

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 54

Debugger

Debugger - step through code!
• You will be using this for lab 7
• Experience seeing results of these instructions step-by-step
• Please read the x86-64 summary reading before lab!

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 55

Most Common Instructions

• mov - =
• lea - load effective address
• call - push PC and jump to address
• add - +=
• cmp - set flags as if performing subtract
• jmp - unconditional jump
• test - set flags as if performing &
• je - jump iff flags indicate == 0
• pop - pop value from stack
• push - push value onto stack
• ret - pop PC from the stack

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 56

Compilation Pipeline
Turning our code into something that runs
• Pipeline - a sequence of steps in which each builds off the last

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 57

C

C is a thin wrapper around assembly
• This is by design!
• Invented to write an operating system
– Can write inline assembly in C

• Many other languages decided to look like C

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 58

Compilation Pipeline

Earlier, we saw:
• C files (.c) compiled to assembly (.s)
• Assembly (.s) assembled into object files (.o)
• Object files (.o) linked into a program / executable

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 59

Compiling C to Assembly
Multiple stages to compile C to assembly
• Preprocess - produces C
– C is actually implemented as 2 languages:
C preprocessor language, C language

– Removes comments, handles preprocessor directives (#)
– #include, #define, #if, #else, ...

• Lex - breaks input into individual tokens
• Parse - assembles tokens into intended meaning (parse tree)
• Type check - ensures types match, adds casting as needed
• Code generation - creates assembly from parse tree

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 60

Errors

Compile-time errors
• Errors we can catch during compilation (this process)
• Before running our program

Runtime errors
• Errors that occur when running our programs

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 61

Simple C Example
int main() {

return 0;
}

The main function
• Start running the main() function
• main must return an integer - exit code
– 0 = everything went okay
– Anything else = something went wrong

• There should be arguments to main

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 62

Data Types in C

Integer data types

Data type Size
char
short
int
long
long long

Each has 2 versions: signed and unsigned

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 63

Data Types in C

Floating point
• float
• double

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 64

Data Types in C

Pointers - how C uses addresses!
• Hold the address of a position in memory
• Need to know the kind of information stored at that location

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 65

Example

int main() {
int x = 3;
long y = 4;
int *a = &x;
long *b = &y;
long z = *a;
int w = *b;
return 0;

}

0000000000000000 <main>:
0: 55 push %rbp
1: 48 89 e5 mov %rsp,%rbp
4: 31 c0 xor %eax,%eax
6: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
d: c7 45 f8 03 00 00 00 movl $0x3,-0x8(%rbp)

14: 48 c7 45 f0 04 00 00 movq $0x4,-0x10(%rbp)
1b: 00
1c: 48 8d 4d f8 lea -0x8(%rbp),%rcx
20: 48 89 4d e8 mov %rcx,-0x18(%rbp)
24: 48 8d 4d f0 lea -0x10(%rbp),%rcx
28: 48 89 4d e0 mov %rcx,-0x20(%rbp)
2c: 48 8b 4d e8 mov -0x18(%rbp),%rcx
30: 48 63 09 movslq (%rcx),%rcx
33: 48 89 4d d8 mov %rcx,-0x28(%rbp)
37: 48 8b 4d e0 mov -0x20(%rbp),%rcx
3b: 48 8b 09 mov (%rcx),%rcx
3e: 89 4d d4 mov %ecx,-0x2c(%rbp)
41: 5d pop %rbp
42: c3 retq

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 66

Arrays

Array: 0 or more values of same type stored contiguously in
memory
• Declare as you would use: int myarr[100];

• sizeof(myarr) = 400 — 100 4-byte integers
• myarr treated as pointer to first element
• Can declare array literals:
int y[5] = {1, 1, 2, 3, 5}

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 67

Pointers and Arrays

*myarr and myarr[0] are equivalent
• Pointer to single value and pointer to first value in array
• Treat array as pointer to the first value (lowest address)
• Indexing into array: myarr[n] and *(myarr+n)

– If myarr is an int *, then myarr+1 points to next int in
memory

– Adding 1 to pointer adds sizeof() the type we’re pointing to

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 68

Pointers and Arrays

Consider: int **a

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 69

Pointers

• All pointers are the same size: address size in underlying ISA
• Two special integer types (defined using typedef)
– size_t - integer the size of a pointer (unsigned)
– ssize_t - integer the size of a pointer (signed)
– With our compiler and ISA, these are both variants of long

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 70

Pointers

Consider the following code:

int x = 10;
int *y = &x;
int *z = y + 2;
long w = ((long)z) - ((long)y);

Why is w = 8?

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 71

Other Types and Values

• Literal values - integer literals are implicitly cast
– unsigned long very_big = 9223372036854775808uL
– u for unsigned, L for long

• enum - named integer constants (in ascending order)
– enum { a, b, c, d=100, e };
int foo = e;

• void - a byte with no meaning or ”nothing”
– Pointers: void *p
– Return values: void myfunction();

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 72

Other Types and Values

• Casting - changing type, converting
– Integer: zero- or sign-extend or truncate to space
– Int to float: convert to nearby representable value
– Float to int: truncate remainder (no rounding)

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 73

Structures

struct - Structures in C
• Act like Java classes, but no methods
and all public fields
• Stores fields adjacently in memory
(but may have padding)
• Compiler determines padding, use
sizeof() to get size
• Name of the resulting type includes
word struct

struct foo {
long a;
int b;
short c;
char d;

};

struct foo x;
x.b = 123;
x.c = 4;

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 74

Structure Literals

struct a {
int b;
double c;

};

/* Both of the following initialize b to 0 and c to 1.0 */
struct a x = { 0, 1.0 };
struct a y = { .b = 0, .c = 1.0 };

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 75

typedef
typedef - give new names to any type!
• Fairly common to see several names for same data type to
convey intent
• Ex: unsigned long may be size_t when used in sizes
• Examples:
typedef int Integer;
Integer x = 4;
typedef double ** dpp;
• Used with anonymous structs:
typedef struct { int x; double y; } foo;
foo z = { 42, 17.4 };

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 76

Calling Functions

The C code
long a = f(23, "yes", 34uL);

compiles to
movl $23, %edi
leaq label_of_yes_string, %rsi
movq $34, %rdx
callq f
%rax is "long a" here

without respect to how f was defined. It is the calling convention,
not the type declaration of f, that controls this.

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 77

Calling Functions

But, if the C code has access to the type declaration of f, then it
might perform some implicit casting first; for example, if we
declared

long f(double a, const char *b, double c);

long a = f(23, "yes", 34uL);

then the call would be interpreted by C as having implicit casts in it:
long a = f((double)23, "yes", (double)34uL);

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 78

Calling Functions

and the arguments would be passed in floating-point registers, like
so:
movl $23, %eax
cvtsi2sd %eax, %xmm0 # first floating-point argument

leaq label_of_yes_string, %rdi # first integer/pointer argument

movl $34, %eax
cvtsi2sd %eax, %xmm1 # second floating-point argument

callq f
%rax is "long a" here

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 79

Function Declaration

int f(int x);

• Declaration of the function
• Function header
• Function signature
• Function prototype

We want this in every file that invokes f()

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 80

Function Definition

int f(int x) {
return 2130 * x;

}

• Definition of the function
We only want this in one .c file
• Do not want 2 definitions
• Which one should the linker choose?

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 | 81

${2,3,5}$

$approx 4$

2^{64}

2^{10}

2^{20}

2^{30}

2^{40}

2^{50}

2^{60}

2^{27}

$= 2^7 	imes 2^{20}$

$= 2^7$

$= 128$

2^{64}

$2^4 	imes 2^{60}$

0

0

0

0

$= 0$

The document was declared to be of type PDF/A-4f but hasn't any attachments. LaTeX therefore added this dummy file.

