Review

CS 2130: Computer Systems and Organization 1

November 5, 2025

Announcements

- Midterm 2 Friday (November 7, 2025) in class

- Written, closed notes
- If you have SDAC, please schedule ASAP

- No Quiz this Friday!
- No Homework this week!

Review CS 2130: Computer Systems and Organization 1 November 5, 2025 2

Review CS 2130: Computer Systems and Organization 1 November 5, 2025

w

Review CS 2130: Computer Systems and Organization 1 November 5, 2025 4

Review CS 2130: Computer Systems and Organization 1 November 5, 2025 5

Review CS 2130: Computer Systems and Organization 1 November 5, 2025 6

Review CS 2130: Computer Systems and Organization 1 November 5, 2025 7

The Stack

Stack - a last-in-first-out (LIFO) data structure
- The solution for solving this problem

rsp - Special register - the stack pointer
- Points to a special location in memory
- Two operations most ISAs support:

— push - put a new value on the stack
— pop - return the top value off the stack

Review CS 2130: Computer Systems and Organization 1 November 5, 2025

The Stack: Push and Pop

push r0

- Put a value onto the “top” of the stack
rsp =1
M[rsp] = r0
pop r2

- Read value from “top”, save to register
r2 = M[rsp]
rsp += 1

Review CS 2130: Computer Systems and Organization 1 November 5, 2025 9

Patents and Copyright

Copyright

- “Everyone Is a copyright owner. Once you create an original
work and fix it, like taking a photograph, writing a poem or blog,
or recording a new song, you are the author and the owner’

from https://www.copyright.gov/what-is-copyright/

Review CS 2130: Computer Systems and Organization 1 November 5, 2025 10

https://www.copyright.gov/what-is-copyright/

Patents and Copyright

Patent

- “Whoever invents or discovers any new and useful process,
machine, manufacture, or composition of matter, or any new
and useful improvement thereof, may obtain a patent therefor,
subject to the conditions and requirements of this title”

from 35 U.S.C. 101

Review CS 2130: Computer Systems and Organization 1 November 5, 2025 1

In software and hardware, patents become messy

- Code Is a description of a process we want the computer to do
- Do not have to implement the process to patent it

Question: Should we patent something like our ISA?
What is the current state of the art?

Review CS 2130: Computer Systems and Organization 1 November 5, 2025 12

Common Approaches to Software

How can we get value from what we create?
- Copyright - distribute closed source software
- License Agreements (in contract law)
- Always innovate

Review CS 2130: Computer Systems and Organization 1 November 5, 2025 13

Backdoors

Backdoor: secret way in to do new unexpected things
- Get around the normal barriers of behavior

- Ex: a way in to allow me to take complete control of your
computer

Review CS 2130: Computer Systems and Organization 1 November 5, 2025 14

Backdoors

Exploit - a way to use a vulnerability or backdoor that has been
created

- Our exploit today: a malicious payload

- A passcode and program

- If it ever gets in memory, run my program regardless of what
you want to do

Review CS 2130: Computer Systems and Organization 1 November 5, 2025 15

Our Hardware Backdoor

Our backdoor will have 2 components
- Passcode: need to recognize when we see the passcode
- Program: do something bad when | see the passcode

Review CS 2130: Computer Systems and Organization 1 November 5, 2025 16

Our Hardware Backdoor

Review CS 2130: Computer Systems and Organization 1 November 5, 2025 17

Our Hardware Backdoor

Will you notice this on your chip?
- Modern chips have billions of transistors
- We're talking adding a few hundred transistors

- Maybe with a microscope? But you'd need to know where to
looR!

Review CS 2130: Computer Systems and Organization 1 November 5, 2025 18

Our Hardware Backdoor

Have you heard about something like this before?
- Sounds like something from the movies
- People claim this might be happening

- To the best of my knowledge, no one has ever admitted to
falling in this trap

Review CS 2130: Computer Systems and Organization 1 November 5, 2025 19

Ethics, Business, Tech

Are there reasons to do this? Not to do this?
- No technical reason not to, it's easy to do!
- Ethical implications
- Business implications (lawsuits, PR, etc)
Can we make a system where one bad actor can't break it?

- Code reviews, double checks, verification systems, automated
verification systems, ...

Review CS 2130: Computer Systems and Organization 1 November 5, 2025 20

Why does this work?
- It's all bytes!
- Everything we store in computers are bytes

- We store code and data in the same place: memory

Review CS 2130: Computer Systems and Organization 1 November 5, 2025 21

It's all bytes

Memory, Code, Data... It's all bytes!
- Enumerate - pick the meaning for each possible byte
- Adjacency - store bigger values together (sequentially)

- Pointers - a value treated as address of thing we are interested
in

Review CS 2130: Computer Systems and Organization 1 November 5, 2025 22

Enumerate - pick the meaning for each possible byte

What is 8-bit 0x54?

Unsigned integer eighty-four

Signed integer positive eighty-four
Floating point w/ 4-bit exponent twelve

ASCII capital letter T: T
Bitvector sets The set {2,3,5}

Our example ISA Flip all bits of value in r1

Review CS 2130: Computer Systems and Organization 1 November 5, 2025 23

Adjacency - store bigger values together (sequentially)

- An array: build bigger values out of many copies of the same
type of small values

- Store them next to each other in memory
- Arithmetic to find any given value based on index

Review CS 2130: Computer Systems and Organization 1 November 5, 2025 21

Adjacency - store bigger values together (sequentially)
- Records, structures, classes

- Classes have fields! Store them adjacently
— Know how to access (add offsets from base address)
- If you tell me where object is, | can find fields

Review CS 2130: Computer Systems and Organization 1 November 5, 2025 25

Pointers - a value treated as address of thing we are interested in

- A value that really points to another value
- Easy to describe, hard to use properly
- We'll be talking about these a lot in this class!

Review CS 2130: Computer Systems and Organization 1 November 5, 2025 26

Pointers - a value treated as address of thing we are interested in

- Give us strange new powers (represent more complicated
things), e.g,,

- Variable-sized lists
- Values that we don't know their type without looking
- Dictionaries, maps

Review CS 2130: Computer Systems and Organization 1 November 5, 2025 27

64-bit Machines

64-bit machine: The registers are 64-bits
- l.e., r0, but also PC
Important to have large values. Why?
- Most important: PC and memory addresses
- How much memory could our 8-bit machine access? 256 bytes
- Late 70s - 16 bits: 65,536 bytes
- 80s - 32 bits: = 4 billion bytes

- Today's processors - 64 bits: 2°* addresses

Review CS 2130: Computer Systems and Organization 1 November 5, 2025 28

Aside: Powers of Two

Powers of Two

Value base-10 Short form Pronounced
210 1024 Ki Kilo
220 1,048,576 Mi Mega
230 1,073,741,824 Gi Giga
240 1,099,511,627,776 Ti Tera
250 1,125,899,906,842,624 Pi Peta
200 1152 021,504,606,846,976 Ei Exa

Example: 227 bytes = 27 x 220 bytes = 27 MiB = 128 MiB

Review CS 2130: Computer Systems and Organization 1 November 5, 2025 29

64-bit Machines

How much can we address with 64-bits?
- 16 EiB (2°* addresses = 24 x 290)
- But | only have 8 GiB of RAM

Review CS 2130: Computer Systems and Organization 1 November 5, 2025 30

A Challenge

There is a disconnect:
- Registers: 64-bits values
- Memory: 8-bit values (i.e., 1 byte values)

- Each address addresses an 8-bit value in memory
- Each address points to a 1-byte slot in memory

- How do we store a 64-bit value in an 8-bit spot?

Review CS 2130: Computer Systems and Organization 1 November 5, 2025 31

Rules to break “big values” into bytes (memory)

1. Break it into bytes

2. Store them adjacently

3. Address of the overall value = smallest address of its bytes

4. Order the bytes
- If parts are ordered (i.e,, array), first goes in smallest address
- Else, hardware implementation gets to pick (!!)

- Little-endian
- Big-endian

Review CS 2130: Computer Systems and Organization 1 November 5, 2025

Ordering Values

Little-endian

- Store the low order part/byte first

- Most hardware today is little-endian
Big-endian

- Store the high order part/byte first

Review CS 2130: Computer Systems and Organization 1 November 5, 2025 33

Store [0x1234, 0x5678] at address 0xF00

Review CS 2130: Computer Systems and Organization 1 November 5, 2025 34

Why do we study endianness?

- It is everywhere
- It is a source of weird bugs
- Ex: It's likely your computer uses:

- Little-endian from CPU to memory
- Big-endian from CPU to network
- File formats are roughly half and half

Review CS 2130: Computer Systems and Organization 1 November 5, 2025 35

Assembly

General principle of all assembly languages
- Code (text, not binary!)
- 1 line of code =1 machine instruction
- One-to-one reversible mapping between binary and assembly

- We do not need to remember binary encodings!
- A program will turn text to binary for us!

Review CS 2130: Computer Systems and Organization 1 November 5, 2025 36

Assembly

Features of assembly
- Automatic addresses - use labels to keep track of addresses

- Assembler will remember location of labels and use where
appropriate
- Labels will not exist in machine code

- Metadata - data about data

- Data that helps turn assembly into code the machine can
use

- As complicated as machine instructions
- There are a lot of instructions, and it is one-to-one!

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025 37

Assembly Languages

There are many assembly languages
- But, they're backed by hardware!
- Two big ones these days: x86-64 and ARM
- You likely have machines that use one of these
- Others: RISC-V, MIPS, ...
We will focus on x86-64

Review CS 2130: Computer Systems and Organization 1 November 5, 2025 38

X86-64

x86-64 has a weird and long history
- Expansion of the 8086 series (Intel)
- 8086, 8286, 8386, 8486, x86
- AMD expanded it with AMD64
- Intel decide to use same build, but called it x86-64
- Backwards compatible with the 8086 series

Review CS 2130: Computer Systems and Organization 1 November 5, 2025 39

X86-64

Two dialects - two ways to write the same thing

- Intel - likely using with Windows
mov QWORD PTR [rdx+0x227],rax

- AT&T - likely using with anything else
movq %rax,0x227 (%rdx)

We will use AT&T dialect

Review CS 2130: Computer Systems and Organization 1 November 5, 2025

40

AT&T x86-84 Assembly

instruction source, destination
- Instruction followed by 0 or more operands (arguments)
- 4 types of operands:

- Number (immediate value): $0x123

- Register: Yrax

- Address of memory: (%rax) or 24 or labelname

- Value at an address in memory: (%rax) or 24 or labelname

Review CS 2130: Computer Systems and Organization 1 November 5, 2025 41

AT&T x86-84 Assembly

mylabelname:

- Label - remember the address of next thing to use later
.something something

- Metadirective - extra information that is not code

- How the code works with other things (i.e., talk to OS)

- EX: .globl main

// we can have comments!

Review CS 2130: Computer Systems and Organization 1 November 5, 2025 42

Addressing Memory

2130 (%rax, %rsp, 8)
- Address can have up to 4 parts: 2 numbers, 2 registers
- Combines as: 2130 + Y%rax + (%rsp * 8)
- Common usage from this example:

- rax - address of an object in memory
- 2130 - offset of an array into the object
- rsp - index into the array

8 - size of the values in the array

- Don't need all parts: (%rax) or (%rax, 4) or 4(%rax)
- This is all one operand (one memory address)

Review CS 2130: Computer Systems and Organization 1 | November 5, 2025 43

Registers

rax IS a 64-bit register

Review CS 2130: Computer Systems and Organization 1 November 5, 2025 Lty

Instructions have different versions depending on number of bits
to use

- movq - 64-bit move
- q = quad word

- movl - 32-bit move
-1=long

- There are encodings for shorter things, but we will mostly see
32- and 64-bit

Review CS 2130: Computer Systems and Organization 1 November 5, 2025 45

More powerful than our ISA

Instructions can move/operate between memory and register
" movq %rax, %hrcx - register to register

- Remember our icode 0

-movq (%rax), %rcx - memory to register
- Remember our icode 3

- movq %rax, (%rcx) - registerto memory
- Remember our icode 4

-movq $21, %rax - Immediate to register

- Remember our icode 6 (b=0)
Note: at most one memory address per mstructlon

Review | CS 2130: Computer Systems and Organization 1 November 5, 2025 46

Other Instructions

Other instructions work the same way
- addq hrax, hrcx — rCX +=rax
- subq (%rbx), %rax — rax -= M[rbx]
- xor, and, and others work the same way!
- Assembly has virtually no 3-argument instructions

— All will be modifying something (i.e., +=, &=, ...)

Review CS 2130: Computer Systems and Organization 1 November 5, 2025

47

Load Effective Address

Load effective address: 1leaq 4(%rcx), ‘%rax
- Performs memory address calculation
- Stores address, not value at the address in memory

Review CS 2130: Computer Systems and Organization 1 November 5, 2025 48

jmp foo

- Unconditional jump to foo

- foo is a label or memory address

- Need jmp* to use register value
Conditional jumps

~JL, Jjle, je, jme, jg Jjge, Ja, jb, Js, jo
Unlike our Toy ISA, these do not compare given register to 0

Review CS 2130: Computer Systems and Organization 1 November 5, 2025 49

Condition codes - 4 1-bit registers set by every math operation,
cmp, and test

- Result for the operation compared to 0 (if no overflow)

- Example:
addq $-5, %rax
// ...code that doesn't set condition codes...

je foo

— Sets condition codes from doing math (subtract 5 from rax)

- Tells whether result was positive, negative, 0, if there was
overflow, ...
- Then jump if the result of operation should have been =0

Review CS 2130: Computer Systems and Organization 1 November 5, 2025 50

Jumps: compare...

cmpq %rax, Ardx
- Compare checks result of -= and sets condition codes
- How rdx - rax compares with O
- Be aware of ordering!

- if rax Is bigger, sets < flag
- if rdx Is bigger, sets > flag

Review CS 2130: Computer Systems and Organization 1 November 5, 2025

51

Jumps: ... and test

testq Y%rax, %rdx
- Sets the condition codes based on rdx & rax
- Less common

Neither save their result, just set condition codes!

Review CS 2130: Computer Systems and Organization 1 November 5, 2025 52

Function Calls: Calling Conventions

callg myfun
- Push return address, then jump to myfun
- Convention: Store arguments in registers and stack before call

— First 6 arguments (in order): rdi, rsi, rdx, rcx, r8, r9
- If more arguments, pushed onto stack (last to first)

retq

- Pop return address from stack and jump back

- Convention: store return value in rax before calling retq
This is similar to our Toy ISA’s function calls in homeworRk 4

Review | CS 2130: Computer Systems and Organization 1 | November 5, 2025

Calling Conventions: Registers

Calling conventions - recommendations for making function calls

- Where to put arguments/parameters for the function call?
- Where to put return value? in rax before calling retq
- What happens to values in the registers?

— Callee-save - The function should ensure the values in
these registers are unchanged when the function returns
* rbx, rsp, rbp, r12, r13, r14, rib

— Caller-save - Before making a function call, save the value,
since the function may change it

Review CS 2130: Computer Systems and Organization 1 November 5, 2025 54

Debugger - step through code!
- You will be using this for lab 7
- Experience seeing results of these instructions step-by-step
- Please read the x86-64 summary reading before lab!

Review CS 2130: Computer Systems and Organization 1 November 5, 2025 55

Most Common Instructions

° mov - =
- lea - load effective address

- call - push PC and jump to address
©add - +=

- cmp - set flags as if performing subtract
- jmp - unconditional jump

- test - set flags as if performing &

- je - jump Iff flags indicate == 0

- pop - pop value from stack

- push - push value onto stack

- ret - pop PC from the stack

Review CS 2130: Computer Systems and Organization 1 November 5, 2025 56

Compilation Pipeline

Turning our code into something that runs

- Pipeline - a sequence of steps in which each builds off the last

Review CS 2130: Computer Systems and Organization 1 November 5, 2025 57

Cis a thin wrapper around assembly

- This is by design!
- Invented to write an operating system
- Can write inline assembly in C
- Many other languages decided to look like C

Review CS 2130: Computer Systems and Organization 1 November 5, 2025

58

Compilation Pipeline

Earlier, we saw:
- C files (.c) compiled to assembly (.s)
- Assembly (.s) assembled into object files (. o)

- Object files (. o) linked into a program / executable

Review CS 2130: Computer Systems and Organization 1 November 5, 2025 59

Compiling C to Assembly

Multiple stages to compile C to assembly
- Preprocess - produces C

- Cis actually implemented as 2 languages:
C preprocessor language, C language
- Removes comments, handles preprocessor directives (#)

— #include, #define, #if, #else, ...
- Lex - breaks input into individual tokens
- Parse - assembles tokens into intended meaning (parse tree)
- Type check - ensures types match, adds casting as needed
- Code generation - creates assembly from parse tree

| November 5, 2025 60

CS 2130: Computer Systems and Organization 1

Review

Compile-time errors

- Errors we can catch during compilation (this process)
- Before running our program
Runtime errors

- Errors that occur when running our programs

Review CS 2130: Computer Systems and Organization 1 November 5, 2025 61

Simple C Example

int main() {
return O;
+

The main function
- Start running the main () function
- main must return an integer - exit code

- 0 = everything went okay
- Anything else = something went wrong

- There should be arguments to main

Review CS 2130: Computer Systems and Organization 1 November 5, 2025

62

Data Typesin C

Integer data types

Data type | Size

char
short

Int

long
long long

Each has 2 versions: signed and unsigned

Review CS 2130: Computer Systems and Organization 1 November 5, 2025 63

Data Typesin C

Floating point
- float
- double

Review CS 2130: Computer Systems and Organization 1 November 5, 2025 64

Data Typesin C

Pointers - how C uses addresses!
- Hold the address of a position in memory
- Need to know the kind of information stored at that location

Review CS 2130: Computer Systems and Organization 1 November 5, 2025 65

int main() {

Review

int x = 3;
long y = 4;
int *a = &x;
long *b = &y;

long z = *a;
int w = xb;
return O;

0000000000000000

0:

55
48
31
c7
c7

89
cO
45
45
c7

eb

fc
£8
45

CS 2130: Computer Systems and Organization 1

<main>:

00 00 00 00
03 00 00 00
£0 04 00 00

8
e8
f0
e0
e8

d8
e0

push
mov
xXor
movl
movl
movq

lea
mov
lea
mov
mov
movslq
mov
mov
mov
mov
pop
retq

%rbp

hrsp, hrbp
%eax,heax
$0x0,-0x4 (%rbp)
$0x3,-0x8 (%rbp)
$0x4 , -0x10 (%rbp)

-0x8 (%rbp) , %recx
%rcx,-0x18 (%rbp)
-0x10(%rbp) ,%rcx
%hrex,-0x20 (%rbp)
-0x18(%rbp) , %rex
(%rcx) ,%rex
%rcx,-0x28 (%rbp)
-0x20 (%rbp) ,%recx
(Yhrex) ,lhrex
hecx,-0x2c (%rbp)
%rbp

November 5, 2025

66

Array: 0 or more values of same type stored contiguously in
memory

Review

- Declare as you would use: int myarr[100];
- sizeof (myarr) = 400 — 100 4-byte integers
- myarr treated as pointer to first element

- Can declare array literals:

int y[5] = {1, 1, 2, 3, b5}

CS 2130: Computer Systems and Organization 1 November 5, 2025

67

Pointers and Arrays

*myarr and myarr [0] are equivalent
- Pointer to single value and pointer to first value in array
- Treat array as pointer to the first value (lowest address)
- Indexing into array: myarr [n] and *(myarr+n)

- If myarr is an int *, then myarr+1 points to nextint in
memory

- Adding 1 to pointer adds sizeof () the type we're pointing to

Review CS 2130: Computer Systems and Organization 1 November 5, 2025 68

Pointers and Arrays

Consider: int **a

Review CS 2130: Computer Systems and Organization 1 November 5, 2025 69

- All pointers are the same size: address size in underlying ISA

- Two special integer types (defined using typedef)

- size_t - integer the size of a pointer (unsigned)
- ssize_t - integer the size of a pointer (signed)
- With our compiler and ISA, these are both variants of long

Review CS 2130: Computer Systems and Organization 1 November 5, 2025 70

Consider the following code:

int x = 10;

int *xy = &x;

int *z =y + 2;

long w = ((long)z) - ((long)y);

Why is w = 87

Review CS 2130: Computer Systems and Organization 1 November 5, 2025 71

Other Types and Values

- Literal values - integer literals are implicitly cast

— unsigned long very_big = 9223372036854775808uL
- u for unsigned, L for long

- enum - named integer constants (in ascending order)

—enum { a, b, ¢, d=100, e };
int foo = e;

- void - a byte with no meaning or "nothing”

- Pointers: void *p
- Return values: void myfunction();

Review CS 2130: Computer Systems and Organization 1 November 5, 2025 72

Other Types and Values

- Casting - changing type, converting

- Integer: zero- or sign-extend or truncate to space
- Int to float: convert to nearby representable value
— Float to int: truncate remainder (no rounding)

Review CS 2130: Computer Systems and Organization 1 November 5, 2025 73

struct - Structures in C

Review

- Act like Java classes, but no methods

and all public fields

- Stores fields adjacently in memory

(but may have padding)

- Compiler determines padding, use

sizeof () to get size

- Name of the resulting type includes

word struct

CS 2130: Computer Systems and Organization 1

struct foo {
long a;
int b;
short c;
char d;

};

struct foo x;
x.b 123;
X.C 4,

November 5, 2025

74

Structure Literals

struct a {
int b;
double c;
};

/* Both of the following initialize b to O and c to 1.0 */
struct a x = { 0, 1.0 };
struct ay ={ .b =0, .c =1.0 };

Review CS 2130: Computer Systems and Organization 1 November 5, 2025 75

typedef

typedef - give new names to any type!

Review

- Fairly common to see several names for same data type to

convey intent

- EX: unsigned long may be size_t when used in sizes
- Examples:

typedef int Integer;
Integer x = 4;
typedef double ** dpp;

- Used with anonymous structs:

typedef struct { int x; double y; } foo;
foo z = { 42, 17.4 };

CS 2130: Computer Systems and Organization 1 November 5, 2025 76

Calling Functions

The C code
long a = £(23, "yes", 34ul);
compiles to

movl $23, Yedi

leaq label of yes_string, %rsi
movq $34, Yrdx

callq £

Jirax is "long a" here

without respect to how f was defined. It is the calling convention,
not the type declaration of £, that controls this.

Review CS 2130: Computer Systems and Organization 1 November 5, 2025 77

Review CS 2130: Computer Systems and Organization 1 November 5, 2025

Calling Functions

But, if the C code has access to the type declaration of £, then it
might perform some implicit casting first; for example, if we
declared

long f(double a, const char *b, double c);
long a = £(23, "yes", 34ul);

then the call would be interpreted by C as having implicit casts in it:

long a = f((double)23, "yes", (double)34ul);

78

Calling Functions

and the arguments would be passed in floating-point registers, like

SO:
movl $23, Yeax
cvtsi2sd %eax, %xmmO # first floating-point argument

leaq label of yes_string, J%rdi # first integer/pointer argument

movl $34, %eax
cvtsi2sd %eax, Y%xmml # second floating-point argument

callq f
J%rax is "long a" here

Review CS 2130: Computer Systems and Organization 1 November 5, 2025 79

Function Declaration

int f(int x);
- Declaration of the function
- Function header
- Function signature
- Function prototype
We want this in every file that invokes £ ()

Review CS 2130: Computer Systems and Organization 1 November 5, 2025 80

Function Definition

int f(int x) {
return 2130 * x;
+

- Definition of the function
We only want this in one .c file
- Do not want 2 definitions
- Which one should the linker choose?

Review CS 2130: Computer Systems and Organization 1 November 5, 2025 81

${2,3,5}$

$approx 4$

2^{64}

2^{10}

2^{20}

2^{30}

2^{40}

2^{50}

2^{60}

2^{27}

$= 2^7 	imes 2^{20}$

$= 2^7$

$= 128$

2^{64}

$2^4 	imes 2^{60}$

0

0

0

0

$= 0$

The document was declared to be of type PDF/A-4f but hasn't any attachments. LaTeX therefore added this dummy file.

