C Introduction

CS 2130: Computer Systems and Organization 1

November 3, 2025

Announcements

- Homework 7 due tonight at 11:59pm on Gradescope
- Exam 2 Friday

C Introduction CS 2130: Computer Systems and Organization 1 November 3, 2025 2

struct - Structures in C

- Act like Java classes, but no methods
and all public fields

- Stores fields adjacently in memory
(but may have padding)

- Compiler determines padding, use
sizeof () to get size

- Name of the resulting type includes
word struct

C Introduction CS 2130: Computer Systems and Organization 1

struct foo {
long a;
int b;
short c;
char d;

};

struct foo x;
x.b 123;
X.C 4,

November 3, 2025

Structure Literals

struct a {
int b;
double c;
};

/* Both of the following initialize b to O and c to 1.0 */
struct a x = { 0, 1.0 };
struct ay ={ .b =0, .c =1.0 };

C Introduction CS 2130: Computer Systems and Organization 1 November 3, 2025 A

typedef

typedef - give new names to any type!

- Fairly common to see several names for same data type to
convey intent

- EX: unsigned long may be size_t when used in sizes

- Examples:
typedef int Integer;
Integer x = 4;
typedef double ** dpp;

- Used with anonymous structs:
typedef struct { int x; double y; } foo;
foo z = { 42, 17.4 };

C Introduction | CS 2130: Computer Systems and Organization 1 November 3, 2025 5

Struct Exa

mple

typedef struct {

long x;

long y;

long *array;

long length;
} foo;

C Introduction

CS 2130: Computer Systems and Organization 1

November 3, 2025

6

Struct Example

long sum2(foo *arg) { SquQOVq (hrdi), ‘hrax
long ans = arg->x; voaay e
for(long i = 0; i < arg->length; i += 1) izzg ;iéArgié’ hr8
ans += arg->y * arg—->array[i]; jle 4 fLBé1°3
return ans; movq 8(%rdi), %rdx
¥ movq 16 (%rdi), Y%rsi
xorl %hedi, %edi
.LBB1_2:
movq (%rsi,%rdi,8), %rcx
imulq %rdx, J%rcx
addq hrex, hrax
incq hrdi
cmpq Jrdi, %r8
jne .LBB1_2
.LBB1_3:
retq

C Introduction CS 2130: Computer Systems and Organization 1 | November 3, 2025 7

Struct Example

suml:
movq
movq
testq
jle
movq
movq
xorl
.LBBO_2:
movq
imulq
addq
incq
cmpq
jne
.LBBO_3:
retq

C Introduction CS 2130: Computer Systems and Organization 1 |

long suml(foo arg) {
long ans = arg.x;
for(long i = 0; i < arg.length; i += 1)
ans += arg.y * arg.arrayl[i];
return ans;

8(%rsp), %rax
32(%rsp), %r8
%r8, hr8
LBBO_3

16 (Yrsp) , %rdx
24 (Yrsp), hrsi
%hedi, %edi

(%rsi,%rdi,8), Yrcx
%rdx, rcx

%rex, hrax

%rdi

%rdi, %r8

.LBBO_2

November 3, 2025 8

C Introduction CS 2130: Computer Systems and Organization 1 November 3, 2025 9

C Reference Guide

C Introduction CS 2130: Computer Systems and Organization 1 November 3, 2025 10

Calling Functions

The C code
long a = £(23, "yes", 34ul);
compiles to

movl $23, Yedi

leaq label of yes_string, %rsi
movq $34, Yrdx

callq £

Jirax is "long a" here

without respect to how f was defined. It is the calling convention,
not the type declaration of £, that controls this.

C Introduction CS 2130: Computer Systems and Organization 1 November 3, 2025 1

C Introduction CS 2130: Computer Systems and Organization 1 November 3, 2025

Calling Functions

But, if the C code has access to the type declaration of £, then it
might perform some implicit casting first; for example, if we
declared

long f(double a, const char *b, double c);
long a = £(23, "yes", 34ul);

then the call would be interpreted by C as having implicit casts in it:

long a = f((double)23, "yes", (double)34ul);

12

Calling Functions

and the arguments would be passed in floating-point registers, like

SO:
movl $23, Yeax
cvtsi2sd %eax, %xmmO # first floating-point argument

leaq label of yes_string, J%rdi # first integer/pointer argument

movl $34, %eax
cvtsi2sd %eax, Y%xmml # second floating-point argument

callq f
J%rax is "long a" here

C Introduction CS 2130: Computer Systems and Organization 1 November 3, 2025 13

Function Declaration

int f(int x);
- Declaration of the function
- Function header
- Function signature
- Function prototype
We want this in every file that invokes £ ()

C Introduction CS 2130: Computer Systems and Organization 1 November 3, 2025 A

Function Definition

int f(int x) {
return 2130 * x;
+

- Definition of the function
We only want this in one .c file
- Do not want 2 definitions
- Which one should the linker choose?

C Introduction CS 2130: Computer Systems and Organization 1 November 3, 2025 15

Header Files

C header files: .n files
- Written in C, so look like C
- Only put header information in them

- Function headers
- Macros

= typedefs

- struct definitions

- Essentially: information for the type checker that does not
produce any actual binary

- #include the header files in our .c files

C Introduction | CS 2130: Computer Systems and Organization 1 | November 3, 2025 16

Big Picture

Header files
- Things that tell the type checker how to work
- Do not generate any actual binary

C files
- Function definitions and implementation

- Include the header files

C Introduction CS 2130: Computer Systems and Organization 1 November 3, 2025 17

Including Headers

#include "myfile.h"
- Quotes: look for a file where I'm writing code
- Our header files
#include <string.h>
- Angle brackets: look in the standard place for includes
- Code that came with the compiler
- Likely in /usr/include

C Introduction CS 2130: Computer Systems and Organization 1 November 3, 2025 18

Example: string.h

C Introduction CS 2130: Computer Systems and Organization 1 November 3, 2025 19

The document was declared to be of type PDF/A-4f but hasn't any attachments. LaTeX therefore added this dummy file.

