C Introduction

CS 2130: Computer Systems and Organization 1

November 3, 2025

Announcements

- Homework 7 due tonight at 11:59pm on Gradescope
- Exam 2 Friday

C Introduction CS 2130: Computer Systems and Organization 1 November 3, 2025 2

struct - Structures in C

- Act like Java classes, but no methods
and all public fields

- Stores fields adjacently in memory
(but may have padding)

- Compiler determines padding, use
sizeof () to get size

- Name of the resulting type includes
word struct

C Introduction CS 2130: Computer Systems and Organization 1

struct foo {
long a;
int b;
short c;
char d;

};

struct foo x;
x.b 123;
X.C 4,

November 3, 2025

Structure Literals

struct a {
int b;
double c;
};

/* Both of the following initialize b to O and c to 1.0 */
struct a x = { 0, 1.0 };
struct ay ={ .b =0, .c =1.0 };

C Introduction CS 2130: Computer Systems and Organization 1 November 3, 2025 A

typedef

typedef - give new names to any type!

- Fairly common to see several names for same data type to
convey intent

- EX: unsigned long may be size_t when used in sizes

- Examples:
typedef int Integer;
Integer x = 4;
typedef double ** dpp;

- Used with anonymous structs:
typedef struct { int x; double y; } foo;
foo z = { 42, 17.4 };

C Introduction | CS 2130: Computer Systems and Organization 1 November 3, 2025 5

Struct Example

typedef struct {
long x;
long y;
long *array;
long length;
} foo;

/

C Introduction CS 2130: Computer Systems and Organization 1 November 3, 2025 6

Struct Example

2:
long sum2(foo *arg) { o sumrmovq
long ans = arg->x; 72 _ﬂ““““=~nﬂ_[movq
for(long i = 0; i < arg->length; i += 1)

testq
jle
movq
movq
xorl
.LBB1_2:
movq
imulq
addq
incq
cmpq
jne
.LBB1_3:
retq

CS 2130: Computer Systems and Organization 1 |

ans += arg->y * arg->arrayl[i];
return ans;

Lo~y 1S

C Introduction

@ Y%rax
24(%rdi), %r8

%r8, hr8
.LBB1 3
8(%rdi), %rdx
16 (%rdi), %rsi
%hedi, %edi

(%rsi,%rdi,8), Yrcx
%rdx, rcx

%rex, hrax

%rdi

%rdi, %r8

.LBB1 2

November 3, 2025 7

Struct Example

suml: =
~movq 8(%rsp), %rax
Lmovq 32(%rsp) D %r8
testq %r8, %r8

jle LBBO_3

_» long suml(foo arg) {
long ans = arg.x; e
>for(long i = 0; i < arg.length; i += 1)

ans += arg.y * arg.arrayl[i];

return ans;

L - movq 16 (Yrsp) , %rdx
¥ ;I@% F movq 24 (%rsp), %rsi
| xorl %edi, %edi
Rl h;;;:?"* .LBBO_2:
movq (%rsi,%rdi,8), %rcx
k£<\ ar | imulq %rdx, %rcx
s 4 addq hrex, hrax
B incq hrdi
e P ' cmpq %hrdi, %r8
jne .LBBO_2
.LBBO_3:
WoobbOD.- D retq

C Introduction CS 2130: Computer Systems and Organization 1 | November 3, 2025 8

C Introduction CS 2130: Computer Systems and Organization 1 November 3, 2025 9

C Reference Guide

C Introduction CS 2130: Computer Systems and Organization 1 November 3, 2025 10

Calling Functions

The C code
long a = £(23, "yes", 34ul);
compiles to

movl $23, Yedi

leaq label of yes_string, %rsi
movq $34, Yrdx

callq £

Jirax is "long a" here

without respect to how f was defined. It is the calling convention,
not the type declaration of £, that controls this.

C Introduction CS 2130: Computer Systems and Organization 1 November 3, 2025 1

C Introduction CS 2130: Computer Systems and Organization 1 November 3, 2025

Calling Functions

But, if the C code has access to the type declaration of £, then it
might perform some implicit casting first; for example, if we
declared

long f(double a, const char *b, double c);
long a = £(23, "yes", 34ul);

then the call would be interpreted by C as having implicit casts in it:

long a = f((double)23, "yes", (double)34ul);

12

Calling Functions

and the arguments would be passed in floating-point registers, like

SO:
movl $23, Yeax
cvtsi2sd %eax, %xmmO # first floating-point argument

leaq label of yes_string, J%rdi # first integer/pointer argument

movl $34, %eax
cvtsi2sd %eax, Y%xmml # second floating-point argument

callq f
J%rax is "long a" here

C Introduction CS 2130: Computer Systems and Organization 1 November 3, 2025 13

