
C IntroductionC Introduction

CS 2130: Computer Systems and Organization 1
November 3, 2025

Announcements

• Homework 7 due tonight at 11:59pm on Gradescope
• Exam 2 Friday

C Introduction | CS 2130: Computer Systems and Organization 1 | November 3, 2025 | 2

Structures

struct - Structures in C
• Act like Java classes, but no methods
and all public fields
• Stores fields adjacently in memory
(but may have padding)
• Compiler determines padding, use
sizeof() to get size
• Name of the resulting type includes
word struct

struct foo {
long a;
int b;
short c;
char d;

};

struct foo x;
x.b = 123;
x.c = 4;

C Introduction | CS 2130: Computer Systems and Organization 1 | November 3, 2025 | 3

Structure Literals

struct a {
int b;
double c;

};

/* Both of the following initialize b to 0 and c to 1.0 */
struct a x = { 0, 1.0 };
struct a y = { .b = 0, .c = 1.0 };

C Introduction | CS 2130: Computer Systems and Organization 1 | November 3, 2025 | 4

typedef
typedef - give new names to any type!
• Fairly common to see several names for same data type to
convey intent
• Ex: unsigned long may be size_t when used in sizes
• Examples:
typedef int Integer;
Integer x = 4;
typedef double ** dpp;
• Used with anonymous structs:
typedef struct { int x; double y; } foo;
foo z = { 42, 17.4 };

C Introduction | CS 2130: Computer Systems and Organization 1 | November 3, 2025 | 5

Struct Example

typedef struct {
long x;
long y;
long *array;
long length;

} foo;

C Introduction | CS 2130: Computer Systems and Organization 1 | November 3, 2025 | 6

Struct Example

long sum2(foo *arg) {
long ans = arg->x;
for(long i = 0; i < arg->length; i += 1)

ans += arg->y * arg->array[i];
return ans;

}

sum2:
movq (%rdi), %rax
movq 24(%rdi), %r8
testq %r8, %r8
jle .LBB1_3
movq 8(%rdi), %rdx
movq 16(%rdi), %rsi
xorl %edi, %edi

.LBB1_2:
movq (%rsi,%rdi,8), %rcx
imulq %rdx, %rcx
addq %rcx, %rax
incq %rdi
cmpq %rdi, %r8
jne .LBB1_2

.LBB1_3:
retq

C Introduction | CS 2130: Computer Systems and Organization 1 | November 3, 2025 | 7

Struct Example

long sum1(foo arg) {
long ans = arg.x;
for(long i = 0; i < arg.length; i += 1)

ans += arg.y * arg.array[i];
return ans;

}

sum1:
movq 8(%rsp), %rax
movq 32(%rsp), %r8
testq %r8, %r8
jle LBB0_3
movq 16(%rsp), %rdx
movq 24(%rsp), %rsi
xorl %edi, %edi

.LBB0_2:
movq (%rsi,%rdi,8), %rcx
imulq %rdx, %rcx
addq %rcx, %rax
incq %rdi
cmpq %rdi, %r8
jne .LBB0_2

.LBB0_3:
retq

C Introduction | CS 2130: Computer Systems and Organization 1 | November 3, 2025 | 8

C Introduction | CS 2130: Computer Systems and Organization 1 | November 3, 2025 | 9

C Reference Guide

C Introduction | CS 2130: Computer Systems and Organization 1 | November 3, 2025 | 10

Calling Functions

The C code
long a = f(23, "yes", 34uL);
compiles to
movl $23, %edi
leaq label_of_yes_string, %rsi
movq $34, %rdx
callq f
%rax is "long a" here
without respect to how f was defined. It is the calling convention,
not the type declaration of f, that controls this.

C Introduction | CS 2130: Computer Systems and Organization 1 | November 3, 2025 | 11

Calling Functions

But, if the C code has access to the type declaration of f, then it
might perform some implicit casting first; for example, if we
declared

long f(double a, const char *b, double c);

long a = f(23, "yes", 34uL);

then the call would be interpreted by C as having implicit casts in it:
long a = f((double)23, "yes", (double)34uL);

C Introduction | CS 2130: Computer Systems and Organization 1 | November 3, 2025 | 12

Calling Functions

and the arguments would be passed in floating-point registers, like
so:
movl $23, %eax
cvtsi2sd %eax, %xmm0 # first floating-point argument

leaq label_of_yes_string, %rdi # first integer/pointer argument

movl $34, %eax
cvtsi2sd %eax, %xmm1 # second floating-point argument

callq f
%rax is "long a" here

C Introduction | CS 2130: Computer Systems and Organization 1 | November 3, 2025 | 13

