X86-64

CS 2130: Computer Systems and Organization 1

October 15, 2025

Announcements

- Homework 5 available today, due Monday at 11:59pm on
Gradescope

- Exam 1 scores released

X86-64 CS 2130: Computer Systems and Organization 1 October 15, 2025 2

General principle of all assembly languages
- Code (text, not binary!)
- 1 line of code =1 machine instruction
- One-to-one reversible mapping between binary and assembly

- We do not need to remember binary encodings!
- A program will turn text to binary for us!

X86-64 CS 2130: Computer Systems and Organization 1 October 15, 2025

Assembly

Features of assembly
- Automatic addresses - use labels to keep track of addresses

- Assembler will remember location of labels and use where
appropriate
- Labels will not exist in machine code

- Metadata - data about data

- Data that helps turn assembly into code the machine can
use

- As complicated as machine instructions
- There are a lot of instructions, and it is one-to-one!

X86-64 | CS 2130: Computer Systems and Organization 1 | October 15, 2025 A

Assembly Languages

There are many assembly languages
- But, they're backed by hardware!
- Two big ones these days: x86-64 and ARM
- You likely have machines that use one of these
- Others: RISC-V, MIPS, ...
We will focus on x86-64

X86-64 CS 2130: Computer Systems and Organization 1 October 15, 2025 5

AT&T x86-84 Assembly

instruction source, destination
- Instruction followed by 0 or more operands (arguments)
- 4 types of operands:

- Number (immediate value): $0x123

- Register: Yrax

- Address of memory: (%rax) or 24 or labelname

- Value at an address in memory: (%rax) or 24 or labelname

X86-64 CS 2130: Computer Systems and Organization 1 October 15, 2025 6

AT&T x86-84 Assembly

mylabelname:

- Label - remember the address of next thing to use later
.something something

- Metadirective - extra information that is not code

- How the code works with other things (i.e., talk to OS)

- EX: .globl main

// we can have comments!

X86-64 CS 2130: Computer Systems and Organization 1 October 15, 2025 7

Addressing Memory

2130 (%rax, %rsp, 8)
- Address can have up to 4 parts: 2 numbers, 2 registers
- Combines as: 2130 + Y%rax + (%rsp * 8)
- Common usage from this example:

- rax - address of an object in memory
- 2130 - offset of an array into the object
- rsp - index into the array

8 - size of the values in the array

- Don't need all parts: (%rax) or (%rax, 4) or 4(%rax)
- This is all one operand (one memory address)

X86-64 CS 2130: Computer Systems and Organization 1 | October 15, 2025 8

hello.s example

x86-64 CS 2130: Computer Systems and Organization 1 October 15, 2025 9

Registers

rax IS a 64-bit register

x86-64 CS 2130: Computer Systems and Organization 1 October 15, 2025 10

Instructions have different versions depending on number of bits
to use

- movq - 64-bit move
- q = quad word

- movl - 32-bit move
-1=long

- There are encodings for shorter things, but we will mostly see
32- and 64-bit

X86-64 CS 2130: Computer Systems and Organization 1 October 15, 2025 1

More powerful than our ISA

Instructions can move/operate between memory and register
" movq %rax, %hrcx - register to register

- Remember our icode 0

-movq (%rax), %rcx - memory to register
- Remember our icode 3

- movq %rax, (%rcx) - registerto memory
- Remember our icode 4

-movq $21, %rax - Immediate to register

- Remember our icode 6 (b=0)
Note: at most one memory address per mstructlon

X86-64 | CS 2130: Computer Systems and Organization 1 October 15, 2025 12

Other Instructions

Other instructions work the same way
- addq hrax, hrcx — rCX +=rax
- subq (%rbx), %rax — rax -= M[rbx]
- xor, and, and others work the same way!
- Assembly has virtually no 3-argument instructions

— All will be modifying something (i.e., +=, &=, ...)

X86-64 CS 2130: Computer Systems and Organization 1 October 15, 2025

Load Effective Address

Load effective address: 1leaq 4(%rcx), ‘%rax
- Performs memory address calculation
- Stores address, not value at the address in memory

X86-64 CS 2130: Computer Systems and Organization 1 October 15, 2025 A

jmp foo

- Unconditional jump to foo

- foo is a label or memory address

- Need jmp* to use register value
Conditional jumps

~JL, Jjle, je, jme, jg Jjge, Ja, jb, Js, jo
Unlike our Toy ISA, these do not compare given register to 0

X86-64 CS 2130: Computer Systems and Organization 1 October 15, 2025 15

Condition codes - 4 1-bit registers set by every math operation,
cmp, and test

- Result for the operation compared to 0 (if no overflow)

x86-64

- Example:

addq $-5, %rax
// ...code that doesn't set condition codes...

je foo

— Sets condition codes from doing math (subtract 5 from rax)

- Tells whether result was positive, negative, 0, if there was
overflow, ...
- Then jump if the result of operation should have been =0

CS 2130: Computer Systems and Organization 1 October 15, 2025 16

Jumps: compare...

cmpq %rax, Ardx
- Compare checks result of -= and sets condition codes
- How rdx - rax compares with O
- Be aware of ordering!

- if rax Is bigger, sets < flag
- if rdx Is bigger, sets > flag

x86-64 CS 2130: Computer Systems and Organization 1 October 15, 2025 17

Jumps: ... and test

testq Y%rax, %rdx
- Sets the condition codes based on rdx & rax
- Less common

Neither save their result, just set condition codes!

x86-64 CS 2130: Computer Systems and Organization 1 October 15, 2025 18

Example: Loops

while (i < 10)
i+=1

x86-64 CS 2130: Computer Systems and Organization 1 October 15, 2025 19

f(x,y):

return 4

z = £(2,5)

x86-64 CS 2130: Computer Systems and Organization 1 October 15, 2025 20

Function Calls: Calling Conventions

callg myfun
- Push return address, then jump to myfun
- Convention: Store arguments in registers and stack before call

— First 6 arguments (in order): rdi, rsi, rdx, rcx, r8, r9
- If more arguments, pushed onto stack (last to first)

retq

- Pop return address from stack and jump back

- Convention: store return value in rax before calling retq
This is similar to our Toy ISA’s function calls in homeworRk 4

X86-64 | CS 2130: Computer Systems and Organization 1 | October 15, 2025 21

Calling Conventions: Registers

Calling conventions - recommendations for making function calls

- Where to put arguments/parameters for the function call?
- Where to put return value? in rax before calling retq
- What happens to values in the registers?

— Callee-save - The function should ensure the values in
these registers are unchanged when the function returns
* rbx, rsp, rbp, r12, r13, r14, rib

— Caller-save - Before making a function call, save the value,
since the function may change it

X86-64 CS 2130: Computer Systems and Organization 1 October 15, 2025 22

Most Common Instructions

° mov - =
- lea - load effective address

- call - push PC and jump to address
©add - +=

- cmp - set flags as if performing subtract
- jmp - unconditional jump

- test - set flags as if performing &

- je - jump Iff flags indicate == 0

- pop - pop value from stack

- push - push value onto stack

- ret - pop PC from the stack

x86-64 CS 2130: Computer Systems and Organization 1 October 15, 2025 23

example.s

x86-64 CS 2130: Computer Systems and Organization 1 October 15, 2025 24

Debugger - step through code!
- You will be using this for lab 7
- Experience seeing results of these instructions step-by-step
- Please read the x86-64 summary reading before lab!

X86-64 CS 2130: Computer Systems and Organization 1 October 15, 2025 25

0

0

0

0

$= 0$

The document was declared to be of type PDF/A-4f but hasn't any attachments. LaTeX therefore added this dummy file.

