
x86-64x86-64

CS 2130: Computer Systems and Organization 1
October 15, 2025

Announcements

• Homework 5 available today, due Monday at 11:59pm on
Gradescope
• Exam 1 scores released

x86-64 | CS 2130: Computer Systems and Organization 1 | October 15, 2025 | 2

Assembly

General principle of all assembly languages
• Code (text, not binary!)
• 1 line of code = 1 machine instruction
• One-to-one reversible mapping between binary and assembly
– We do not need to remember binary encodings!
– A program will turn text to binary for us!

x86-64 | CS 2130: Computer Systems and Organization 1 | October 15, 2025 | 3

Assembly
Features of assembly
• Automatic addresses - use labels to keep track of addresses
– Assembler will remember location of labels and use where
appropriate

– Labels will not exist in machine code
• Metadata - data about data
– Data that helps turn assembly into code the machine can
use

• As complicated as machine instructions
– There are a lot of instructions, and it is one-to-one!

x86-64 | CS 2130: Computer Systems and Organization 1 | October 15, 2025 | 4

Assembly Languages

There are many assembly languages
• But, they’re backed by hardware!
• Two big ones these days: x86-64 and ARM
– You likely have machines that use one of these

• Others: RISC-V, MIPS, ...
We will focus on x86-64

x86-64 | CS 2130: Computer Systems and Organization 1 | October 15, 2025 | 5

AT&T x86-84 Assembly

instruction source, destination

• Instruction followed by 0 or more operands (arguments)
• 4 types of operands:
– Number (immediate value): $0x123
– Register: %rax
– Address of memory: (%rax) or 24 or labelname
– Value at an address in memory: (%rax) or 24 or labelname

x86-64 | CS 2130: Computer Systems and Organization 1 | October 15, 2025 | 6

AT&T x86-84 Assembly

mylabelname:

• Label - remember the address of next thing to use later
.something something

• Metadirective - extra information that is not code
• How the code works with other things (i.e., talk to OS)
• Ex: .globl main

// we can have comments!

x86-64 | CS 2130: Computer Systems and Organization 1 | October 15, 2025 | 7

Addressing Memory
2130(%rax, %rsp, 8)
• Address can have up to 4 parts: 2 numbers, 2 registers
• Combines as: 2130 + %rax + (%rsp * 8)
• Common usage from this example:

– rax - address of an object in memory
– 2130 - offset of an array into the object
– rsp - index into the array
– 8 - size of the values in the array

• Don’t need all parts: (%rax) or (%rax, 4) or 4(%rax)
• This is all one operand (one memory address)

x86-64 | CS 2130: Computer Systems and Organization 1 | October 15, 2025 | 8

hello.s example

x86-64 | CS 2130: Computer Systems and Organization 1 | October 15, 2025 | 9

Registers

rax is a 64-bit register

x86-64 | CS 2130: Computer Systems and Organization 1 | October 15, 2025 | 10

Instructions

Instructions have different versions depending on number of bits
to use
• movq - 64-bit move
– q = quad word

• movl - 32-bit move
– l = long

• There are encodings for shorter things, but we will mostly see
32- and 64-bit

x86-64 | CS 2130: Computer Systems and Organization 1 | October 15, 2025 | 11

More powerful than our ISA

Instructions can move/operate between memory and register
• movq %rax, %rcx - register to register
– Remember our icode 0

• movq (%rax), %rcx - memory to register
– Remember our icode 3

• movq %rax, (%rcx) - register to memory
– Remember our icode 4

• movq $21, %rax - Immediate to register
– Remember our icode 6 (b=0)

Note: at most one memory address per instruction
x86-64 | CS 2130: Computer Systems and Organization 1 | October 15, 2025 | 12

Other Instructions

Other instructions work the same way
• addq %rax, %rcx — rcx += rax
• subq (%rbx), %rax — rax -= M[rbx]
• xor, and, and others work the same way!
• Assembly has virtually no 3-argument instructions
– All will be modifying something (i.e., +=, &=, ...)

x86-64 | CS 2130: Computer Systems and Organization 1 | October 15, 2025 | 13

Load Effective Address

Load effective address: leaq 4(%rcx), %rax

• Performs memory address calculation
• Stores address, not value at the address in memory

x86-64 | CS 2130: Computer Systems and Organization 1 | October 15, 2025 | 14

Jumps

jmp foo

• Unconditional jump to foo

• foo is a label or memory address
• Need jmp* to use register value

Conditional jumps
• jl, jle, je, jne, jg, jge, ja, jb, js, jo

Unlike our Toy ISA, these do not compare given register to 0

x86-64 | CS 2130: Computer Systems and Organization 1 | October 15, 2025 | 15

Jumps

Condition codes - 4 1-bit registers set by every math operation,
cmp, and test
• Result for the operation compared to 0 (if no overflow)
• Example:
addq $-5, %rax
// ...code that doesn't set condition codes...
je foo

– Sets condition codes from doing math (subtract 5 from rax)
– Tells whether result was positive, negative, 0, if there was
overflow, ...

– Then jump if the result of operation should have been = 0
x86-64 | CS 2130: Computer Systems and Organization 1 | October 15, 2025 | 16

Jumps: compare...

cmpq %rax, %rdx

• Compare checks result of -= and sets condition codes
• How rdx - rax compares with 0
• Be aware of ordering!
– if rax is bigger, sets < flag
– if rdx is bigger, sets > flag

x86-64 | CS 2130: Computer Systems and Organization 1 | October 15, 2025 | 17

Jumps: ... and test

testq %rax, %rdx

• Sets the condition codes based on rdx & rax

• Less common
Neither save their result, just set condition codes!

x86-64 | CS 2130: Computer Systems and Organization 1 | October 15, 2025 | 18

Example: Loops

while (i < 10)
i += 1

x86-64 | CS 2130: Computer Systems and Organization 1 | October 15, 2025 | 19

Functions

f(x,y):
...
...
return 4

...
z = f(2,5)

x86-64 | CS 2130: Computer Systems and Organization 1 | October 15, 2025 | 20

Function Calls: Calling Conventions
callq myfun
• Push return address, then jump to myfun
• Convention: Store arguments in registers and stack before call
– First 6 arguments (in order): rdi, rsi, rdx, rcx, r8, r9
– If more arguments, pushed onto stack (last to first)

retq
• Pop return address from stack and jump back
• Convention: store return value in rax before calling retq

This is similar to our Toy ISA’s function calls in homework 4
x86-64 | CS 2130: Computer Systems and Organization 1 | October 15, 2025 | 21

Calling Conventions: Registers
Calling conventions - recommendations for making function calls
• Where to put arguments/parameters for the function call?
• Where to put return value? in rax before calling retq
• What happens to values in the registers?
– Callee-save - The function should ensure the values in
these registers are unchanged when the function returns

* rbx, rsp, rbp, r12, r13, r14, r15
– Caller-save - Before making a function call, save the value,
since the function may change it

x86-64 | CS 2130: Computer Systems and Organization 1 | October 15, 2025 | 22

Most Common Instructions

• mov - =
• lea - load effective address
• call - push PC and jump to address
• add - +=
• cmp - set flags as if performing subtract
• jmp - unconditional jump
• test - set flags as if performing &
• je - jump iff flags indicate == 0
• pop - pop value from stack
• push - push value onto stack
• ret - pop PC from the stack

x86-64 | CS 2130: Computer Systems and Organization 1 | October 15, 2025 | 23

example.s

x86-64 | CS 2130: Computer Systems and Organization 1 | October 15, 2025 | 24

Debugger

Debugger - step through code!
• You will be using this for lab 7
• Experience seeing results of these instructions step-by-step
• Please read the x86-64 summary reading before lab!

x86-64 | CS 2130: Computer Systems and Organization 1 | October 15, 2025 | 25

0

0

0

0

$= 0$

The document was declared to be of type PDF/A-4f but hasn't any attachments. LaTeX therefore added this dummy file.

