
Endianness, x86-64Endianness, x86-64

CS 2130: Computer Systems and Organization 1
October 10, 2025



Announcements

• Homework 4 due tonight at 11:59pm on Gradescope
– Note the earlier deadline!
– You have written most of this code already
– Lab 6 may provide a fast way to get started

• No quiz this weekend!

Endianness, x86-64 | CS 2130: Computer Systems and Organization 1 | October 10, 2025 | 2



It’s all bytes

Memory, Code, Data... It’s all bytes!
• Enumerate - pick the meaning for each possible byte
• Adjacency - store bigger values together (sequentially)
• Pointers - a value treated as address of thing we are interested
in

Endianness, x86-64 | CS 2130: Computer Systems and Organization 1 | October 10, 2025 | 3



Enumerate

Enumerate - pick the meaning for each possible byte

What is 8-bit 0x54?
Unsigned integer eighty-four
Signed integer positive eighty-four
Floating point w/ 4-bit exponent twelve
ASCII capital letter T: T
Bitvector sets The set {2, 3, 5}
Our example ISA Write to memory: M[r0] = r1

Endianness, x86-64 | CS 2130: Computer Systems and Organization 1 | October 10, 2025 | 4



Adjacency

Adjacency - store bigger values together (sequentially)
• An array: build bigger values out of many copies of the same
type of small values
– Store them next to each other in memory
– Arithmetic to find any given value based on index

Endianness, x86-64 | CS 2130: Computer Systems and Organization 1 | October 10, 2025 | 5



Adjacency

Adjacency - store bigger values together (sequentially)
• Records, structures, classes
– Classes have fields! Store them adjacently
– Know how to access (add offsets from base address)
– If you tell me where object is, I can find fields

Endianness, x86-64 | CS 2130: Computer Systems and Organization 1 | October 10, 2025 | 6



Pointers

Pointers - a value treated as address of thing we are interested in
• A value that really points to another value
• Easy to describe, hard to use properly
• We’ll be talking about these a lot in this class!

Endianness, x86-64 | CS 2130: Computer Systems and Organization 1 | October 10, 2025 | 7



Pointers

Pointers - a value treated as address of thing we are interested in
• Give us strange new powers (represent more complicated
things), e.g.,
– Variable-sized lists
– Values that we don’t know their type without looking
– Dictionaries, maps

Endianness, x86-64 | CS 2130: Computer Systems and Organization 1 | October 10, 2025 | 8



Programs Use These!

How do our programs use these?
• Enumerated icodes, numbers
• Adjacently stored instructions (PC+1)
• Pointers of where to jump/goto (addresses in memory)

Endianness, x86-64 | CS 2130: Computer Systems and Organization 1 | October 10, 2025 | 9



ToyISA Instructions
So far, only dealing with 8-bit machine!
icode b meaning
0 rA = rB
1 rA &= rB
2 rA += rB
3 0 rA = ~rA

1 rA = !rA
2 rA = -rA
3 rA = pc

4 rA = read from memory at address rB
5 write rA to memory at address rB
6 0 rA = read from memory at pc + 1

1 rA &= read from memory at pc + 1
2 rA += read from memory at pc + 1
3 rA = read from memory at the address stored at pc + 1

For icode 6, increase pc by 2 at end of instruction
7 Compare rA as 8-bit 2’s-complement to 0

if rA <= 0 set pc = rB
else increment pc as normal

Endianness, x86-64 | CS 2130: Computer Systems and Organization 1 | October 10, 2025 | 10



64-bit Machines
64-bit machine: The registers are 64-bits
• i.e., r0, but also PC

Important to have large values. Why?
• Most important: PC and memory addresses
• How much memory could our 8-bit machine access?
• Late 70s - 16 bits:
• 80s - 32 bits:
• Today’s processors - 64 bits:

Endianness, x86-64 | CS 2130: Computer Systems and Organization 1 | October 10, 2025 | 11



64-bit Machines
64-bit machine: The registers are 64-bits
• i.e., r0, but also PC

Important to have large values. Why?
• Most important: PC and memory addresses
• How much memory could our 8-bit machine access?
• Late 70s - 16 bits:
• 80s - 32 bits:
• Today’s processors - 64 bits:

Endianness, x86-64 | CS 2130: Computer Systems and Organization 1 | October 10, 2025 | 11



64-bit Machines
64-bit machine: The registers are 64-bits
• i.e., r0, but also PC

Important to have large values. Why?
• Most important: PC and memory addresses
• How much memory could our 8-bit machine access? 256 bytes
• Late 70s - 16 bits:
• 80s - 32 bits:
• Today’s processors - 64 bits:

Endianness, x86-64 | CS 2130: Computer Systems and Organization 1 | October 10, 2025 | 11



64-bit Machines
64-bit machine: The registers are 64-bits
• i.e., r0, but also PC

Important to have large values. Why?
• Most important: PC and memory addresses
• How much memory could our 8-bit machine access? 256 bytes
• Late 70s - 16 bits:
• 80s - 32 bits:
• Today’s processors - 64 bits:

Endianness, x86-64 | CS 2130: Computer Systems and Organization 1 | October 10, 2025 | 11



64-bit Machines
64-bit machine: The registers are 64-bits
• i.e., r0, but also PC

Important to have large values. Why?
• Most important: PC and memory addresses
• How much memory could our 8-bit machine access? 256 bytes
• Late 70s - 16 bits: 65,536 bytes
• 80s - 32 bits:
• Today’s processors - 64 bits:

Endianness, x86-64 | CS 2130: Computer Systems and Organization 1 | October 10, 2025 | 11



64-bit Machines
64-bit machine: The registers are 64-bits
• i.e., r0, but also PC

Important to have large values. Why?
• Most important: PC and memory addresses
• How much memory could our 8-bit machine access? 256 bytes
• Late 70s - 16 bits: 65,536 bytes
• 80s - 32 bits:
• Today’s processors - 64 bits:

Endianness, x86-64 | CS 2130: Computer Systems and Organization 1 | October 10, 2025 | 11



64-bit Machines
64-bit machine: The registers are 64-bits
• i.e., r0, but also PC

Important to have large values. Why?
• Most important: PC and memory addresses
• How much memory could our 8-bit machine access? 256 bytes
• Late 70s - 16 bits: 65,536 bytes
• 80s - 32 bits: ≈ 4 billion bytes
• Today’s processors - 64 bits:

Endianness, x86-64 | CS 2130: Computer Systems and Organization 1 | October 10, 2025 | 11



64-bit Machines
64-bit machine: The registers are 64-bits
• i.e., r0, but also PC

Important to have large values. Why?
• Most important: PC and memory addresses
• How much memory could our 8-bit machine access? 256 bytes
• Late 70s - 16 bits: 65,536 bytes
• 80s - 32 bits: ≈ 4 billion bytes
• Today’s processors - 64 bits:

Endianness, x86-64 | CS 2130: Computer Systems and Organization 1 | October 10, 2025 | 11



64-bit Machines
64-bit machine: The registers are 64-bits
• i.e., r0, but also PC

Important to have large values. Why?
• Most important: PC and memory addresses
• How much memory could our 8-bit machine access? 256 bytes
• Late 70s - 16 bits: 65,536 bytes
• 80s - 32 bits: ≈ 4 billion bytes
• Today’s processors - 64 bits: 264 addresses

Endianness, x86-64 | CS 2130: Computer Systems and Organization 1 | October 10, 2025 | 11



Aside: Powers of Two

Powers of Two
Value base-10 Short form Pronounced210 1024 Ki Kilo220 1,048,576 Mi Mega230 1,073,741,824 Gi Giga240 1,099,511,627,776 Ti Tera250 1,125,899,906,842,624 Pi Peta260 1,152,921,504,606,846,976 Ei Exa

Example: 227 bytes
Endianness, x86-64 | CS 2130: Computer Systems and Organization 1 | October 10, 2025 | 12



Aside: Powers of Two

Powers of Two
Value base-10 Short form Pronounced210 1024 Ki Kilo220 1,048,576 Mi Mega230 1,073,741,824 Gi Giga240 1,099,511,627,776 Ti Tera250 1,125,899,906,842,624 Pi Peta260 1,152,921,504,606,846,976 Ei Exa

Example: 227 bytes = 27 × 220 bytes
Endianness, x86-64 | CS 2130: Computer Systems and Organization 1 | October 10, 2025 | 12



Aside: Powers of Two

Powers of Two
Value base-10 Short form Pronounced210 1024 Ki Kilo220 1,048,576 Mi Mega230 1,073,741,824 Gi Giga240 1,099,511,627,776 Ti Tera250 1,125,899,906,842,624 Pi Peta260 1,152,921,504,606,846,976 Ei Exa

Example: 227 bytes = 27 × 220 bytes = 27 MiB = 128 MiB
Endianness, x86-64 | CS 2130: Computer Systems and Organization 1 | October 10, 2025 | 12



64-bit Machines

How much can we address with 64-bits?
• 16 EiB (264 addresses = 24 × 260)
• But I only have 8 GiB of RAM

Endianness, x86-64 | CS 2130: Computer Systems and Organization 1 | October 10, 2025 | 13



64-bit Machines

How much can we address with 64-bits?
• 16 EiB (264 addresses = 24 × 260)
• But I only have 8 GiB of RAM

Endianness, x86-64 | CS 2130: Computer Systems and Organization 1 | October 10, 2025 | 13



64-bit Machines

How much can we address with 64-bits?
• 16 EiB (264 addresses = 24 × 260)
• But I only have 8 GiB of RAM

Endianness, x86-64 | CS 2130: Computer Systems and Organization 1 | October 10, 2025 | 13



A Challenge

There is a disconnect:
• Registers: 64-bit values
• Memory: 8-bit values (i.e., 1 byte values)
– Each address addresses an 8-bit value in memory
– Each address points to a 1-byte slot in memory

• How do we store a 64-bit value in an 8-bit spot?

Endianness, x86-64 | CS 2130: Computer Systems and Organization 1 | October 10, 2025 | 14



A Challenge

There is a disconnect:
• Registers: 64-bit values
• Memory: 8-bit values (i.e., 1 byte values)
– Each address addresses an 8-bit value in memory
– Each address points to a 1-byte slot in memory

• How do we store a 64-bit value in an 8-bit spot?

Endianness, x86-64 | CS 2130: Computer Systems and Organization 1 | October 10, 2025 | 14



Rules

Rules to break “big values” into bytes (memory)
1. Break it into bytes
2. Store them adjacently
3. Address of the overall value = smallest address of its bytes
4. Order the bytes

• If parts are ordered (i.e., array), first goes in smallest address
• Else, hardware implementation gets to pick (!!)

– Little-endian
– Big-endian

Endianness, x86-64 | CS 2130: Computer Systems and Organization 1 | October 10, 2025 | 15



Ordering Values

Little-endian
• Store the low order part/byte first
• Most hardware today is little-endian

Big-endian
• Store the high order part/byte first

Endianness, x86-64 | CS 2130: Computer Systems and Organization 1 | October 10, 2025 | 16



Example
Store [0x1234, 0x5678] at address 0xF00

Endianness, x86-64 | CS 2130: Computer Systems and Organization 1 | October 10, 2025 | 17



Endianness

Why do we study endianness?
• It is everywhere
• It is a source of weird bugs
• Ex: It’s likely your computer uses:
– Little-endian from CPU to memory
– Big-endian from CPU to network
– File formats are roughly half and half

Endianness, x86-64 | CS 2130: Computer Systems and Organization 1 | October 10, 2025 | 18



Moving up!

Endianness, x86-64 | CS 2130: Computer Systems and Organization 1 | October 10, 2025 | 19



Assembly

General principle of all assembly languages
• Code (text, not binary!)
• 1 line of code = 1 machine instruction
• One-to-one reversible mapping between binary and assembly
– We do not need to remember binary encodings!
– A program will turn text to binary for us!

Endianness, x86-64 | CS 2130: Computer Systems and Organization 1 | October 10, 2025 | 20



Assembly
Features of assembly
• Automatic addresses - use labels to keep track of addresses
– Assembler will remember location of labels and use where
appropriate

– Labels will not exist in machine code
• Metadata - data about data
– Data that helps turn assembly into code the machine can
use

• As complicated as machine instructions
– There are a lot of instructions, and it is one-to-one!

Endianness, x86-64 | CS 2130: Computer Systems and Organization 1 | October 10, 2025 | 21



Assembly Languages

There are many assembly languages
• But, they’re backed by hardware!
• Two big ones these days: x86-64 and ARM
– You likely have machines that use one of these

• Others: RISC-V, MIPS, ...
We will focus on x86-64

Endianness, x86-64 | CS 2130: Computer Systems and Organization 1 | October 10, 2025 | 22



x86-64

x86-64 has a weird and long history
• Expansion of the 8086 series (Intel)
– 8086, 8286, 8386, 8486, x86

• AMD expanded it with AMD64
• Intel decide to use same build, but called it x86-64
• Backwards compatible with the 8086 series

Endianness, x86-64 | CS 2130: Computer Systems and Organization 1 | October 10, 2025 | 23



x86-64

Two dialects - two ways to write the same thing
• Intel - likely using with Windows
mov QWORD PTR [rdx+0x227],rax
• AT&T - likely using with anything else
movq %rax,0x227(%rdx)

We will use AT&T dialect

Endianness, x86-64 | CS 2130: Computer Systems and Organization 1 | October 10, 2025 | 24



AT&T x86-84 Assembly

instruction source, destination
• Instruction followed by 0 or more operands (arguments)
• 4 types of operands:
– Number (immediate value): $0x123
– Register: %rax
– Address of memory: (%rax) or 24 or labelname
– Value at an address in memory: (%rax) or 24 or labelname

Endianness, x86-64 | CS 2130: Computer Systems and Organization 1 | October 10, 2025 | 25



AT&T x86-84 Assembly

mylabelname:
• Label - remember the address of next thing to use later

.something something
• Metadirective - extra information that is not code
• How the code works with other things (i.e., talk to OS)
• Ex: .globl main

// we can have comments!

Endianness, x86-64 | CS 2130: Computer Systems and Organization 1 | October 10, 2025 | 26


