
Instruction Set Architectures, StacksInstruction Set Architectures, Stacks

CS 2130: Computer Systems and Organization 1
October 6, 2025

Announcements

• Homework 4 available today due Friday at 11:59pm on
Gradescope
– Note the earlier deadline!
– You have written most of this code already
– Lab 6 may provide a fast way to get started

Instruction Set Architectures, Stacks | CS 2130: Computer Systems and Organization 1 | October 6, 2025 | 2

Instruction Set Architecture

Instruction Set Architecture (ISA) is an abstract model of a
computer defining how the CPU is controlled by software
• Conceptually, set of instructions that are possible and how they
should be encoded
• Results in many different machines to implement same ISA
– Example: How many machines implement our example ISA?

• Common in how we design hardware

Instruction Set Architectures, Stacks | CS 2130: Computer Systems and Organization 1 | October 6, 2025 | 3

Instruction Set Architecture

Instruction Set Architecture (ISA) is an abstract model of a
computer defining how the CPU is controlled by software
• Provides an abstraction layer between:
– Everything computer is really doing (hardware)
– What programmer using the computer needs to know
(software)

• Hardware and Software engineers have freedom of design, if
conforming to ISA
• Can change the machine without breaking any programs

Instruction Set Architectures, Stacks | CS 2130: Computer Systems and Organization 1 | October 6, 2025 | 4

Instruction Set Architecture

Instruction Set Architecture (ISA) is an abstract model of a
computer defining how the CPU is controlled by software
• Provides an abstraction layer between:
– Everything computer is really doing (hardware)
– What programmer using the computer needs to know
(software)

CSO: covering many of the times we’ll need to think across this
barrier

Instruction Set Architectures, Stacks | CS 2130: Computer Systems and Organization 1 | October 6, 2025 | 5

Instruction Set Architecture

Backwards compatibility
• Include flexibility to add additional instructions later
• Original instructions will still work
• Same program can be run on PC from 10+ years ago and new PC
today

Most manufacturers choose an ISA and stick with it
• Notable Exception: Apple

Instruction Set Architectures, Stacks | CS 2130: Computer Systems and Organization 1 | October 6, 2025 | 6

What about real ISAs?

Instruction Set Architectures, Stacks | CS 2130: Computer Systems and Organization 1 | October 6, 2025 | 7

Our Instruction Set Architecture

What about our ISA?
• Enough instructions to compute what we need
• As is, lot of things that are painful to do
– This was on purpose! So we can see limitations of ISAs early

• Add any number of new instructions using the reserved bit (7)

Instruction Set Architectures, Stacks | CS 2130: Computer Systems and Organization 1 | October 6, 2025 | 8

Our Instruction Set Architecture

What about our ISA?
• Enough instructions to compute what we need
• As is, lot of things that are painful to do
– This was on purpose! So we can see limitations of ISAs early

• Add any number of new instructions using the reserved bit (7)

Instruction Set Architectures, Stacks | CS 2130: Computer Systems and Organization 1 | October 6, 2025 | 8

ToyISA Instructions
icode b meaning
0 rA = rB
1 rA &= rB
2 rA += rB
3 0 rA = ~rA

1 rA = !rA
2 rA = -rA
3 rA = pc

4 rA = read from memory at address rB
5 write rA to memory at address rB
6 0 rA = read from memory at pc + 1

1 rA &= read from memory at pc + 1
2 rA += read from memory at pc + 1
3 rA = read from memory at the address stored at pc + 1

For icode 6, increase pc by 2 at end of instruction
7 Compare rA as 8-bit 2’s-complement to 0

if rA <= 0 set pc = rB
else increment pc as normal

Instruction Set Architectures, Stacks | CS 2130: Computer Systems and Organization 1 | October 6, 2025 | 9

Our Instruction Set Architecture

What about our ISA?
• Enough instructions to compute what we need
• As is, lot of things that are painful to do
– This was on purpose! So we can see limitations of ISAs early

• Add any number of new instructions using the reserved bit (7)
• Missing something important: Help to put variables in memory

Instruction Set Architectures, Stacks | CS 2130: Computer Systems and Organization 1 | October 6, 2025 | 10

Storing Variables in Memory

So far... we/compiler chose location for variable
Consider the following example:

f(x):
a = x
if (x <= 0) return 0
else return f(x-1) + a

Recursion
• The formal study of a function that calls itself

Instruction Set Architectures, Stacks | CS 2130: Computer Systems and Organization 1 | October 6, 2025 | 11

Storing Variables in Memory

f(x):
a = x
if (x <= 0) return 0
else return f(x-1) + a

Where do we store a?

Instruction Set Architectures, Stacks | CS 2130: Computer Systems and Organization 1 | October 6, 2025 | 12

The Stack

Stack - a last-in-first-out (LIFO) data structure
• The solution for solving this problem

rsp - Special register - the stack pointer
• Points to a special location in memory
• Two operations most ISAs support:
– push - put a new value on the stack
– pop - return the top value off the stack

Instruction Set Architectures, Stacks | CS 2130: Computer Systems and Organization 1 | October 6, 2025 | 13

The Stack: Push and Pop

push r0

• Put a value onto the “top” of the stack
rsp -= 1
M[rsp] = r0

pop r2

• Read value from “top”, save to register
r2 = M[rsp]
rsp += 1

Instruction Set Architectures, Stacks | CS 2130: Computer Systems and Organization 1 | October 6, 2025 | 14

The Stack: Push and Pop

Instruction Set Architectures, Stacks | CS 2130: Computer Systems and Organization 1 | October 6, 2025 | 15

The Stack: Push and Pop

Instruction Set Architectures, Stacks | CS 2130: Computer Systems and Organization 1 | October 6, 2025 | 16

Function Calls

Instruction Set Architectures, Stacks | CS 2130: Computer Systems and Organization 1 | October 6, 2025 | 17

A short aside...

Time to take over the world!

Instruction Set Architectures, Stacks | CS 2130: Computer Systems and Organization 1 | October 6, 2025 | 18

Backdoors

Backdoor: secret way in to do new unexpected things
• Get around the normal barriers of behavior
• Ex: a way in to allow me to take complete control of your
computer

Instruction Set Architectures, Stacks | CS 2130: Computer Systems and Organization 1 | October 6, 2025 | 19

Backdoors

Exploit - a way to use a vulnerability or backdoor that has been
created
• Our exploit today: a malicious payload
– A passcode and program
– If it ever gets in memory, run my program regardless of what
you want to do

Instruction Set Architectures, Stacks | CS 2130: Computer Systems and Organization 1 | October 6, 2025 | 20

Our Hardware Backdoor

Our backdoor will have 2 components
• Passcode: need to recognize when we see the passcode
• Program: do something bad when I see the passcode

Instruction Set Architectures, Stacks | CS 2130: Computer Systems and Organization 1 | October 6, 2025 | 21

Our Hardware Backdoor

Instruction Set Architectures, Stacks | CS 2130: Computer Systems and Organization 1 | October 6, 2025 | 22

Our Hardware Backdoor

Will you notice this on your chip?
• Modern chips have billions of transistors
• We’re talking adding a few hundred transistors
• Maybe with a microscope? But you’d need to know where to
look!

Instruction Set Architectures, Stacks | CS 2130: Computer Systems and Organization 1 | October 6, 2025 | 23

Our Hardware Backdoor

Will you notice this on your chip?
• Modern chips have billions of transistors
• We’re talking adding a few hundred transistors
• Maybe with a microscope? But you’d need to know where to
look!

Instruction Set Architectures, Stacks | CS 2130: Computer Systems and Organization 1 | October 6, 2025 | 23

Our Hardware Backdoor

Will you notice this on your chip?
• Modern chips have billions of transistors
• We’re talking adding a few hundred transistors
• Maybe with a microscope? But you’d need to know where to
look!

Instruction Set Architectures, Stacks | CS 2130: Computer Systems and Organization 1 | October 6, 2025 | 23

Our Hardware Backdoor

Have you heard about something like this before?
• Sounds like something from the movies
• People claim this might be happening
• To the best of my knowledge, no one has ever admitted to
falling in this trap

Instruction Set Architectures, Stacks | CS 2130: Computer Systems and Organization 1 | October 6, 2025 | 24

Our Hardware Backdoor

Have you heard about something like this before?
• Sounds like something from the movies
• People claim this might be happening
• To the best of my knowledge, no one has ever admitted to
falling in this trap

Instruction Set Architectures, Stacks | CS 2130: Computer Systems and Organization 1 | October 6, 2025 | 24

Our Hardware Backdoor

Have you heard about something like this before?
• Sounds like something from the movies
• People claim this might be happening
• To the best of my knowledge, no one has ever admitted to
falling in this trap

Instruction Set Architectures, Stacks | CS 2130: Computer Systems and Organization 1 | October 6, 2025 | 24

Our Hardware Backdoor

Have you heard about something like this before?
• Sounds like something from the movies
• People claim this might be happening
• To the best of my knowledge, no one has ever admitted to
falling in this trap

Instruction Set Architectures, Stacks | CS 2130: Computer Systems and Organization 1 | October 6, 2025 | 24

Ethics, Business, Tech

Are there reasons to do this? Not to do this?
• No technical reason not to, it’s easy to do!
• Ethical implications
• Business implications (lawsuits, PR, etc)

• Code reviews, double checks, verification systems, automated
verification systems, ...

Instruction Set Architectures, Stacks | CS 2130: Computer Systems and Organization 1 | October 6, 2025 | 25

Ethics, Business, Tech

Are there reasons to do this? Not to do this?
• No technical reason not to, it’s easy to do!
• Ethical implications
• Business implications (lawsuits, PR, etc)

• Code reviews, double checks, verification systems, automated
verification systems, ...

Instruction Set Architectures, Stacks | CS 2130: Computer Systems and Organization 1 | October 6, 2025 | 25

Ethics, Business, Tech

Are there reasons to do this? Not to do this?
• No technical reason not to, it’s easy to do!
• Ethical implications
• Business implications (lawsuits, PR, etc)

Can we make a system where one bad actor can’t break it?
• Code reviews, double checks, verification systems, automated
verification systems, ...

Instruction Set Architectures, Stacks | CS 2130: Computer Systems and Organization 1 | October 6, 2025 | 25

Ethics, Business, Tech

Are there reasons to do this? Not to do this?
• No technical reason not to, it’s easy to do!
• Ethical implications
• Business implications (lawsuits, PR, etc)

Can we make a system where one bad actor can’t break it?
• Code reviews, double checks, verification systems, automated
verification systems, ...

Instruction Set Architectures, Stacks | CS 2130: Computer Systems and Organization 1 | October 6, 2025 | 25

Why does this work?

Instruction Set Architectures, Stacks | CS 2130: Computer Systems and Organization 1 | October 6, 2025 | 26

Why?

Why does this work?
• It’s all bytes!
• Everything we store in computers are bytes
• We store code and data in the same place: memory

Instruction Set Architectures, Stacks | CS 2130: Computer Systems and Organization 1 | October 6, 2025 | 27

It’s all bytes

Memory, Code, Data... It’s all bytes!
• Enumerate - pick the meaning for each possible byte
• Adjacency - store bigger values together (sequentially)
• Pointers - a value treated as address of thing we are interested
in

Instruction Set Architectures, Stacks | CS 2130: Computer Systems and Organization 1 | October 6, 2025 | 28

Enumerate

Enumerate - pick the meaning for each possible byte

What is 8-bit 0x54?
Unsigned integer eighty-four
Signed integer positive eighty-four
Floating point w/ 4-bit exponent twelve
ASCII capital letter T: T
Bitvector sets The set {2, 3, 5}
Our example ISA Flip all bits of value in r1

Instruction Set Architectures, Stacks | CS 2130: Computer Systems and Organization 1 | October 6, 2025 | 29

Adjacency

Adjacency - store bigger values together (sequentially)
• An array: build bigger values out of many copies of the same
type of small values
– Store them next to each other in memory
– Arithmetic to find any given value based on index

Instruction Set Architectures, Stacks | CS 2130: Computer Systems and Organization 1 | October 6, 2025 | 30

Adjacency

Adjacency - store bigger values together (sequentially)
• Records, structures, classes
– Classes have fields! Store them adjacently
– Know how to access (add offsets from base address)
– If you tell me where object is, I can find fields

Instruction Set Architectures, Stacks | CS 2130: Computer Systems and Organization 1 | October 6, 2025 | 31

Pointers

Pointers - a value treated as address of thing we are interested in
• A value that really points to another value
• Easy to describe, hard to use properly
• We’ll be talking about these a lot in this class!

Instruction Set Architectures, Stacks | CS 2130: Computer Systems and Organization 1 | October 6, 2025 | 32

Pointers

Pointers - a value treated as address of thing we are interested in
• Give us strange new powers (represent more complicated
things), e.g.,
– Variable-sized lists
– Values that we don’t know their type without looking
– Dictionaries, maps

Instruction Set Architectures, Stacks | CS 2130: Computer Systems and Organization 1 | October 6, 2025 | 33

Programs Use These!

How do our programs use these?
• Enumerated icodes, numbers
• Ajacently stored instructions (PC+1)
• Pointers of where to jump/goto (addresses in memory)

Instruction Set Architectures, Stacks | CS 2130: Computer Systems and Organization 1 | October 6, 2025 | 34

${2,3,5}$

The document was declared to be of type PDF/A-4f but hasn't any attachments. LaTeX therefore added this dummy file.

