
ReviewReview

CS 2130: Computer Systems and Organization 1
October 1, 2025



Announcements

• Homework 3 due tonight at 11:59pm on Gradescope
• Midterm 1 Friday (October 3, 2025) in class
– Written, closed notes
– If you have SDAC, please schedule ASAP

• No Quiz this Friday!

Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 2



Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 3



Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 4



Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 5



Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 6



Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 7



Putting it together

Overall idea:
• Only need two things (Shannon)
• We can do math with two things (Boole)

Now we need a physical device that deals in two levels

Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 8



More Vocabulary

Electricity (conceptually) - involves flow of electrons or other
charged carriers through a conductive material
• current - rate of flow
• voltage - pressure of flow

Examples in water
• High pressure, low flow - squirt gun
• Low pressure, high flow - bucket of water

Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 9



Transistors

Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 10



Transistors

Transistors act like an electrically-triggered switch
• No voltage, no current
• Apply voltage to allow current to flow
• The amount of voltage needed to close the gate is boundary
between 0 and 1
• Central technique for how we are going to build binary
computers

Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 11



Transistors

push to close push to open

Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 12



Circuit Diagram

Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 13



Circuit Diagram

Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 14



Multiplexer (mux)

x = a ? b : c

Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 15



Numbers

From our oldest cultures, how do we mark numbers?
• unary representation: make marks, one per ”thing”
– Awkward for large numbers, ex: CS 2130?
– Hard to tell how many marks there are

• Update: group them!
• Romans used new symbols:

Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 16



Numbers

From our oldest cultures, how do we mark numbers?
• Arabic numerals
– Positional numbering system
– The 10 is significant:

* 10 symbols, using 10 as base of exponent
– The 10 is arbitrary
– We can use other bases! 𝜋, 2130, 2, ...

Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 17



Bases

We will discuss a few in this class
• Base-10 (decimal) - talking to humans
• Base-8 (octal) - shows up occasionally
• Base-2 (binary) - most important! (we’ve been discussing 2
things!)
• Base-16 (hexadecimal) - nice grouping of bits

Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 18



Binary

2 digits: 0, 1

Try to turn11001012 into base-10:

Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 19



Binary

Any downsides to binary?

Turn213010 into base-2:
hint: find largest power of 2 and subtract

Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 20



Long Numbers

How do we deal with numbers too long to read?
• Group them by 3 (right to left)
• In decimal, use commas: ,
• Numbers between commas: 000 - 999
• Effectively base-1000

Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 21



Long Numbers in Binary - Readability

• Typical to group by 3 or 4 bits
• No need for commas Why?
• We can use a separate symbol per group
• How many do we need for groups of 3?
• Turn each group into decimal representation
• Converts binary to octal

100001010010
Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 22



Long Numbers in Binary - Readability

• Groups of 4 more common
• How many symbols do we need for groups of 4?
• Converts binary to hexadecimal
• Base-16 is very common in computing

100001010010

Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 23



Representing Negative Integers

Computers store numbers in fixed number of wires
• Ex: consider 4-digit decimal numbers
• Throw away the last borrow:
– 0000 - 0001 = 9999 == -1
– 9999 - 0001 = 9998 == -2
– Normal subtraction/addition still works
– Ex: -2 + 3

• This works the same in binary

Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 24



Two’s Complement

This scheme is called Two’s
Complement
• More generically, a signed integer
• There is a break as far away from 0
as possible
• First bit acts vaguely like a minus
sign
• Works as long as we do not pass
number too large to represent

Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 25



Operations

• Addition: x + y

– Can get multiplication
• Subtraction: x - y

– Can get division, but more difficult
• Unary minus (negative): -x
– Flip the bits and add 1

Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 26



Operations (on Integers)

Bit vector: fixed-length sequence of bits (ex: bits in an integer)
• Manipulated by bitwise operations

Bitwise operations: operate over the bits in a bit vector
• Bitwise not: ~x - flips all bits (unary)
• Bitwise and: x & y - set bit to 1 if 𝑥, 𝑦 have 1 in same bit
• Bitwise or: x | y - set bit to 1 if either 𝑥 or 𝑦 have 1
• Bitwise xor: x ^ y - set bit to 1 if 𝑥, 𝑦 bit differs

Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 27



Operations (on Integers)
• Logical not: !x
– !0 = 1 and !𝑥 = 0, ∀𝑥 ≠ 0
– Useful in C, no booleans
– Some languages name this one differently

• Left shift: x << y - move bits to the left
– Effectively multiply by powers of 2

• Right shift: x >> y - move bits to the right
– Effectively divide by powers of 2
– Signed (extend sign bit) vs unsigned (extend 0)

Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 28



Floating Point in Binary

We must store 3 components
• sign (1-bit): 1 if negative, 0 if positive
• fraction or mantissa: (?-bits): bits after binary point
• exponent (?-bits): how far to move binary point

We do not need to store the value before the binary point. Why?

Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 29



Floating Point in Binary

How do we store them?
• Originally many different systems
• IEEE standardized system (IEEE 754 and IEEE 854)
• Agreed-upon order, format, and number of bits for each

1.01101 × 25

Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 30



Exponent

How do we store the exponent?
• Exponents can be negative

2−3 = 1
23 = 1

8

• Need positive and negative ints (but no minus sign)
• Don’t we always use Two’s Complement? Unfortunately Not

Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 31



Exponent

How do we store the exponent?
• Biased integers
– Make comparison operations run more smoothly
– Hardware more efficient to build
– Other valid reasons

Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 32



Biased Integers

Similar to Two’s Complement, but add
bias
• Two’s Complement: Define 0 as
00...0
• Biased: Define 0 as 0111...1
• Biased wraps from
000...0 to 111...1

Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 33



Biased Integers

Two’s Complement Biased

Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 34



Floating Point Numbers

Four cases:
• Normalized: What we have seen today

𝑠 𝑒𝑒𝑒𝑒 𝑓𝑓𝑓𝑓 = ±1.𝑓𝑓𝑓𝑓 × 2𝑒𝑒𝑒𝑒−bias

• Denormalized: Exponent bits all 0
𝑠 𝑒𝑒𝑒𝑒 𝑓𝑓𝑓𝑓 = ±0.𝑓𝑓𝑓𝑓 × 21−bias

• Infinity: Exponent bits all 1, fraction bits all 0 (i.e., ±∞)
• Not a Number (NaN): Exponent bits all 1, fraction bits not all 0

Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 35



Our story so far
• Transistors
• Information modeled by voltage through wires (1 vs 0)
• Gates: & | ~ ^

• Multi-bit values: representing integers
– Signed and unsigned
– Bitwise operators on bit vectors

• Floating point

Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 36



Adder

Add 2 1-bit numbers: 𝑎, 𝑏

Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 37



Adder
Can we use this in parallel to add multi-bit numbers? What is
missing? Consider:

11
+01

Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 38



3-input Adder

Add 3 1-bit numbers: 𝑎, 𝑏, 𝑐

Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 39



ripple-carry adder

Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 40



Increment Circuit

Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 41



Gate Delay

What happens when I change my input?

Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 42



1-bit Register Circuit

Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 43



Another Circuit

+

Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 44



Common Model in Computers

Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 45



Code to Build Circuits from Gates
Write code to build circuits from gates
• Gates we already know: &, |, ^, ~
• Operations we can build from gates: +, -
• Others we can build:
• Ternary operator: ? :

Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 46



Equals
Equals: =
• Attach with a wire (i.e., connect things)
• Ex: z = x * y

• What about the following?
x = 1
x = 0

• Single assignment: each variable can only be assigned a value
once

Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 47



Subtraction

z = x + ~y + 1

a = ~y
b = a + 1
z = x + y

Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 48



Comparisons

Each of our comparisons in code are straightforward to build:
• == - xor then nor bits of output
• != - same as == without not of output
• < - consider x < 0

• >, <=, => are similar

Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 49



Indexing

Indexing with square brackets: [ ]

• Register bank (or register file) - an array of registers
– Can programmatically pick one based on index
– I.e., can determine which register while running

• Two important operations:
x = R[i] - Read from a register
R[j] = y - Write to a register

Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 50



Reading
x = R[i] - connect output of registers to 𝑥 based on index 𝑖

R

0

1

2

3

Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 51



Writing
R[j] = y - connect 𝑦 to input of registers based on index 𝑗

R

0

1

2

3

Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 52



Memory and Storage

Registers ≈ KiB
• 6 gates each, ≈ 24 transistors
• Efficient, fast
• Expensive!
• Ex: local variables

These do not persist between power cycles

Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 53



Memory and Storage

Memory ≈ GiB
• Two main types: SRAM, DRAM
• DRAM: 1 transistor, 1 capacitor per bit
• DRAM is cheaper, simpler to build
• Ex: data structures, local variables

These do not persist between power cycles

Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 54



Memory and Storage

Disk ≈ GiB-TiB
• Two main types: flash (solid state), magnetic disk
• Magnetic drive
– Platter with physical arm above and below
– Cheap to build
– Very slow! Physically move arm while disk spins

• Ex: files
Data on disk does persist between power cycles

Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 55



Our story so far

• Information modeled by voltage through wires (1 vs 0)
• Transistors
• Gates: & | ~ ^

• Multi-bit values: representing integers, floating point numbers
• Multi-bit operations using circuits
• Storing results using registers, clocks
• Memory

Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 56



Code

How do we run code? What do we need?

Consider the following code:

...
8: x = 16
9: y = x
10: x += y
...

What is the value of 𝑥 after line 10?

Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 57



Bookkeeping

What do we need to keep track of?
• Code - the program we are running
– RAM (Random Access Memory)

• State - things that may change value (i.e., variables)
– Register file - can read and write values each cycle

• Program Counter (PC) - where we are in our code
– Single register - byte number in memory for next instruction

Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 58



Building a Computer
Random Access MemoryCode

Register
File
(RF)

0

1

3

2

Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 59



Encoding Instructions
Encoding of Instructions (icode or opcode)
• Numeric mapping from icode to operation

icode meaning
0 rA = rB
1 rA &= rB
2 rA += rB
... ...

    icode                       a                    b

7           6          5          4           3          2           1          0

Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 60



Instructions
icode b meaning
0 rA = rB
1 rA &= rB
2 rA += rB
3 0 rA = ~rA

1 rA = !rA
2 rA = -rA
3 rA = pc

4 rA = read from memory at address rB
5 write rA to memory at address rB
6 0 rA = read from memory at pc + 1

1 rA &= read from memory at pc + 1
2 rA += read from memory at pc + 1
3 rA = read from memory at the address stored at pc + 1

For icode 6, increase pc by 2 at end of instruction
7 Compare rA as 8-bit 2’s-complement to 0

if rA <= 0 set pc = rB
else increment pc as normal

Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 61



Question

What happens if we get the 0-byte instruction? 00

Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 62



High-level Instructions

In general, 3 kinds of instructions
• moves - move values around without doing “work”
• math - broadly doing “work”
• jumps - jump to a new place in the code

Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 63



Moves

Few forms
• Register to register (icode 0), x = y

• Register to/from memory (icodes 4-5), x = M[b], M[b] = x

Memory
• Address: an index into memory.
– Addresses are just (large) numbers
– Usually we will not look at the number and trust it exists
and is stored in a register

Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 64



Moves

icode b action
0 rA = rB
3 3 rA = pc
4 rA = read from memory at address rB
5 write rA to memory at address rB
6 0 rA = read from memory at pc + 1

3 rA = read from memory at the address stored at pc + 1

Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 65



Math

Broadly doing work

icode b meaning
1 rA &= rB
2 rA += rB
3 0 rA = ~rA

1 rA = !rA
2 rA = -rA

6 1 rA &= read from memory at pc + 1
2 rA += read from memory at pc + 1

Note: We can implement other operations using these things!

Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 66



icodes 3 and 6

Special property of icodes 3 & 6: only one register used
    icode                       a                    b

7           6          5          4           3          2           1          0

icode b action
3 0 rA = ~rA

1 rA = !rA
2 rA = -rA
3 rA = pc

Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 67



icodes 3 and 6

Special property of 3 & 6: only one register used
    icode                       a                    b

7           6          5          4           3          2           1          0

• Side effect: all bytes between 0 and 127 are valid instructions!
• As long as high-order bit is 0
• No syntax errors, any instruction given is valid

Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 68



Immediate values
icode 6 provides literals, immediate values

icode b action
6 0 rA = read from memory at pc + 1

1 rA &= read from memory at pc + 1
2 rA += read from memory at pc + 1
3 rA = read from memory at the address stored at pc + 1

For icode 6, increase pc by 2 at end of instruction
    icode                       a                    b

7           6          5          4           3          2           1          0 7           6          5          4           3          2           1          0

Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 69



Jumps

• Moves and math are large portion of our code
• We also need control constructs
– Change what we are going to do next
– if, while, for, functions, ...

• Jumps provide mechanism to perform these control constructs
• We jump by assigning a new value to the program counter PC

Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 70



Jumps

icode meaning
7 Compare rA as 8-bit 2’s-complement to 0

if rA <= 0 set pc = rB
else increment pc as normal

Instruction icode 7 provides a conditional jump
• Real code will also provide an unconditional jump, but a
conditional jump is sufficient

Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 71



Writing Code

We can now write any∗ program!
• When you run code, it is being turned into instructions like ours
• Modern computers use a larger pool of instructions than we
have (we will get there)

∗we do have some limitations, since we can only represent 8-bit values and
some operations may be tedious.

Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 72



Writing Code: Homework Hints

1. Write pseudocode that does the desired task
2-3 ... deal with control flow
4. Split multi-operation lines into series of single-operation lines

x = y-z; becomes x = y; x -= z;
5. Convert operations to those in our instruction set

x -= z; becomes w = z; w = -w; x += w;
6. ... deal with loops
7. Assign variables to our four registers, ex: r0=x, r1=y, r2=z, r3=w

r0 = r1; r3 = r2; r3 = -r3; r0 += r3
10- Write those instructions into triples, then hex

Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 73



Instructions
icode b meaning
0 rA = rB
1 rA &= rB
2 rA += rB
3 0 rA = ~rA

1 rA = !rA
2 rA = -rA
3 rA = pc

4 rA = read from memory at address rB
5 write rA to memory at address rB
6 0 rA = read from memory at pc + 1

1 rA &= read from memory at pc + 1
2 rA += read from memory at pc + 1
3 rA = read from memory at the address stored at pc + 1

For icode 6, increase pc by 2 at end of instruction
7 Compare rA as 8-bit 2’s-complement to 0

if rA <= 0 set pc = rB
else increment pc as normal

Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 74



Memory

What kinds of things do we put in memory?
• Code: binary code like instructions in our example ISA
– Intel/AMD compatible: x86_64
– Apple Mx and Ax, ARM: ARM
– And others!

• Variables: we may have more variables that will fit in registers
• Data Structures: organized data, collection of data
– Arrays, lists, heaps, stacks, queues, ...

Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 75



Dealing with Variables and Memory

What if we have many variables? Compute: x += y

Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 76



Arrays

Array: a sequence of values (collection of variables)
In Java, arrays have the following properties:
• Fixed number of values
• Not resizable
• All values are the same type

How do we store them in memory?

Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 77



Storing Arrays

In memory, store array sequentially
• Pick address to store array
• Subsequent elements stored at following addresses
• Access elements with math

Example: Store array 𝑎𝑟𝑟 at 0x90
• Access 𝑎𝑟𝑟[3] as 0x90 + 3 assuming 1-byte values

Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 78



What’s Missing?

What are we missing?
• Nothing says “this is an array” in memory
• Nothing says how long the array is

Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 79



Instruction Set Architecture

Instruction Set Architecture (ISA) is an abstract model of a
computer defining how the CPU is controlled by software
• Conceptually, set of instructions that are possible and how they
should be encoded
• Results in many different machines to implement same ISA
– Example: How many machines implement our example ISA?

• Common in how we design hardware

Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 80



Instruction Set Architecture

Instruction Set Architecture (ISA) is an abstract model of a
computer defining how the CPU is controlled by software
• Provides an abstraction layer between:
– Everything computer is really doing (hardware)
– What programmer using the computer needs to know
(software)

• Hardware and Software engineers have freedom of design, if
conforming to ISA
• Can change the machine without breaking any programs

Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 81



Instruction Set Architecture

Instruction Set Architecture (ISA) is an abstract model of a
computer defining how the CPU is controlled by software
• Provides an abstraction layer between:
– Everything computer is really doing (hardware)
– What programmer using the computer needs to know
(software)

CSO: covering many of the times we’ll need to think across this
barrier

Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 82



Instruction Set Architecture

Backwards compatibility
• Include flexibility to add additional instructions later
• Original instructions will still work
• Same program can be run on PC from 10+ years ago and new PC
today

Most manufacturers choose an ISA and stick with it
• Notable Exception: Apple

Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 83



Our Instruction Set Architecture

What about our ISA?
• Enough instructions to compute what we need
• As is, lot of things that are painful to do
– This was on purpose! So we can see limitations of ISAs early

• Add any number of new instructions using the reserved bit (7)

Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 84



Our Instruction Set Architecture

What about our ISA?
• Enough instructions to compute what we need
• As is, lot of things that are painful to do
– This was on purpose! So we can see limitations of ISAs early

• Add any number of new instructions using the reserved bit (7)
• Missing something important: Help to put variables in memory

Review | CS 2130: Computer Systems and Organization 1 | October 1, 2025 | 85


	Boolean Algebra
	Bits
	Floating point
	Circuits to Computer
	ToyISA
	ISAs

