
Function Calls, Memory
Instruction Set Architectures
Function Calls, Memory
Instruction Set Architectures

CS 2130: Computer Systems and Organization 1
September 29, 2025



Announcements

• Homework 3 due Wednesday at 11:59pm on Gradescope
• Midterm 1 Friday (October 3, 2025) in class
– Written, closed notes
– If you have SDAC, please schedule ASAP

Function Calls, Memory
Instruction Set Architectures | CS 2130: Computer Systems and Organization 1 | September 29, 2025 | 2



Encoding Instructions

Encoding of Instructions
• 3-bit icode (which operation to perform)
– Numeric mapping from icode to operation

• Which registers to use (2 bits each)
• Reserved bit for future expansion

    icode                       a                    b

7           6          5          4           3          2           1          0

Function Calls, Memory
Instruction Set Architectures | CS 2130: Computer Systems and Organization 1 | September 29, 2025 | 3



Jumps

• Moves and math are large portion of our code
• We also need control constructs
– Change what we are going to do next
– if, while, for, functions, ...

• Jumps provide mechanism to perform these control constructs
• We jump by assigning a new value to the program counter PC

Function Calls, Memory
Instruction Set Architectures | CS 2130: Computer Systems and Organization 1 | September 29, 2025 | 4



Function Calls

Function Calls, Memory
Instruction Set Architectures | CS 2130: Computer Systems and Organization 1 | September 29, 2025 | 5



Memory
What kinds of things do we put in memory?
• Code: binary code like instructions in our example ISA
– Intel/AMD compatible: x86_64
– Apple Mx and Ax, ARM: ARM
– And others!

• Variables: we may have more variables that will fit in registers
• Data Structures: organized data, collection of data
– Arrays, lists, heaps, stacks, queues, ...

Function Calls, Memory
Instruction Set Architectures | CS 2130: Computer Systems and Organization 1 | September 29, 2025 | 6



Dealing with Variables and Memory

What if we have many variables? Compute: x += y

Toy Instruction Set Architecture | CS 2130: Computer Systems and Organization 1 | September 26, 2025 | 15



Arrays

Array: a sequence of values (collection of variables)
In Java, arrays have the following properties:
• Fixed number of values
• Not resizable
• All values are the same type

Function Calls, Memory
Instruction Set Architectures | CS 2130: Computer Systems and Organization 1 | September 29, 2025 | 8



Arrays

Array: a sequence of values (collection of variables)
In Java, arrays have the following properties:
• Fixed number of values
• Not resizable
• All values are the same type

How do we store them in memory?

Function Calls, Memory
Instruction Set Architectures | CS 2130: Computer Systems and Organization 1 | September 29, 2025 | 8



Arrays

Function Calls, Memory
Instruction Set Architectures | CS 2130: Computer Systems and Organization 1 | September 29, 2025 | 9



Storing Arrays

In memory, store array sequentially
• Pick address to store array
• Subsequent elements stored at following addresses
• Access elements with math

Example: Store array 𝑎𝑟𝑟 at 0x90
• Access 𝑎𝑟𝑟[3] as 0x90 + 3 assuming 1-byte values

Function Calls, Memory
Instruction Set Architectures | CS 2130: Computer Systems and Organization 1 | September 29, 2025 | 10



What’s Missing?

What are we missing?
• Nothing says “this is an array” in memory
• Nothing says how long the array is

Function Calls, Memory
Instruction Set Architectures | CS 2130: Computer Systems and Organization 1 | September 29, 2025 | 11



Instructions
icode b meaning
0 rA = rB
1 rA &= rB
2 rA += rB
3 0 rA = ~rA

1 rA = !rA
2 rA = -rA
3 rA = pc

4 rA = read from memory at address rB
5 write rA to memory at address rB
6 0 rA = read from memory at pc + 1

1 rA &= read from memory at pc + 1
2 rA += read from memory at pc + 1
3 rA = read from memory at the address stored at pc + 1

For icode 6, increase pc by 2 at end of instruction
7 Compare rA as 8-bit 2’s-complement to 0

if rA <= 0 set pc = rB
else increment pc as normal

Function Calls, Memory
Instruction Set Architectures | CS 2130: Computer Systems and Organization 1 | September 29, 2025 | 12



Instruction Set Architecture

Instruction Set Architecture (ISA) is an abstract model of a
computer defining how the CPU is controlled by software
• Conceptually, set of instructions that are possible and how they
should be encoded
• Results in many different machines to implement same ISA
– Example: How many machines implement our example ISA?

• Common in how we design hardware

Function Calls, Memory
Instruction Set Architectures | CS 2130: Computer Systems and Organization 1 | September 29, 2025 | 13



Instruction Set Architecture
Instruction Set Architecture (ISA) is an abstract model of a
computer defining how the CPU is controlled by software
• Provides an abstraction layer between:
– Everything computer is really doing (hardware)
– What programmer using the computer needs to know
(software)

• Hardware and Software engineers have freedom of design, if
conforming to ISA
• Can change the machine without breaking any programs

Function Calls, Memory
Instruction Set Architectures | CS 2130: Computer Systems and Organization 1 | September 29, 2025 | 14



Instruction Set Architecture

Instruction Set Architecture (ISA) is an abstract model of a
computer defining how the CPU is controlled by software
• Provides an abstraction layer between:
– Everything computer is really doing (hardware)
– What programmer using the computer needs to know
(software)

CSO: covering many of the times we’ll need to think across this
barrier

Function Calls, Memory
Instruction Set Architectures | CS 2130: Computer Systems and Organization 1 | September 29, 2025 | 15



Instruction Set Architecture

Backwards compatibility
• Include flexibility to add additional instructions later
• Original instructions will still work
• Same program can be run on PC from 10+ years ago and new PC
today

Most manufacturers choose an ISA and stick with it
• Notable Exception: Apple

Function Calls, Memory
Instruction Set Architectures | CS 2130: Computer Systems and Organization 1 | September 29, 2025 | 16



Our Instruction Set Architecture

What about our ISA?
• Enough instructions to compute what we need
• As is, lot of things that are painful to do
– This was on purpose! So we can see limitations of ISAs early

• Add any number of new instructions using the reserved bit (7)

Function Calls, Memory
Instruction Set Architectures | CS 2130: Computer Systems and Organization 1 | September 29, 2025 | 17



Our Instruction Set Architecture

What about our ISA?
• Enough instructions to compute what we need
• As is, lot of things that are painful to do
– This was on purpose! So we can see limitations of ISAs early

• Add any number of new instructions using the reserved bit (7)

Function Calls, Memory
Instruction Set Architectures | CS 2130: Computer Systems and Organization 1 | September 29, 2025 | 17



Our Instruction Set Architecture

What about our ISA?
• Enough instructions to compute what we need
• As is, lot of things that are painful to do
– This was on purpose! So we can see limitations of ISAs early

• Add any number of new instructions using the reserved bit (7)
• Missing something important: Help to put variables in memory

Function Calls, Memory
Instruction Set Architectures | CS 2130: Computer Systems and Organization 1 | September 29, 2025 | 18



Storing Variables in Memory

So far... we/compiler chose location for variable
Consider the following example:

f(x):
a = x
if (x <= 0) return 0
else return f(x-1) + a

Recursion
• The formal study of a function that calls itself

Function Calls, Memory
Instruction Set Architectures | CS 2130: Computer Systems and Organization 1 | September 29, 2025 | 19



Storing Variables in Memory

f(x):
a = x
if (x <= 0) return 0
else return f(x-1) + a

Where do we store a?

Function Calls, Memory
Instruction Set Architectures | CS 2130: Computer Systems and Organization 1 | September 29, 2025 | 20



The Stack

Stack - a last-in-first-out (LIFO) data structure
• The solution for solving this problem

rsp - Special register - the stack pointer
• Points to a special location in memory
• Two operations most ISAs support:
– push - put a new value on the stack
– pop - return the top value off the stack

Function Calls, Memory
Instruction Set Architectures | CS 2130: Computer Systems and Organization 1 | September 29, 2025 | 21



The Stack: Push and Pop

push r0
• Put a value onto the “top” of the stack

rsp -= 1
M[rsp] = r0

pop r2
• Read value from “top”, save to register

r2 = M[rsp]
rsp += 1

Function Calls, Memory
Instruction Set Architectures | CS 2130: Computer Systems and Organization 1 | September 29, 2025 | 22



The Stack: Push and Pop

Function Calls, Memory
Instruction Set Architectures | CS 2130: Computer Systems and Organization 1 | September 29, 2025 | 23



The Stack: Push and Pop

Function Calls, Memory
Instruction Set Architectures | CS 2130: Computer Systems and Organization 1 | September 29, 2025 | 24



What about real ISAs?

Function Calls, Memory
Instruction Set Architectures | CS 2130: Computer Systems and Organization 1 | September 29, 2025 | 25


