
Toy Instruction Set ArchitectureToy Instruction Set Architecture

CS 2130: Computer Systems and Organization 1
September 22, 2025



Announcements

• Homework 2 due tonight at 11:59pm on Gradescope
• Homework 3 out today, due next Monday at 11:59pm on

Gradescope

Toy Instruction Set Architecture | CS 2130: Computer Systems and Organization 1 | September 22, 2025 | 2



Quiz Review

Toy Instruction Set Architecture | CS 2130: Computer Systems and Organization 1 | September 22, 2025 | 3



Encoding Instructions

Encoding of Instructions
• 3-bit icode (which operation to perform)

– Numeric mapping from icode to operation
• Which registers to use (2 bits each)
• Reserved bit for future expansion

    icode                       a                    b

7           6          5          4           3          2           1          0

Toy Instruction Set Architecture | CS 2130: Computer Systems and Organization 1 | September 22, 2025 | 4



High-level Instructions

In general, 3 kinds of instructions
• moves - move values around without doing “work”
• math - broadly doing “work”
• jumps - jump to a new place in the code

Toy Instruction Set Architecture | CS 2130: Computer Systems and Organization 1 | September 22, 2025 | 5



Moves

Few forms
• Register to register (icode 0), x = y

• Register to/from memory (icodes 4-5), x = M[b], M[b] = x

Memory
• Address: an index into memory.

– Addresses are just (large) numbers
– Usually we will not look at the number and trust it exists and is
stored in a register

Toy Instruction Set Architecture | CS 2130: Computer Systems and Organization 1 | September 22, 2025 | 6



Moves

icode b action
0 rA = rB
3 3 rA = pc
4 rA = read from memory at address rB
5 write rA to memory at address rB
6 0 rA = read from memory at pc + 1

3 rA = read from memory at the address stored at pc + 1

Toy Instruction Set Architecture | CS 2130: Computer Systems and Organization 1 | September 22, 2025 | 7



Math

Broadly doing work
icode b meaning
1 rA &= rB
2 rA += rB
3 0 rA = ~rA

1 rA = !rA
2 rA = -rA

6 1 rA &= read from memory at pc + 1
2 rA += read from memory at pc + 1

Note: We can implement other operations using these things!

Toy Instruction Set Architecture | CS 2130: Computer Systems and Organization 1 | September 22, 2025 | 8



icodes 3 and 6

Special property of icodes 3 & 6: only one register used
    icode                       a                    b

7           6          5          4           3          2           1          0

icode b action
3 0 rA = ~rA

1 rA = !rA
2 rA = -rA
3 rA = pc

Toy Instruction Set Architecture | CS 2130: Computer Systems and Organization 1 | September 22, 2025 | 9



icodes 3 and 6

Special property of 3 & 6: only one register used
    icode                       a                    b

7           6          5          4           3          2           1          0

• Side effect: all bytes between 0 and 127 are valid instructions!
• As long as high-order bit is 0
• No syntax errors, any instruction given is valid

Toy Instruction Set Architecture | CS 2130: Computer Systems and Organization 1 | September 22, 2025 | 10



Immediate values
icode 6 provides literals, immediate values
icode b action
6 0 rA = read from memory at pc + 1

1 rA &= read from memory at pc + 1
2 rA += read from memory at pc + 1
3 rA = read from memory at the address stored at pc + 1

For icode 6, increase pc by 2 at end of instruction
    icode                       a                    b

7           6          5          4           3          2           1          0 7           6          5          4           3          2           1          0

Toy Instruction Set Architecture | CS 2130: Computer Systems and Organization 1 | September 22, 2025 | 11



Encoding Instructions

Example 1: r1 += 19

Toy Instruction Set Architecture | CS 2130: Computer Systems and Organization 1 | September 22, 2025 | 12



Instructions
icode b meaning
0 rA = rB
1 rA &= rB
2 rA += rB
3 0 rA = ~rA

1 rA = !rA
2 rA = -rA
3 rA = pc

4 rA = read from memory at address rB
5 write rA to memory at address rB
6 0 rA = read from memory at pc + 1

1 rA &= read from memory at pc + 1
2 rA += read from memory at pc + 1
3 rA = read from memory at the address stored at pc + 1

For icode 6, increase pc by 2 at end of instruction
7 Compare rA as 8-bit 2’s-complement to 0

if rA <= 0 set pc = rB
else increment pc as normal

Toy Instruction Set Architecture | CS 2130: Computer Systems and Organization 1 | September 22, 2025 | 13



Encoding Instructions

Example 2: M[0x82] += r3
Read memory at address 0x82, add r3, write back to memory at same address

Toy Instruction Set Architecture | CS 2130: Computer Systems and Organization 1 | September 22, 2025 | 14



Instructions
icode b meaning
0 rA = rB
1 rA &= rB
2 rA += rB
3 0 rA = ~rA

1 rA = !rA
2 rA = -rA
3 rA = pc

4 rA = read from memory at address rB
5 write rA to memory at address rB
6 0 rA = read from memory at pc + 1

1 rA &= read from memory at pc + 1
2 rA += read from memory at pc + 1
3 rA = read from memory at the address stored at pc + 1

For icode 6, increase pc by 2 at end of instruction
7 Compare rA as 8-bit 2’s-complement to 0

if rA <= 0 set pc = rB
else increment pc as normal

Toy Instruction Set Architecture | CS 2130: Computer Systems and Organization 1 | September 22, 2025 | 15



Jumps

• Moves and math are large portion of our code
• We also need control constructs

– Change what we are going to do next
– if, while, for, functions, ...

• Jumps provide mechanism to perform these control constructs
• We jump by assigning a new value to the program counter PC

Toy Instruction Set Architecture | CS 2130: Computer Systems and Organization 1 | September 22, 2025 | 16



Jumps

For example, consider an if

Toy Instruction Set Architecture | CS 2130: Computer Systems and Organization 1 | September 22, 2025 | 17



Jumps

icode meaning
7 Compare rA as 8-bit 2’s-complement to 0

if rA <= 0 set pc = rB
else increment pc as normal

Instruction icode 7 provides a conditional jump
• Real code will also provide an unconditional jump, but a conditional

jump is sufficient

Toy Instruction Set Architecture | CS 2130: Computer Systems and Organization 1 | September 22, 2025 | 18



Writing Code

We can now write any∗ program!
• When you run code, it is being turned into instructions like ours
• Modern computers use a larger pool of instructions than we have

(we will get there)

∗we do have some limitations, since we can only represent 8-bit values and some
operations may be tedious.

Toy Instruction Set Architecture | CS 2130: Computer Systems and Organization 1 | September 22, 2025 | 19



Our code to this machine code

How do we turn our control constructs into jump statements?

Toy Instruction Set Architecture | CS 2130: Computer Systems and Organization 1 | September 22, 2025 | 20



if/else to jump

Toy Instruction Set Architecture | CS 2130: Computer Systems and Organization 1 | September 22, 2025 | 21



while to jump

Toy Instruction Set Architecture | CS 2130: Computer Systems and Organization 1 | September 22, 2025 | 22



Function Calls

Toy Instruction Set Architecture | CS 2130: Computer Systems and Organization 1 | September 22, 2025 | 23



Encoding Instructions

Example 3: if r0 < 9 jump to 0x42

Toy Instruction Set Architecture | CS 2130: Computer Systems and Organization 1 | September 22, 2025 | 24



Instructions
icode b meaning
0 rA = rB
1 rA &= rB
2 rA += rB
3 0 rA = ~rA

1 rA = !rA
2 rA = -rA
3 rA = pc

4 rA = read from memory at address rB
5 write rA to memory at address rB
6 0 rA = read from memory at pc + 1

1 rA &= read from memory at pc + 1
2 rA += read from memory at pc + 1
3 rA = read from memory at the address stored at pc + 1

For icode 6, increase pc by 2 at end of instruction
7 Compare rA as 8-bit 2’s-complement to 0

if rA <= 0 set pc = rB
else increment pc as normal

Toy Instruction Set Architecture | CS 2130: Computer Systems and Organization 1 | September 22, 2025 | 25



$^*$


$^*$




The document was declared to be of type PDF/A-4f but hasn't any attachments. LaTeX therefore added this dummy file.

