
Building to a Computer
Fetch, Decode, Execute
Building to a Computer
Fetch, Decode, Execute

CS 2130: Computer Systems and Organization 1
September 19, 2025

Announcements

• Quiz 3 available today, due Sunday by 11:59pm
• Homework 2 due Monday

Building to a Computer
Fetch, Decode, Execute | CS 2130: Computer Systems and Organization 1 | September 19, 2025 | 2

Memory and Storage

Registers ≈ KiB
• 6 gates each, ≈ 24 transistors
• Efficient, fast
• Expensive!
• Ex: local variables

These do not persist between power cycles

Building to a Computer
Fetch, Decode, Execute | CS 2130: Computer Systems and Organization 1 | September 19, 2025 | 3

Memory and Storage

Memory ≈ GiB
• Two main types: SRAM, DRAM
• DRAM: 1 transistor, 1 capacitor per bit
• DRAM is cheaper, simpler to build
• Ex: data structures, local variables

These do not persist between power cycles

Building to a Computer
Fetch, Decode, Execute | CS 2130: Computer Systems and Organization 1 | September 19, 2025 | 4

Memory and Storage

Disk ≈ GiB-TiB
• Two main types: flash (solid state), magnetic disk
• Magnetic drive

– Platter with physical arm above and below
– Cheap to build
– Very slow! Physically move arm while disk spins

• Ex: files
Data on disk does persist between power cycles

Building to a Computer
Fetch, Decode, Execute | CS 2130: Computer Systems and Organization 1 | September 19, 2025 | 5

Putting it all together

Building to a Computer
Fetch, Decode, Execute | CS 2130: Computer Systems and Organization 1 | September 19, 2025 | 6

Our story so far

• Information modeled by voltage through wires (1 vs 0)
• Transistors
• Gates: & | ~ ^

• Multi-bit values: representing integers, floating point numbers
• Multi-bit operations using circuits
• Storing results using registers, clocks
• Memory

Building to a Computer
Fetch, Decode, Execute | CS 2130: Computer Systems and Organization 1 | September 19, 2025 | 7

Code

How do we run code? What do we need?

Consider the following code:

...
8: x = 16
9: y = x
10: x += y
...

What is the value of 𝑥 after line 10?

Building to a Computer
Fetch, Decode, Execute | CS 2130: Computer Systems and Organization 1 | September 19, 2025 | 8

Bookkeeping

What do we need to keep track of?
• Code - the program we are running

– RAM (Random Access Memory)
• State - things that may change value (i.e., variables)

– Register file - can read and write values each cycle
• Program Counter (PC) - where we are in our code

– Single register - byte number in memory for next instruction

Building to a Computer
Fetch, Decode, Execute | CS 2130: Computer Systems and Organization 1 | September 19, 2025 | 9

Building a Computer
Random Access MemoryCode

Register
File
(RF)

0

1

3

2

Building to a Computer
Fetch, Decode, Execute | CS 2130: Computer Systems and Organization 1 | September 19, 2025 | 10

Encoding Instructions
Encoding of Instructions (icode or opcode)
• Numeric mapping from icode to operation

icode meaning
0 rA = rB
1 rA &= rB
2 rA += rB
... ...

 icode a b

7 6 5 4 3 2 1 0

Building to a Computer
Fetch, Decode, Execute | CS 2130: Computer Systems and Organization 1 | September 19, 2025 | 11

Building a Computer

+1

Random Access MemoryCode

Register
File
(RF)

0

1

3

2

 icode dest src

Building to a Computer
Fetch, Decode, Execute | CS 2130: Computer Systems and Organization 1 | September 19, 2025 | 12

Building to a Computer
Fetch, Decode, Execute | CS 2130: Computer Systems and Organization 1 | September 19, 2025 | 13

Question

What happens if we get the 0-byte instruction? 00

Building to a Computer
Fetch, Decode, Execute | CS 2130: Computer Systems and Organization 1 | September 19, 2025 | 14

Our Computer’s Instructions

Toy ISA 3-bit icode
icode meaning
0 rA = rB
1 rA &= rB
2 rA += rB
... ...
4 rA = read from memory at address rB
5 write rA to memory at address rB
... ...
7 Compare rA as 8-bit 2’s-complement to 0

if rA <= 0 set pc = rB
else increment pc as normal

Building to a Computer
Fetch, Decode, Execute | CS 2130: Computer Systems and Organization 1 | September 19, 2025 | 15

Our Computer’s Instructions

Toy ISA 3-bit icode
icode b action
3 0 rA = ~rA

1 rA = !rA
2 rA = -rA
3 rA = pc

6 0 rA = read from memory at pc + 1
1 rA &= read from memory at pc + 1
2 rA += read from memory at pc + 1
3 rA = read from memory at the address stored at pc + 1

For icode 6, increase pc by 2 at end of instruction
Building to a Computer
Fetch, Decode, Execute | CS 2130: Computer Systems and Organization 1 | September 19, 2025 | 16

High-level Instructions

In general, 3 kinds of instructions
• moves - move values around without doing “work”
• math - broadly doing “work”
• jumps - jump to a new place in the code

Building to a Computer
Fetch, Decode, Execute | CS 2130: Computer Systems and Organization 1 | September 19, 2025 | 17

Moves

Few forms
• Register to register (icode 0), x = y

• Register to/from memory (icodes 4-5), x = M[b], M[b] = x

Memory
• Address: an index into memory.

– Addresses are just (large) numbers
– Usually we will not look at the number and trust it exists and is
stored in a register

Building to a Computer
Fetch, Decode, Execute | CS 2130: Computer Systems and Organization 1 | September 19, 2025 | 18

Moves

icode b action
0 rA = rB
3 3 rA = pc
4 rA = read from memory at address rB
5 write rA to memory at address rB
6 0 rA = read from memory at pc + 1

3 rA = read from memory at the address stored at pc + 1

Building to a Computer
Fetch, Decode, Execute | CS 2130: Computer Systems and Organization 1 | September 19, 2025 | 19

Math

Broadly doing work
icode b meaning
1 rA &= rB
2 rA += rB
3 0 rA = ~rA

1 rA = !rA
2 rA = -rA

6 1 rA &= read from memory at pc + 1
2 rA += read from memory at pc + 1

Note: We can implement other operations using these things!
Building to a Computer
Fetch, Decode, Execute | CS 2130: Computer Systems and Organization 1 | September 19, 2025 | 20

icodes 3 and 6

Special property of icodes 3 & 6: only one register used
 icode a b

7 6 5 4 3 2 1 0

icode b action
3 0 rA = ~rA

1 rA = !rA
2 rA = -rA
3 rA = pc

Building to a Computer
Fetch, Decode, Execute | CS 2130: Computer Systems and Organization 1 | September 19, 2025 | 21

icodes 3 and 6

Special property of 3 & 6: only one register used
 icode a b

7 6 5 4 3 2 1 0

• Side effect: all bytes between 0 and 127 are valid instructions!
• As long as high-order bit is 0
• No syntax errors, any instruction given is valid

Building to a Computer
Fetch, Decode, Execute | CS 2130: Computer Systems and Organization 1 | September 19, 2025 | 22

Immediate values
icode 6 provides literals, immediate values
icode b action
6 0 rA = read from memory at pc + 1

1 rA &= read from memory at pc + 1
2 rA += read from memory at pc + 1
3 rA = read from memory at the address stored at pc + 1

For icode 6, increase pc by 2 at end of instruction
 icode a b

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Building to a Computer
Fetch, Decode, Execute | CS 2130: Computer Systems and Organization 1 | September 19, 2025 | 23

Encoding Instructions

Example 1: r1 += 19

Building to a Computer
Fetch, Decode, Execute | CS 2130: Computer Systems and Organization 1 | September 19, 2025 | 24

Instructions
icode b meaning
0 rA = rB
1 rA &= rB
2 rA += rB
3 0 rA = ~rA

1 rA = !rA
2 rA = -rA
3 rA = pc

4 rA = read from memory at address rB
5 write rA to memory at address rB
6 0 rA = read from memory at pc + 1

1 rA &= read from memory at pc + 1
2 rA += read from memory at pc + 1
3 rA = read from memory at the address stored at pc + 1

For icode 6, increase pc by 2 at end of instruction
7 Compare rA as 8-bit 2’s-complement to 0

if rA <= 0 set pc = rB
else increment pc as normal

Building to a Computer
Fetch, Decode, Execute | CS 2130: Computer Systems and Organization 1 | September 19, 2025 | 25

Encoding Instructions

Example 2: M[0x82] += r3
Read memory at address 0x82, add r3, write back to memory at same address

Building to a Computer
Fetch, Decode, Execute | CS 2130: Computer Systems and Organization 1 | September 19, 2025 | 26

Instructions
icode b meaning
0 rA = rB
1 rA &= rB
2 rA += rB
3 0 rA = ~rA

1 rA = !rA
2 rA = -rA
3 rA = pc

4 rA = read from memory at address rB
5 write rA to memory at address rB
6 0 rA = read from memory at pc + 1

1 rA &= read from memory at pc + 1
2 rA += read from memory at pc + 1
3 rA = read from memory at the address stored at pc + 1

For icode 6, increase pc by 2 at end of instruction
7 Compare rA as 8-bit 2’s-complement to 0

if rA <= 0 set pc = rB
else increment pc as normal

Building to a Computer
Fetch, Decode, Execute | CS 2130: Computer Systems and Organization 1 | September 19, 2025 | 27

Jumps

• Moves and math are large portion of our code
• We also need control constructs

– Change what we are going to do next
– if, while, for, functions, ...

• Jumps provide mechanism to perform these control constructs
• We jump by assigning a new value to the program counter PC

Building to a Computer
Fetch, Decode, Execute | CS 2130: Computer Systems and Organization 1 | September 19, 2025 | 28

Jumps

For example, consider an if

Building to a Computer
Fetch, Decode, Execute | CS 2130: Computer Systems and Organization 1 | September 19, 2025 | 29

Jumps

icode meaning
7 Compare rA as 8-bit 2’s-complement to 0

if rA <= 0 set pc = rB
else increment pc as normal

Instruction icode 7 provides a conditional jump
• Real code will also provide an unconditional jump, but a conditional

jump is sufficient

Building to a Computer
Fetch, Decode, Execute | CS 2130: Computer Systems and Organization 1 | September 19, 2025 | 30

Writing Code

We can now write any∗ program!
• When you run code, it is being turned into instructions like ours
• Modern computers use a larger pool of instructions than we have

(we will get there)

∗we do have some limitations, since we can only represent 8-bit values and some
operations may be tedious.

Building to a Computer
Fetch, Decode, Execute | CS 2130: Computer Systems and Organization 1 | September 19, 2025 | 31

Our code to this machine code

How do we turn our control constructs into jump statements?

Building to a Computer
Fetch, Decode, Execute | CS 2130: Computer Systems and Organization 1 | September 19, 2025 | 32

if/else to jump

Building to a Computer
Fetch, Decode, Execute | CS 2130: Computer Systems and Organization 1 | September 19, 2025 | 33

while to jump

Building to a Computer
Fetch, Decode, Execute | CS 2130: Computer Systems and Organization 1 | September 19, 2025 | 34

Function Calls

Building to a Computer
Fetch, Decode, Execute | CS 2130: Computer Systems and Organization 1 | September 19, 2025 | 35

Encoding Instructions

Example 3: if r0 < 9 jump to 0x42

Building to a Computer
Fetch, Decode, Execute | CS 2130: Computer Systems and Organization 1 | September 19, 2025 | 36

Instructions
icode b meaning
0 rA = rB
1 rA &= rB
2 rA += rB
3 0 rA = ~rA

1 rA = !rA
2 rA = -rA
3 rA = pc

4 rA = read from memory at address rB
5 write rA to memory at address rB
6 0 rA = read from memory at pc + 1

1 rA &= read from memory at pc + 1
2 rA += read from memory at pc + 1
3 rA = read from memory at the address stored at pc + 1

For icode 6, increase pc by 2 at end of instruction
7 Compare rA as 8-bit 2’s-complement to 0

if rA <= 0 set pc = rB
else increment pc as normal

Building to a Computer
Fetch, Decode, Execute | CS 2130: Computer Systems and Organization 1 | September 19, 2025 | 37

$approx $

$approx 24$

$approx $

$approx $

x

*

*

The document was declared to be of type PDF/A-4f but hasn't any attachments. LaTeX therefore added this dummy file.

