
Spring 2024
Exam II
2024-04-05

Instructions
This exam contains 12 pages (including this cover page) and 22 questions. It is out of 76
points.

You have 50 minutes to complete the examination. As a courtesy to your classmates, we
ask that you not leave during the last 15 minutes.

For this exam, you have been given a separate answer sheet to fill in your responses.

DO shade in the bubbles on your answer sheet without going outside the lines

DO feel free to write on this exam packet

DO assume all multiple-choice questions on this test are single-select unless otherwise
indicated

DO NOT write anything on your answer sheet except for your name, computing ID, signa-
ture, and answers in the designated areas

DO NOT use a calculator, consult notes, or collaborate with classmates

We will use the following data type sizes:
x86-64 Suffix C Types size in bits

b char 8
w short 16
l int and float 32
q long and double 64

Function arguments are in (in order) %rdi, %rsi, %rdx, %rcx, %r8, %r9; return values are
in %rax.

The next page contains reference material which you are welcome to refer to during the test
if you would like.

CSO1 Exam II - Page 2 of 12 2024-04-05

Our Example ISA
This is the same ISA used in HW03 and HW04, but presented to fit onto one printed page.

Each instruction is one or two bytes, with the meaning of those bytes being:

7 6 5 4 3 2 1 0
0 icode a b

byte at pc

7 6 5 4 3 2 1 0
immediate

byte at pc + 1
Not all instructions have the second byte; those that do describe it below as the byte “at pc + 1”.

In the table below rA means “the value stored in register number a” and rB means “the value
stored in register number b.”

icode b Behavior add to pc
0 rA = rB 1
1 rA += rB 1
2 rA &= rB 1
3 rA = read from memory at address rB 1
4 write rA to memory at address rB 1
5 0 rA = ~rA 1
5 1 rA = -rA 1
5 2 rA = !rA 1
5 3 rA = pc 1
6 0 rA = read from memory at pc + 1 2
6 1 rA += read from memory at pc + 1 2
6 2 rA &= read from memory at pc + 1 2
6 3 rA = read from memory at the address stored at pc + 1 2
7 if rA <= 0, set pc = rB N/A
7 if rA > 0, do nothing 1
0 0 Decrement rsp and push the contents of rA on the stack 1
0 1 Pop the top value from the stack into rA and increment

rsp
1

0 2 Push pc + 2 onto the stack, set pc = M[pc+1] 2
0 3 pc = pop the top value from the stack

Note the stack operations have the reserve bit set to 1. They are just not depicted here.

CSO1 Exam II - Page 3 of 12 2024-04-05

1 Toy ISA Stack Operations
1. (4 points) You may assume that only the steps listed below affect register values.

1. pushes values r0, r1, and r2 (in order) on the stack
2. pops into r1
3. pushes r3 on the stack
4. calls the function foobar, whose code is located in memory from 0x90 to 0xA2
5. returns from the function
6. pops into r3

If the code starts with rsp = 0xE3 and pc = 0x10, what are the values of rsp and pc
when the code reaches the first instruction in the foobar function? Write you answer in the
blanks space corresponding to question 1 on the scantron.

Solution:
rsp = 0xDF
pc = 0x90

2. (2 points) If pc = 0x1D after the program returns from the foobar function, what was the value
of pc when the function was called? Write you answer in the blanks space corresponding
to question 2 on the scantron.

Solution: pc = 0x1B

3. (4 points) If the code starts with pc = 0x10 and halts when pc = 0x1E, which of the
following starting values of rsp would likely cause the program to behave incorrectly? Select
all that apply.

(A) 0x00
(B) 0x11

(C) 0x21
(D) 0x90

(E) 0x91
(F) 0xA3

(G) 0xA5
(H) 0xFF

Solution: (C) 0x21, (E) 0x91, (F) 0xA3 and (G) 0xA5
Whether (B) 0x11 was selected does not affect the credit awarded.

2 The X86 Stack (and some AT&T Syntax Assembly)

4. (4 points) Imagine that a function pushes 50 chars to the stack. Which of the following could
be done to reset the stack? Select all that apply.

CSO1 Exam II - Page 4 of 12 2024-04-05

(A) addq $49, %rsp
(B) addq $50, %rsp
(C) subq $50, %rsp

(D) Execute popq %rax 50 times
(E) Execute popw %ax 25 times
(F) xorq %rsp, %rsp

Solution:
(B) addq $50, %rsp
(E) Execute popw %rax 25 tines

5. (2 points) If a function takes in 8 arguments, how many arguments will be passed on the stack?

(A) 0 (B) 1 (C) 2 (D) 4 (E) 6 (F) 8

Solution: (C) 2

CSO1 Exam II - Page 5 of 12 2024-04-05

The questions on this page all consider the following x86 Assembly function:

1 stack_function:
2 pushq %rbp
3 movq %rsp, %rbp
4 xorq %rcx, %rcx
5 loop:
6 cmpq $50, %rcx
7 jge end
8 pushq %rcx
9 addq $1, %rcx
10 jmp loop
11 end:
12 movq (%rsp), %rax
13 # INSERT CODE HERE #
14 pop %rbp
15 retq

6. (2 points) How many values have been pushed onto the stack once the code reaches the end:
label on line #11?

(A) 0
(B) 1

(C) 49
(D) 50

(E) 51
(F) 52

Solution: (E) 51

7. (4 points) As written, stack_function will crash with a segmentation fault instead of re-
turning to the function which called it. Either of the 2 incomplete lines of Assembly below
could be inserted on line #13 to avoid a crash.
Define both possible solutions to avoiding a crash by filling in the blanks below with register
names or immediates.
Solution Blank 1 (B1) (complete both of these): movq % rbp , %rsp
Solution Blank 2 (B2) (complete both of these): addq $ 400/0x190 , %rsp

8. (6 points) Imagine we reworked stack_function to take in an input instead of hard-coding
the $50 compare value on line #6. Order the instructions below to

• call stack_function with an argument of 16 and
• set rdx equal to twice the value returned by stack_function.

Clearly write the line numbers in the boxes on your answer sheet. Leave any
unnecessary boxes blank. Note: You only need to use a subset of the instructions
below.

CSO1 Exam II - Page 6 of 12 2024-04-05

1. addq %rax, %rdx
2. addq %rdx, %rax
3. callq stack_function

4. movq $16, %rax
5. movq $16, %rdi
6. movq %rax, $16

7. movq %rax, %rdx
8. movq %rdx, $16
9. movq %rdx, %rax

Solution: 5 3 7 1

CSO1 Exam II - Page 7 of 12 2024-04-05

3 Assembly

9. (4 points) Which of the instructions below could change the flags? Select all that apply

(A) leaq (%rax), %rax
(B) je loop
(C) movq $5, %rax
(D) xor $rsp, $rsp

(E) addq %rcx, %rdx
(F) pushq $2130
(G) test $1, %rsi
(H) ret

Solution:
(D) xor $rsp, $rsp
(E) addq %rcx, %rdx
(G) test $1, %rsi

10. (4 points) If we are working on a 32 bit machine, which flag(s) would be set to 1 after executing
add $0xFF000000, $0x11000000? Select all that apply. Leave the answer blank if no
flags are set.

(A) Carry flag (B) Zero flag (C) Sign flag (D) Overflow flag

Solution: (A) Carry flag

11. (5 points) Consider the following C program, as well as an incomplete Assembly version of the
same program:

0 int main() {
1 int x = 1;
2 while (x < 7) {
3 x = 2x + 1;
4 }
5 return x;
6 }

0 main:
1 movq $1, %rax
2 loop:
3 # INSERT CODE HERE #
4 # INSERT CODE HERE #
5 addq %rax, %rax
6 addq $1, %rax
7 jmp loop
8 end:
9 retq

Complete the following Assembly lines to make the two programs match.
Line 3: cmpq (B1) $6 , (B2) %rax
Line 4: jg (B3) end

CSO1 Exam II - Page 8 of 12 2024-04-05

Assume the first 8 registers and the given segment of (little-endian) memory have the following
initial values:

Register Value (hex)
rax 0x70000A
rcx 0x3
rdx 0x86
rbx 0x100
rsp 0x700008
rbp 0x14
rsi 0xA
rdi 0x70000B

Memory Address Value (hex)
0x700000 0x00
0x700001 0x04
0x700002 0x08
0x700003 0x0C
0x700004 0x10
0x700005 0x14
0x700006 0x18
0x700007 0x1C

Memory Address Value (hex)
0x700008 0x00
0x700009 0x31
0x70000A 0x41
0x70000B 0x59
0x70000C 0x26
0x70000D 0x12
0x70000E 0x02
0x70000F 0x05

Determine whether each instruction changes a register and, if so, fill in the name of the changed
register and its new value.
Each instruction below is independent; do not use the result of one as the input
for the next.

12. (2 points) movl (%rdi), %rax

(A) No change
(B) Register: % rax (B1)

New value: 0x02122659 (B2)

13. (2 points) movq %rdi, (%rax)

(A) No change ✓
(B) Register: % (B1)

New value: (B2)

14. (2 points) leaq -0xA(%rdi), %rsi

(A) No change
(B) Register: % rsi (B1)

New value: 0x700001 (B2)

15. (2 points) movw 0x3(%rax), %dx

(A) No change
(B) Register: % (r)dx (B1)

New value: 0x212 (B2)

16. (2 points) movb (%rsp), %bl

(A) No change ✓
(B) Register: % (B1)

New value: (B2)

17. (2 points) retq

(A) No change
(B) Register: % rsp (B1)

New value: 0x700010 (B2)

CSO1 Exam II - Page 9 of 12 2024-04-05

4 Pointers

The questions below consider the following 2d array, where &row_powers[0][0] is 0xE0
and the array is stored in row major order.

int row_powers[3][4] = { {1, 2, 4, 8}, {1, 3, 9, 27}, {1, 4, 16, 64} };

18. (2 points) What is the output of row_powers[1][2]

(A) 1 (B) 2 (C) 3 (D) 4 (E) 8 (F) 9 (G) Segmentation fault (H) Random value

Solution: (F) 9

19. (2 points) What is the output of *(row_powers + 6)?

(A) 1 (B) 2 (C) 3 (D) 4 (E) 8 (F) 9 (G) Segmentation fault (H) Random value
Test program would look like this. This could have been clearer in the question. So we decided
to drop the question.

#include <stdio.h>

int main(){
int row_powers[3][4] = { {1, 2, 4, 8}, {1, 3, 9, 27}, {1, 4, 16, 64} };
int * row_powers_p = row_power;
printf("%d \n",*(row_powers_p + 6));

}

Solution: //Question dropped.
(F) 9
Questions assuming that we treating row_powers though the array has been decade to a
pointer

20. (4 points) For the following descriptions, select the letter of the corresponding code snippet.

int *p; *p = = *p = &p
Go to the address stored in the pointer
and retrieve the value

(A) (B) (C) (D)

Declare a pointer (A) (B) (C) (D)
Get the address of a variable (A) (B) (C) (D)
Go to the address stored in the pointer
and update the value

(A) (B) (C) (D)

CSO1 Exam II - Page 10 of 12 2024-04-05

Solution: (C), (A), (D), (B)

21. (5 points) What are the following values of i, j, *k, l, and &l after the following code is executed?

long i = 3; //i is at memory address 0x2
long j = 1; //j is at memory address 0xC
long *k = &i; //*k is at memory address 0x10
long **l = &k; //**l is at memory address 0x18
*k = 101;
**l = 7;
long *m = &j; //*m is at memory address 0xF0
*m = (long) (*l + 8);

i: B1 j: B2 *k: B3 l: B4 &l: 0x18

Solution:

i: 7 j: 66 or 0x42 *k: 7 l: 0x10 &l: 0x18

CSO1 Exam II - Page 11 of 12 2024-04-05

5 C (and more Assembly)

22. (10 points) The following C and x86 Assembly code implement next_state_function,
which accepts some current_state and returns a next_state. Assuming standard x86
calling conventions, fill in all the blanks to complete both implementations. Exclude % and $
prefixes.
C function

int next_state_function(int current_state) {
int next_state = /* BLANK 1 (B1)*/;
switch(current_state) {

case 0:
next_state = 1;
break;

case 1:
case 2:

next_state = current_state + 1;
break;

case 3:
next_state = 0;
break;

default:
next_state = /* BLANK 2 (B2)*/;
break;

}
return next_state;

}

x86 Assembly function

next_state_function:
movq $-1, %rax
cmpq $# BLANK 3 (B3) #, %rdi
ja .L4
jmp *.L1(,%rdi,8)

.L2:
movq 1, %rax
retq

.L9:
addq $# BLANK 4 (B4) #, %# BLANK 5 (B5)#
movq %# BLANK 6 (B6) #, %# BLANK 7 (B7)#
retq

.L5:
movq $0, %# BLANK 8 (B8)#
retq

.L4:
movq %rdi, %rax
retq

Elsewhere in the same Assembly file

.section .rodata
.align 8

.L1:
.quad .L2
.quad .L9
.quad .L9
.quad .L5

CSO1 Exam II - Page 12 of 12 2024-04-05

Solution:

B1: -1

B2: current_state

B3: 3

B4: 1

B5: rdi

B6: rdi

B7: rax

B8: rax

