
CS 2130 Final Exam, Spring 2023 Page 1 of 16 UVA computing id:

CS 2130 Final Exam

Name

You MUST clearly write your computing ID on EACH page and put your name on the top of
this page, too. Please write legibly.

Write your answers in the box labeled “Answer” when provided. In any multiple choice answer,
fill in the circle completely for credit; checkmarks, circles, lines, or other marks will be graded
as an empty circle.

If you are still writing when “pens down” is called, your exam will not be graded – even if you
are still signing the honor pledge. So please do that first. Sorry to have to be strict on this!

There are 16 pages to this exam. Once the exam starts, please make sure you have all the pages.
Questions are worth different amounts of points, so be sure to look over all the questions and
plan your time accordingly.

This exam is CLOSED text book, closed-notes, closed-cell phone, closed-smart watch, closed-
computer, closed-neighbor, etc. You may not discuss this exam with anyone until after the
grades have been released. Please sign the honor pledge below.

On my honor as a student, I have neither given nor received aid on this exam.
I will not discuss the content of this exam, even in vague terms, with anyone
other than current course staff, until after grades have been released.

The Force is strong with this one.
–Darth Vader

CS 2130 Final Exam, Spring 2023 Page 2 of 16 UVA computing id:

Page 2: Toy ISA to C
Throughout the semester, we took a bottom-up approach, building from electricity on wires to
C. The next few questions take a top down approach to Computer Systems and Organization.

Consider the following recursive C function to calculate the “funfact” of two numbers; for ex-
ample, funfact(5, 2) = 2 + 10 + funfact(4, 2) = 12 + 2 + 8 + funfact(3, 2) = ... = 41.

long funfact(long n, long e) {
if (n < 1)

return 1;
return e + (2 * n) + funfact(n-1, e);

}

1. [10 points] Rearrange the x86-64 assembly instructions to implement funfact. For each
section, reorder the instructions by writing the number of the appropriate instruction on
the lines provided to the right. Some order has been provided for you and the order in one
section may influence the ordering in another section. Each instruction may be used at most
once and only within its group. Some instructions may not be used. All blanks will be filled.

Possible Instructions Proper Ordering

1. cmpq $0x0, %rdi

2. funfact:

3. jb label1

4. jle label1

5. leaq 2(%rsi, %rdi), %rbx

6. leaq (%rsi, %rdi, 2), %rbx

7. pushq %rbx

2 funfact:

8. addq $-1, %rdi

9. addq %rbx, %rax

10. callq funfact

11. jmp funfact

12. label1:

13. movl $1, %eax

14. popq %rbx

15. retq

16. retq

17. subq $-1, %rdi

14 popq %rbx

16 retq

CS 2130 Final Exam, Spring 2023 Page 3 of 16 UVA computing id:

Page 3: Toy ISA to C, continued

2. [9 points] Implement funfact using our Toy ISA and following our calling conventions.
Part of the code has been provided for you; fill in the missing instructions. In this imple-
mentation, assume the function is loaded at memory address 0x20. Our Toy ISA is described
on page 15.

// Check for base case (n < 1)
r1 = 0x2E

// Calculate return value (with recursive call)

// Handle base case
r0 = 0x01
pop r1
return

Write your program in binary below. Only the final program below will be graded for this
question. If you use fewer instructions, use no-ops to fill in the rest. We have filled in some
of the instructions and immediate values already.

64 2E
20 21 22 23 24 25 26 27 28 29 2a 2b 2c

60 01 85 83 00 00 00 00 00 00 00 00
2d 2e 2f 30 31 32 33 34 35 36 37 38 39

CS 2130 Final Exam, Spring 2023 Page 4 of 16 UVA computing id:

Page 4: Binary

3. [3 points] Convert the decimal value −42 into 8-bit two’s complement binary. Answer in
hexadecimal.

Answer

4. [3 points] Provide a value of x for which y = x+ 0xF9 sets y to 0. Assume x and y are both
an unsigned char. Answer in hexadecimal.

Answer

5. [4 points] Given the following array of unsigned short values, store them into 4 bytes of
memory under each of the following assumptions.

unsigned short x[2] = {0x0268, 0x4573};

A. Assume little-endian storage. B. Assume big-endian storage.

6. [3 points] Which of the following C expressions are equivalent to x ^ y, where x and y are
declared as ints? (Fill in the circle completely for all that apply.)

~(~x & ~y)

(x & ~y) | (~x & y)

(x | ~y) & (~x | y)

!(~x & ~y)

~x | ~y

~(x + y)

CS 2130 Final Exam, Spring 2023 Page 5 of 16 UVA computing id:

Page 5: Circuits

7. [9 points] In the space below, draw a circuit with three 1-bit inputs x, y, and z that outputs
the result x + y + 2z. Label your outputs as a, b, ... (as many as you need to avoid overflow),
with a as the low-order bit, b as the next lowest-order bit, and so on, up to the highest-order
bit of the output value. Construct the circuit using only wires and gates from the set {and,
or, not, xor}. Clearly label your input and output wires. Hint: writing out a truth table can
help design and/or check your circuit.

CS 2130 Final Exam, Spring 2023 Page 6 of 16 UVA computing id:

Page 6: C

8. [3 points] Given the following function macro, what is the value of x below?

#define FIVEFOUR(y) 5*y + 4
// ...
int x = 2 * FIVEFOUR(1 + 2);

16

22

34

38

9. [4 points] Answer the following True/False questions by writing either T or F in the blank
provided.

___ Short function definitions, such as square below, should be included in header
files.
int square(int x) { return x*x; }

___ The syscall instruction always calls the same function in kernel memory.

___ Garbage collectors, such as those in Java, automatically free unreachable memory.

___ Garbage is a subset of unreachable memory.

10. [3 points] As in homework 10, suppose we wrote a chat program that takes two command
line arguments: an ip address and a port number. That is, we would run our program as
./a.out 127.0.0.1 54321. Which of the following would print the second argument
to standard out?

printf("%d", argv[2]);

printf("%s", argv[2]);

printf("%d", argv[1]);

printf("%s", argv[1]);

CS 2130 Final Exam, Spring 2023 Page 7 of 16 UVA computing id:

Page 7: Writing C
11. [14 points] Implement the csostrncmp function, included in the manual page on this

exam. You may not use any library functions. Hint: strings may be less than n characters.

int csostrncmp(const char *s1, const char *s2, size_t n) {

}

CS 2130 Final Exam, Spring 2023 Page 8 of 16 UVA computing id:

Page 8: Memory

Consider the following code, shown with line numbers which are not part of the code itself. The
code contains one or more memory errors. Use this code for the next 3 questions.

1 int checkLine(char *line) {
2 char *prev;
3 while(line) {
4 char *t = strsep(&line, " ");
5 if (prev && prev[0] == t[0]) {
6 return 1;
7 }
8 prev = t;
9 }

10 return 0;
11 }
12
13 void findRepeats() {
14 int length = 4096;
15 char *buffer = (char *) malloc(sizeof(length));
16 while (fgets(buffer, length, stdin) != NULL) {
17 if (checkLine(buffer))
18 puts("Repeated first letter");
19 else
20 puts("Unique words");
21 }
22 }

12. [3 points] The code above has one memory leak. After which line should we add a free?
For example, if we should free before the return 0;, write 9.

Answer

13. [3 points] What should be freed? That is, what should we pass to the call free();? If the
pointer to be freed is no longer available at that point, write an X in the box instead.

Answer

CS 2130 Final Exam, Spring 2023 Page 9 of 16 UVA computing id:

Page 9: Memory and C

14. [5 points] For each of the following memory errors, give the line where the error occurs in
the code on the previous page. If the error does not occur, put an X in on the line.

___ Accesses uninitialized memory

___ Escaping pointer

___ Fails to use sizeof or uses sizeof incorrectly

___ Possible heap buffer overflow

___ Possible stack buffer overflow

15. [4 points] Consider the following C code. Which of the following could be used to fill in the
blank to access the score element of each player in the list? (Fill in the circle completely for
all that apply.)

typedef struct { char *name; double score; int rank; } player;

double calculateAvgScore(player *list, size_t n) {
double average = 0.0;
for (int i = 0; i < n; i++) {

average += ______________________;
}
return average / n;

}

(list[i]).score

(*(list + i)).score

(list[i])->score

(list + i)->score

(*(list + i * sizeof(player))).score

CS 2130 Final Exam, Spring 2023 Page 10 of 16 UVA computing id:

Page 10: More Questions

16. [3 points] Suppose you found a security vulnerability in code that you did not write. What
is the first step you should take?

Create and use an exploit to prove to the author it is real

Publish the vulnerability (in a repository such as CVE)

Wait to see if the author finds and fixes it

Tell the author of the software

17. [6 points] For each of the following statements about memory, write H if it is true about the
heap, S if it is true about the stack, B if it is true about both, or N for neither.

___ Is used to keep track of function calls.

___ Can be used for arrays and structs.

___ Space may be requested using calloc().

___ Requires free() to avoid memory leaks.

___ Contains the code of our program.

___ Contains string literals defined in our program.

18. [3 points] Consider the following code:

int main() {
printf("Do. ");
write(1,"Or do not. ", 11);
puts("There is no try. -Yoda ");

}

What will be printed to standard out?

Do. Or do not. There is no try. -Yoda

Or do not. Do. There is no try. -Yoda

Do. There is no try. -Yoda

Do. There is no try. -Yoda Or do not.

CS 2130 Final Exam, Spring 2023 Page 11 of 16 UVA computing id:

Page 11: More Questions

For the next two questions, consider the following C code that connects to a socket and writes
the contents of a buffer to the socket.

1 void connectWrite() {
2 const char *buf = "Use the force!";
3 struct sockaddr_in ip;
4 memset(&ip, 0, __________);
5 ip.sin_family = AF_INET;
6 ip.sin_port = htons(55555);
7 ip.sin_addr.s_addr = inet_addr("127.0.0.1");
8 int s = socket(AF_INET, SOCK_STREAM, 0);
9 int res = connect(s, (struct sockaddr *) &ip, __________);

10 if (!res) {
11 _________________________
12 }
13 close(s);
14 }

19. [3 points] In lines 4 and 9, we must provide the correct size of the ip struct to memset()
and connect(), respectively. Which of the following could be used to calculate the size?
(Fill in the circle completely for all that apply.)

sizeof(*ip)

sizeof(&ip)

sizeof(ip)

sizeof(sockaddr_in)

sizeof(struct sockaddr_in)

20. [3 points] Which of the following could we use in the blank on line 11 to correctly write the
buffer buf over the socket?

puts("%s", buf);

write(2, buf, strlen(buf));

write(s, buf, strlen(buf));

write(s, &buf, strlen(buf));

write(0, &buf, strlen(buf));

CS 2130 Final Exam, Spring 2023 Page 12 of 16 UVA computing id:

Page 12: Free Points, Extra Credit, Assumptions

21. [2 points] (Free Points) We covered a lot of material in the course this semester, from elec-
tricity on wires through most of C. What is one topic you wished we had spent more time
discussing in class or lab?

22. [2 points] (Extra Credit) My father was 86 years old when he passed last semester, and he
was never great with computers. Explain your favorite part of the course material to him
in a way that he could appreciate and understand. (Only serious answers will receive extra
credit.)

Assumptions. Assume unless otherwise specified:

• All necessary #includes have been used

• char, short, int, and long are 8-, 16-, 32-, and 64-bits long, respectively

• The compiler pads pointers where it is allowed to do so such that sizeof(struct X) is:

– an even multiple of the size of its largest field

– the smallest such multiple big enough to store all its fields

Notes: Callee-saved registers: %rbx, %rsp, %rbp, %r12, %r13, %r14, %r15

CS 2130 Final Exam, Spring 2023 Page 13 of 16 UVA computing id:

Page 13: Man Page
STRSEP(3) Linux Programmer’s Manual STRSEP(3)

NAME
strsep - extract token from string

SYNOPSIS

#include <string.h>

char *strsep(char **stringp, const char *delim);

DESCRIPTION
If *stringp is NULL, the strsep() function returns NULL and does nothing else. Otherwise,
this function finds the first token in the string *stringp, that is delimited by one of the bytes
in the string delim. This token is terminated by overwriting the delimiter with a null byte (’\0’),
and *stringp is updated to point past the token. In case no delimiter was found, the token is
taken to be the entire string *stringp, and *stringp is made NULL.

RETURN VALUE
The strsep() function returns a pointer to the token, that is, it returns the original value of
*stringp.

CS 2130 Final Exam, Spring 2023 Page 14 of 16 UVA computing id:

Page 14: Man Page
CSOSTRCMP(3) Linux Programmer’s Manual CSOSTRCMP(3)

NAME
csostrcmp, csostrncmp - compare two strings

SYNOPSIS

#include <cso1final.h>

int csostrcmp(const char *s1, const char *s2);

int csostrncmp(const char *s1, const char *s2, size_t n);

DESCRIPTION
The csostrcmp() function compares the two strings s1 and s2. The comparison is done using
unsigned characters.

csostrcmp() returns an integer indicating the result of the comparison, as follows:

• 0, if the s1 and s2 are equal;

• -1, if s1 is less than s2;

• 1, if s1 is greater than s2.

The csostrncmp() function is similar, except it compares only the first (at most) n bytes of s1
and s2.

RETURN VALUE
The csostrcmp() and csostrncmp() functions return integers -1, 0, or 1 if s1 (or the first n
bytes thereof) is found, respectively, to be less than, to match, or be greater than s2.

CS 2130 Final Exam, Spring 2023 Page 15 of 16 UVA computing id:

Page 15: Our ISA

Our Example ISA. This is the ISA described in class and used in Lab 4-5 and Homework 3-4.
Each instruction is one (or two) bytes, defined as:

7 6 5 4 3 2 1 0
R icode a b

byte at pc

7 6 5 4 3 2 1 0
immediate

byte at pc + 1

If the reserved bit (bit 7) in our instruction is 0, the following table defines our instruction en-
coding.

icode b behavior
0 rA = rB
1 rA += rB
2 rA &= rB
3 rA = read from memory at address rB
4 write rA to memory at address rB
5 0 rA = ~rA

1 rA = -rA
2 rA = !rA
3 rA = pc

6 0 rA = read from memory at pc + 1
1 rA += read from memory at pc + 1
2 rA &= read from memory at pc + 1
3 rA = read from memory at the address stored at pc + 1

For icode 6, increase pc by 2 at end of instruction
7 Compare rA as 8-bit two’s-complement to 0

if rA <= 0 set pc = rB
else increment pc as normal

If the reserved bit (bit 7) in our instruction is 1, the following table defines our extended instruc-
tion encoding to provide function calls and stack operations.

icode b behavior
0 0 Decrement rsp and push contents of rA to the stack

1 Pop the top value from the stack into rA and increment rsp
2 Push pc + 2 onto the stack, pc = read from memory at pc + 1
3 pc = pop the top value from the stack

For icode 0, if b is not 2, update the pc as normal

Calling conventions: Register 1 is callee-save. Function arguments will be placed in registers 2
and 3; the return value is stored in register 0.

CS 2130 Final Exam, Spring 2023 Page 16 of 16 UVA computing id:

Page 16: Scratch Paper

Nothing on this page will be graded.

