
CSO1 Name:
Spring 2022
Final Exam
2022-05-9
Time Limit: 180 minutes Computing ID

Instructions:

1. This exam contains 14 pages (including this cover page) and 12 questions.

2. You have 180 minutes to complete the examination.

3. Write your answers in this booklet. We scan this into GradeScope, so please try to avoid
writing on the backs of pages.

4. If a question presents several options in a list, mark the bubble next to the one correct answer.
All such questions on this test are single-select unless otherwise specified in a specific question
.

5. You may not use a calculator or notes.

6. Because this assessment is being given in several places, we cannot fairly answer questions
during it. If you find a question ambiguous or unclear, please explain that on the page by
the question itself and we will consider your explanation during grading.

7. We will use the following data type sizes:
Types size in bits
char 8
short 16
int and float 32
long and double 64

8. Function arguments are in (in order) %rdi, %rsi, %rdx, %rcx, %r8, %r9; return values are
in %rax.

9. The next several pages contain reference material which you are welcome to refer to during
the test if you would like.

10. Please sign the below Honor Code statement.

I have neither given nor received aid on this exam.

Signature:

CSO1 Final Exam - Page 2 of 14 2022-05-9

Our Example ISA
This is the same ISA used in HW03 and HW04, but presented to fit onto one printed page.

Each instruction is one or two bytes, with the meaning of those bytes being:

7 6 5 4 3 2 1 0
0 icode a b

byte at pc

7 6 5 4 3 2 1 0
immediate

byte at pc + 1
Not all instructions have the second byte; those that do describe it below as the byte “at pc + 1”.

In the table below rA means “the value stored in register number a” and rB means “the value
stored in register number b.”

icode b Behavior add to pc
0 rA = rB 1
1 rA += rB 1
2 rA &= rB 1
3 rA = read from memory at address rB 1
4 write rA to memory at address rB 1
5 0 rA = ~rA 1
5 1 rA = -rA 1
5 2 rA = !rA 1
5 3 rA = pc 1
6 0 rA = read from memory at pc + 1 2
6 1 rA += read from memory at pc + 1 2
6 2 rA &= read from memory at pc + 1 2
6 3 rA = read from memory at the address stored at pc + 1 2
7 if rA <= 0, set pc = rB N/A
7 if rA > 0, do nothing 1

If the first bit of the byte at pc is 1 instead of 0, the above text does not define what the
instruction means, but some other source (such as a question on this exam) might. If it has no
defined meaning either here or elsewhere, leave the pc and all other registers and memory values
unchanged.

CSO1 Final Exam - Page 3 of 14 2022-05-9

NAME — memcmp
#include <string.h>

int memcmp(const void *s1, const void *s2, size_t n);

DESCRIPTION
The memcmp() function compares the first n bytes (each interpreted as unsigned char) of the
memory areas s1 and s2.

RETURN VALUE
The memcmp() function returns an integer less than, equal to, or greater than zero if the first n
bytes of s1 is found, respectively, to be less than, to match, or be greater than the first n bytes of
s2.

For a nonzero return value, the sign is determined by the sign of the difference between the first
pair of bytes (interpreted as unsigned char) that differ in s1 and s2.

If n is zero, the return value is zero.

NAME — strcat, strncat
#include <string.h>

char *strcat(char *dest, const char *src);
char *strncat(char *dest, const char *src, size_t n);

DESCRIPTION
The strcat() function appends the src string to the dest string, overwriting the terminating null
byte (’\0’) at the end of dest, and then adds a terminating null byte. The strings may not overlap,
and the dest string must have enough space for the result. If dest is not large enough, program
behavior is unpredictable; buffer overruns are a favorite avenue for attacking secure programs.

The strncat() function is similar, except that

• it will use at most n bytes from src; and

• src does not need to be null-terminated if it contains n or more bytes.

As with strcat(), the resulting string in dest is always null-terminated.
If src contains n or more bytes, strncat() writes n+1 bytes to dest (n from src plus the

terminating null byte). Therefore, the size of dest must be at least strlen(dest)+n+1.

1 RETURN VALUE
The strcat() and strncat() functions return a pointer to the resulting string dest.

CSO1 Final Exam - Page 4 of 14 2022-05-9

ATOI(3) Linux Programmer’s Manual ATOI(3)

NAME — atoi, atol, atoll

SYNOPSIS
#include <stdlib.h>

int atoi(const char *nptr);
long atol(const char *nptr);
long long atoll(const char *nptr);

DESCRIPTION
The atoi() function converts the initial portion of the string pointed to by nptr to int. The behavior
is the same as

strtol(nptr, NULL, 10);

except that atoi() does not detect errors.
The atol() and atoll() functions behave the same as atoi(), except that they convert the initial

portion of the string to their return type of long or long long.

RETURN VALUE
The converted value.

CSO1 Final Exam - Page 5 of 14 2022-05-9

1. Throughout the semester we took a bottom up approach (from electricity → C) to Computer
Systems and their Organization (CS01). This parts of this question takes a top down approach
(from C → electricity).

(a) The program below calculates the intercept y given x, m and b: y = mx+ b:
int intercept(int *x, int *m, int b) {

return _________;
}
Which of the following would return the correct result if used to fill in the blank above?
Select all that apply.

⃝ *(x * m) + b
√ *x **m + b
√ *x * *m + b
⃝ x * m + b

(b) Implement the intercept function in assembly. Note that imull is an integer multiply
instruction.
0 addl (%rdx), %eax
1 addl %edx, %eax
2 imull (%rsi), %eax
3 imull %esi, %eax
4 movl (%rdi), %eax
5 movl %edi, %eax
6 ret
Write the numbers of the instructions in the boxes below in the correct order. You may
leave some boxes empty if you use fewer instructions than we’ve provided boxes. We’ve
included the return instruction for you.

intercept:

6 ret

Solution:

3 movl (%rdi), %eax
1 imull (%rsi), %eax
4 addl %edx, %eax
2 ret

CSO1 Final Exam - Page 6 of 14 2022-05-9

(c) Here is an implementation of the intercept program implemented using Example ISA (see
page 2). Encode the following instructions and write the hex encoding the box. Do NOT
include 0x prefix. So instead of writing 0x03 write 03. This makes it easier for grade-
scope’s machine learning algorithm to scan your answer. Assume that first instruction is
loaded at address 0.

r0 = 3 // input x
r1 = 10 // input m
r2 = 4 // input b
r1 = -r1
r3 = _____ // jump address -- several valid options here
r0 += r0
r1 += 1
if r1 <= 0 set pc = r3
r0 += r2 // output y

Fill in the encoding below, leave the boxes that you are not using empty.

Solution: 60 03 64 10 55 68 04 6C 07 10 77 12

CSO1 Final Exam - Page 7 of 14 2022-05-9

(d) Throughout the semester we looked at various components associated with a single cycle
processor. Here we designed a simple machine that we call the Interceptor 1000. This
machine has only has two instructions, listed below by their opcodes:

0. nop which does nothing
1. intcep $x, $m, $b which computes mx+ b

An example instruction for this machine might be intcep 2 3 1 meaning x is 2, m is
3 and b is 1. This instruction would be encoded as follows:

0 1 2 3 4 5 6 7 8 9 a b c d e f
┌─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┐
│1│0 0 0 1 0│0 0 0 1 1│0 0 0 0 1│
└─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┘

In the diagram below, O(1) represents the opcode that is 1 bit long, while X(5) represents
the x value that is 5 bits long.

Figure 1: Block Diagram for Interceptor 10000

Show how to complete the diagram by writing the name of the wire each given wire should
be connected to. For example, if A is connected to E, write E in the box next to A.

A →
B →
C →
D →

I →
L →
N →
Q →

CSO1 Final Exam - Page 8 of 14 2022-05-9

Solution:

CSO1 Final Exam - Page 9 of 14 2022-05-9

2. Given two integers x and y, compute x ^ y without using ^
⃝ (x | y) & (~x | ~y)
√ (x & y) | (~x & ~y)
⃝ (~x | y) & (x | ~y)
⃝ (~x & y) | (~x & ~y)
⃝ none of the above

3. Given the following struct

typedef struct A{
int x;
char *info;

} a;

re-write the expression a->info[1] without using -> or [] while maintaining the same
functionality:

Solution: *((*a).info + 1)

4. Select the print statement and loop condition that will create a program that will correctly
print the command line arguments.
for example the correct output for: ./a.out 134 apples horses is: “134 apples horses”

int main(int argc, const char *argv[]) {
for (_____________________) {

}

}

Second blank:
⃝ printf(argv[i]);
⃝ printf("%d ", argv[i]);
√ printf("%s ", argv[i]);
⃝ printf("%d ", argv[i+1]);
⃝ printf("%s ", argv[i+1]);

First blank:
⃝ int i = 0; i < argc; i++
√ int i = 1; i < argc; i++
⃝ int i = 0; i < len(argv); i++
⃝ int i = 1; i < len(argv); i++

CSO1 Final Exam - Page 10 of 14 2022-05-9

5. Select the values for the two blanks to make array into an array of n pointers to strings.

array = ________ malloc(___________ * n);

First blank:
⃝ (char)
⃝ (char*)
⃝ (char**)
√ (char***)
⃝ (*char)
⃝ (**char)
⃝ (***char)

Second blank:
⃝ sizeof(char)
⃝ sizeof(char*)
√ sizeof(char**)
⃝ sizeof(*char)
⃝ sizeof(**char)

6. Consider the following incomplete code:

1 char x[13] = "Hello, ";
2 char y[13] = "Tychonievich";
3 ________

Which of the following, if placed in the blank on line 3 above, will result in the char array “x”
storing parts of both the strings stored in “x” and in “y” without a buffer overflow?
Select all that apply:

⃝ x = x + y;
√ strncat(x, y, 5);
⃝ strncat(x, y, 6);
⃝ strncat(x, y, 7);
⃝ strncat(x, y, 13);
⃝ strcat(x, y);

CSO1 Final Exam - Page 11 of 14 2022-05-9

7. The following code contains one or more memory errors.

0 char *bad_shuffle(const char *array) {
1 size_t length = strlen(array);
2 char *new_array = malloc(sizeof(char) * length+1);
3 for(int i = 0; i <= length; i++){
4 int k = (length * rand()) / RAND_MAX;
5 new_array[i] = array[k];
6 }
7 free(array);
8 return new_array;
9 }

10 int main(int argc, char *argv[]) {
11 char *s = bad_shuffle(argv[1]);
12 puts(argv[1]);
13 puts(s);
14 }

For each of the following errors, give the line where the error occurs. If the error does not
occur, put an X in the box. If several lines are involved, write the first one where the error has
definitely manifested itself.

Stack buffer overflow

Heap buffer overflow

Use after free

Memory leak

Access uninitialized memory

Solution: X Stack buffer overflow

5 Heap buffer overflow

12 Use after free

14 Memory leak

X Access uninitialized memory

CSO1 Final Exam - Page 12 of 14 2022-05-9

8. In memory, there is following sequence of 6 bits: 110110
If you interpret this binary string as an 6-bit 2’s complement number where the high-order bit
is on the left, what is that number in decimal?

Solution: −10

If you interpret this binary string as an 6-bit unsigned number where the high-order bit is on
the left, what is that number in decimal?

Solution: 54

9. If the 32-bit integer 0x02010300 is to be stored in a little endian machine, it will be stored
the same way as which array of 8-bit values?

⃝ [0x02, 0x01, 0x03, 0x00]
⃝ [0x20, 0x10, 0x30, 0x00]
√ [0x00, 0x03, 0x01, 0x02]
⃝ [0x00, 0x30, 0x10, 0x20]
⃝ none of the above

10. Consider two int variables, a and b:

Variable Value Address
a 0x000033 0x555540
b 0x330033 0x555548

What is the result of memcmp(&a,&b,1)?
⃝ negative number
√ zero
⃝ positive number
⃝ none of the above.

CSO1 Final Exam - Page 13 of 14 2022-05-9

11. The following code converts a character to a number, returning -1 on an error:

int ctoi(char c) {
if (c >= '0' && c <= '9') return c - '0';
return -1;

}

Implement an atoi function. For reference we’ve included the manual page for atoi at the
begin of the exam. You may (but do not need to) use ctoi in your solution.

int atoi(const char *str) {

Solution:

int answer = 0;
int negative = (*str == '-');
if (negative || *str == '+') str+=1;
while(*str) {

int digit = ctoi(*str);
if (digit < 0) break;
answer *= 10;
answer += digit;
str += 1;

}
return answer * (negative ? -1 : 1);

}

CSO1 Final Exam - Page 14 of 14 2022-05-9

12. How difficult was this final?
⃝ too easy
⃝ easy but fair
⃝ fair
⃝ difficult but fair
⃝ too difficult

. .
You may use the space below as scratch paper

