
COA1 Fall 2019 Exam 3 Variant A page 1 of 8 CompID:

COA1 Exam 3 – Fall 2019

Name: Computing ID:

Write Letters clearly: if we are unsure of what you wrote you will get a zero on that problem.
Bubble and Pledge the exam or you will lose points.
Assume unless otherwise specified:
• all necessary #includes have been used
• char, short, int, and long are 8-, 16-, 32-, and 64-bits long, respectively
• compilation happens using clang on a Linux system
• We use the x86-64 Linux calling convention: arguments are in (in order)

rdi, rsi, rcx, rdx, r8, r9, and then the stack; and the return value is in rax
Single-select by default: Multiple select are all clearly marked; answer them by putting 1 or
more letters in the box, or writing “none” if none should be selected.
Page-at-a-time Grading: We scan your exam and grade each page separately. Do not refer to
other pages, scrratch paper, etc., in your answer.
Mark clarifications: If you need to clarify an answer, do so, and also add a * to the top right
corner of your answer box.
. .

Question 1 [2 pt]: What is 0x2501002 & 0xFEDCBA? Answer in hexadecimal.

Question 2 [2 pt]: Suppose we have a 32-bit number consisting only of 0 bits. This number is
equal to the value 0 in which of the following number representations?

Select all that apply by putting zero or more letters in the box.
A 2’s complement integer
B unsigned integer
C biassed integer
D IEEE-style floating-point number

Answer:

Question 3 [2 pt]: Write a C expression equivalent to ~x without using ~.

Question 4 [2 pt]: Provide a value (in hex or binary) of x for which y = x + 0x3F sets y to
0. Assume x and y are both an unsigned char.

COA1 Fall 2019 Exam 3 Variant A page 2 of 8 CompID:

Question 5 [2 pt]: Draw a two-input single-bit mux using basic logic gates; that is, gates that
do the same as (s ? x : y) for single-bit s, x, and y.

Question 6 [2 pt]: What is the value of y at the end of this code snippet? Answer in hexadecimal.

int x = 0x12345678;
char *p = (char *)&x;
int y = p[1];

Question 7 [2 pt]: In our toy ISA, the instruction with icode=6 and b=3 is called the “indirect
load” instruction. Indirect loads are uncessary; write bytes that do the same thing as 63 9A
without using the indirect laod instruction.

Question 8 [2 pt]: What value of i will not cause this code to overflow? Answer as a set of
decimal integers: {} if none are OK; {0} if only 0 is OK; {0, 1, 2} if 0, 1, and 2, are OK but
3 is not; etc.

int *p = malloc(sizeof(int *) * 2);
p[i] = 2501;

COA1 Fall 2019 Exam 3 Variant A page 3 of 8 CompID:

Information for questions 9–12
Consider the following assembly:

foo:
xorl %eax, %eax
testq %rsi, %rsi
jle .L2

.L1:
addq -8(%rdi,%rsi,8), %rax
addq $-1, %rsi
jg .L1

.L2:
retq

Question 9 [2 pt]: (see above) How many arguments does the function foo
use?

Answer:

Question 10 [2 pt]: (see above) Give an invocation of foo that is guaranteed to return 0. You
may use an underscore for an argument whose value does not matter; for example, if 0 is returned
when the fifth argument is greater than the sixth, you could say foo(_, _, _, _, 3, 2).

foo(

Question 11 [2 pt]: (see above) There is an array in this code. What size
value (in bytes) are the elements of the array?

Answer:

Question 12 [2 pt]: (see above) There is a loop in this code. Which of the following best
describes it?
A for(int i=0; i<n; i+=1) { ... }
B for(int i=n-1; i>=0; i-=1) { ... }
C do { ... } while(i >= 0);
D do { ... } while(i < 0);

Answer:

COA1 Fall 2019 Exam 3 Variant A page 4 of 8 CompID:

Question 13 [2 pt]: The following function correctly sorts a list of integers, but contains at least
one memory leak. Add free call(s) to rmeove the leak(s).

void mergesort(int *list, int len) {
if (len <= 1) return;

int len2 = len>>1;
int len3 = len-len2;

int *lst2 = list+len2;

mergesort(list, len2);
mergesort(lst2, len3);

int *lst3 = malloc(4 * len);

int i=0; int j=0;
while(i<len2 && j<len3) {

if (list[i] < lst2[j]) { lst3[i+j] = list[i]; i+=1; }
else { lst3[i+j] = lst2[j]; j+=1; }

}

while(i<len2) { lst3[i+j] = list[i]; i+=1; }
while(j<len3) { lst3[i+j] = lst2[j]; j+=1; }

for(i=0; i<len; i+=1) list[i] = lst3[i];

}

Question 14 [1 pt]: The above code is inefficient, using malloc on every recursive invocation.
Describe how it could be refactored to only invoke malloc once for the entire sorting operation.

COA1 Fall 2019 Exam 3 Variant A page 5 of 8 CompID:

Question 15 [8 pt]: Implement the write_long function documented in the man-
ual page at the end of this exam. Use write to display content; you may also use
malloc/calloc/realloc/free if you want to use heap memory, but must not use any other
library functions.

COA1 Fall 2019 Exam 3 Variant A page 6 of 8 CompID:

COA1 Fall 2019 Exam 3 Variant A page 7 of 8 CompID:

Information for questions 16–17
Consider the following C code
const char *sptr(const char *a, const char *b) {

while(*b) {
int bad = 0;
for(int i=0; a[i]; i+=1)

if (a[i] != b[i]) {
bad = 1;
break;

}
if (!bad) return b;
b += 1;

}
return NULL;

}

Question 16 [2 pt]: (see above) Write a manual-page-style description section for this function.

Question 17 [2 pt]: (see above) Write a manual-page-style example section for this function.

COA1 Fall 2019 Exam 3 Variant A page 8 of 8 CompID:

Question 18 [2 pt]: The following code contains a memory error.

double f(int n) {
double *tmp = malloc(8 * n);
for(int j=n; j>=0; j-=1) tmp[j] = j*j;
double ans = 0;
for(int j=0; j<n; j+=1) ans += tmp[j];
free(tmp);

}

What is the error and how would you fix it?

Question 19 [5 pt]: Fill in a circle for true statements of the indicated memory region. Note
that some rows may be true for both, only one, or neither.

The stack The heap

�
�� �
��
is used to track recursive calls

�
�� �
��
can be leaked if there is a memory leak

�
�� �
��
is used by some C programs but not others

�
�� �
��
contains both code and data

�
�� �
��
can be used for structs and arrays

. .
Pledge:
On my honor as a student, I have neither given nor received aid on this exam.

Your signature here

COA1 Fall 2019 Exam 3 Variant A page 9 of 8 CompID:

Our Example ISA

Instruction Breakdown

Treat each instruction’s first byte as having four parts:

bits name meaning

7 reserved If set, this instruction is reserved for future definition.
[4, 7) icode Specifies what action to take
[2, 4) a The index of a register
[0, 2) b The index of another register, or details about icode

Some instructions use additional bytes, described below as “memory at pc + 1” or the like.

Instructions

If reserved is 0, consult the table below. In it, rA means “the value stored in register number
a” and rB means “the value stored in register number b.”

icode b Behavior add to pc

0 any rA = rB 1
1 any rA += rB 1
2 any rA &= rB 1
3 any rA = read from memory at address rB 1
4 any write rA to memory at address rB 1

5 0 rA = ~rA 1
5 1 rA = -rA 1
5 2 rA = !rA 1
5 3 rA = pc 1

6 0 rA = read from memory at pc + 1 2
6 1 rA += read from memory at pc + 1 2
6 2 rA &= read from memory at pc + 1 2
6 3 rA = read from memory at the address stored at pc + 1 2

7 any if rA <= 0, set pc = rB N/A
7 any if rA > 0, do nothing 1

If reserved is 1, the above table does not define what the instruction means, but some other
source (such as a question on this exam) might. If it has no defined meaning either here or elsewhere,
leave the pc and all other registers and memory values unchanged.

COA1 Fall 2019 Exam 3 Variant A page 10 of 8 CompID:

NAME — malloc, free, calloc, realloc

SYNOPSIS

#include <stdlib.h>

void *malloc(size_t size);
void free(void *ptr);
void *calloc(size_t nmemb, size_t size);
void *realloc(void *ptr, size_t size);

DESCRIPTION

The malloc() function allocates size bytes and returns a pointer to the allocated memory. The
memory is not initialized. If size is 0, then malloc() returns either NULL, or a unique pointer
value that can later be successfully passed to free().

The free() function frees the memory space pointed to by ptr, which must have been returned
by a previous call to malloc(), calloc(), or realloc(). Otherwise, or if free(ptr) has already been
called before, undefined behavior occurs. If ptr is NULL, no operation is performed.

The calloc() function allocates memory for an array of nmemb elements of size bytes each and
returns a pointer to the allocated memory. The memory is set to zero. If nmemb or size is 0, then
calloc() returns either NULL, or a unique pointer value that can later be successfully passed to
free().

The realloc() function changes the size of the memory block pointed to by ptr to size bytes.
The contents will be unchanged in the range from the start of the region up to the minimum of
the old and new sizes. If the new size is larger than the old size, the added memory will not be
initialized. If ptr is NULL, then the call is equivalent to malloc(size), for all values of size; if size is
equal to zero, and ptr is not NULL, then the call is equivalent to free(ptr). Unless ptr is NULL, it
must have been returned by an earlier call to malloc(), calloc(), or realloc(). If the area pointed
to was moved, a free(ptr) is done.

RETURN VALUE

The malloc() and calloc() functions return a pointer to the allocated memory, which is suitably
aligned for any built-in type. On error, these functions return NULL. NULL may also be returned
by a successful call to malloc() with a size of zero, or by a successful call to calloc() with nmemb
or size equal to zero.

The free() function returns no value.
The realloc() function returns a pointer to the newly allocated memory, which is suitably aligned

for any built-in type and may be different from ptr, or NULL if the request fails. If size was equal
to 0, either NULL or a pointer suitable to be passed to free() is returned. If realloc() fails, the
original block is left untouched; it is not freed or moved.

COA1 Fall 2019 Exam 3 Variant A page 11 of 8 CompID:

NAME — write

SYNOPSIS

#include <unistd.h>

ssize_t write(int fd, const void *buf, size_t count);

DESCRIPTION

write() writes up to count bytes from the buffer starting at buf to the file referred to by the file
descriptor fd.

RETURN VALUE

On success, the number of bytes written is returned. On error, -1 is returned, and errno is set to
indicate the cause of the error.

ERRORS

EAGAIN The file descriptor fd has been marked nonblocking (O_NONBLOCK), and the write
would block. See open(2) for further details on the O_NONBLOCK flag.

EBADF fd is not a valid file descriptor or is not open for writing.

EDQUOT The user’s quota of disk blocks on the filesystem containing the file referred to by fd
has been exhausted.

EFAULT buf is outside your accessible address space.

EFBIG An attempt was made to write a file that exceeds the maximum file size or the process’s
file size limit, or to write at a position past the maximum allowed offset.

EINTR The call was interrupted by a signal before any data was written; see signal(7).

EINVAL fd is attached to an object which is unsuitable for writing; or the file was opened with
the O_DIRECT flag, and either the address specified in buf, the value specified in count,
or the file offset is not suitably aligned.

EIO A low-level I/O error occurred while modifying the inode. This error may relate to the write-
back of data written by an earlier write(), which may have been issued to a different file
descriptor on the same file.

ENOSPC The device containing the file referred to by fd has no room for the data.

EPERM The operation was prevented by a file seal; see fcntl(2).

Other errors may occur, depending on the object connected to fd.

NOTES

For the purposes of this exam, you may assume that write either writes all of its buffer or none
of it, and thus that the return value is either -1 or count. That is not true of the actual write
function, which can sometimes write only part of the buffer.

COA1 Fall 2019 Exam 3 Variant A page 12 of 8 CompID:

NAME — write_long

SYNOPSIS

#include <coa1exam3.h>

ssize_t write_long(int fd, long num);

DESCRIPTION

write_long() writes an integer to the the file referred to by the file descriptor fd. It does this in
base 10, with a leading - if the number if negative.

RETURN VALUE

On success, the number of bytes written is returned. On error, -1 is returned, and errno is set to
indicate the cause of the error.

ERRORS

All errors of write_long are caused by the underlying call to write(2) and are passed through
unchanged by write_long(). See the manual page for write(2) for more.

EXAMPLE

The following code will write 6 characters to file descriptor 0: in particular, “2501-2”.

write_long(0, 2501);
write_long(0, -002);

ASCII Table
The following is a subset of the ASCII table:

Char Hex Char Hex Char Hex Char Hex Char Hex
' ' 0x20 'A' 0x41 'N' 0x4E 'a' 0x61 'n' 0x6E
'+' 0x2B 'B' 0x42 'O' 0x4F 'b' 0x62 'o' 0x6F
'-' 0x2D 'C' 0x43 'P' 0x50 'c' 0x63 'p' 0x70
'0' 0x30 'D' 0x44 'Q' 0x51 'd' 0x64 'q' 0x71
'1' 0x31 'E' 0x45 'R' 0x52 'e' 0x65 'r' 0x72
'2' 0x32 'F' 0x46 'S' 0x53 'f' 0x66 's' 0x73
'3' 0x33 'G' 0x47 'T' 0x54 'g' 0x67 't' 0x74
'4' 0x34 'H' 0x48 'U' 0x55 'h' 0x68 'u' 0x75
'5' 0x35 'I' 0x49 'V' 0x56 'i' 0x69 'v' 0x76
'6' 0x36 'J' 0x4A 'W' 0x57 'j' 0x6A 'w' 0x77
'7' 0x37 'K' 0x4B 'X' 0x58 'k' 0x6B 'x' 0x78
'8' 0x38 'L' 0x4C 'Y' 0x59 'l' 0x6C 'y' 0x79
'9' 0x39 'M' 0x4D 'Z' 0x5A 'm' 0x6D 'z' 0x7A

