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cs4102 - algorithms - spring 2022

due tuesday, may 3, 2022 at 11:30 pm via Gradescope D1basic(mst3k)
Collaboration Policy: You are encouraged to collaborate with up to 3 other students, but all work submitted must be your
own independently written solution. List the computing ids of all of your collaborators in the collabs command at the top
of the tex file. Do not share written notes, documents (including Google docs, Overleaf docs, discussion notes, PDFs), or
code. Do not seek published or online solutions for any assignments. If you use any published or online resources (which
may not include solutions) when completing this assignment, be sure to cite by naming the book etc. or listing a website’s
URL. Do not submit a solution that you are unable to explain orally to a member of the course staff. Any solutions that
share similar text/code will be considered in breach of this policy. Please refer to the syllabus for a complete description
of the collaboration policy.

Collaborators: list collaborators’s computing IDs
Sources: Cormen, et al, Introduction to Algorithms. (add others here)

problem 1 True or False. (You don’t have to explain this in your submission, but you should understand
the reason behind your answer.)

1. When the Ford-Fulkerson algorithm completes, each back-flow edge from v back to u in the
residual graph G f represent the final flow values for edge (u, v) in the flow-graph G.
Solution: True: The back-flow edge weights are how much flow ”could be removed” if we
needed to undo a flow; that is, they are how much flow is currently going through the edge.

2. In a standard network flow-graph, under certain conditions a vertex v that is not the source
or the sink can have total in-flow that has a different value than its total out-flow.
Solution: False: This is our flow constraint in f low(v) = out f low(v). We cannot have
”leaky” nodes or nodes that generate flow on their own.

3. In Ford-Fulkerson, for a pair of vertices u and v connected in the residual capacity graph
G f , the sum of the values for the back-flow and the residual capacity edges between that
vertex-pair must always equal the capacity of the edge between them in the flow-graph G.
Solution: True: The back-edge weight is the amount of flow across the edge in G. The
forward edge weight is the amount of flow that could be added in G. Therefore their sum is
the total capacity of the edge.

4. When using Ford-Fulkerson, if there is no augmenting path in G f , then there exists a cut in
G whose capacity equals f , the max-flow value for graph G.
Solution: True: This is the min cut.

problem 2 Max Flow

Given the following Flow Network G:
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mst3k Unit D: Basic Homework 1 - 2

1. Find the Residual Graph G f for G by listing all the edges in G f and the numeric value
associated with each edge.
Solution:
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2. Find an augmenting path in the graph G f . List the nodes in the path you found in order
(e.g., s → a → b → t).
Solution: s → a → c → d → t

3. Find the min cut of the graph. List the nodes below on each side of the cut.

S (one side) V − S (other side)

{s, a} {b, c, d, t}

4. What is the maximum flow of this graph?

Solution: 6

problem 3

We used Ford-Fulkerson to solve the Vertex-Disjoint Paths problem in class by reducing Vertex-
Disjoint Paths to Edge-Disjoint Paths and Edge-Disjoint Paths to Max Flow. Recall that a set of
vertex-disjoint paths is a set of edge-disjoint paths where each node is used at most once. How
would we modify the reduction from Vertex-Disjoint Paths to Max Flow if we want to compute a
set of edge-disjoint paths where each vertex is used at most twice? Briefly describe our original
reduction and the change(s) you would make. Note: If you prefer, you may just modify the
reduction from Vertex-Disjoint Paths to Edge-Disjoint Paths.

Solution:
Original: Split each inner vertex in two, with in-edges into the first, one edge from the in-node

to the out-node with capacity 1, and all out-edges out of the second.

Change: set capacity of in-to-out connecting edge to 2.

(Edge-disjointness reduction: Use same gadget as above, but introduce two edges from each
in-node to the out-node. Solve edge-disjoint paths over the new graph.)

problem 4 NP Completeness

1. We know that C is NP-Hard and that A ∈ NP. Which of these show that A is NP-Complete?

a) A reduces to B and B reduces to C

b) C reduces to B and B reduces to A

Solution: b) C reduces to B and B reduces to A
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2. Which shows that P = NP, given that A reduces to B and B reduces to C?

a) A ∈ P and C ∈ NP-Hard
b) A ∈ NP-Hard and C ∈ P

Solution: b) A ∈ NP-Hard and C ∈ P

problem 5 True or False. (You don’t have to explain this in your submission, but you should understand
the reason behind your answer.)

1. In our reduction of an instance G of the vertex-disjoint path problem to an instance G′ for edge-
disjoint path problem, if two paths in G′ share a vertex, then the two paths that correspond
to those in G must share an edge.
Solution: Oh no, I screwed up this question! I reversed G and G′ in the second part of the
question. I meant this to be straightforward about why the reduction works, i.e. if two paths
in the input for vertex-disjoint path share a vertex, then the two corresponding paths in the
graph for edge-disjoint path must share an edge because if a path visits a vertex in the first
graph G that means in the second graph G′ you have to cross the edge that connects the
“entering a vertex” and “exiting that vertex” pair. So the intention was for this to be about
that and for the answer to be true, but as it’s written it’s hard to answer. Many apologies!

2. In our example illustrating bipartite matching, we can tell if every hard-working TA was
matched with exactly one adorable dog and vice versa by transforming the bipartite graph to
a network flow problem and checking if the max-flow | f | = V, the total number of vertices
in bipartite graph.
Solution: False: We must check that the max-flow | f | = L, the left-side of our bipartite
graph (our TAs). Aside: how would this change if we have a differing number of TAs vs dogs?

3. If we find a polynomial solution to a problem in NP, then this proves that P = NP.
Solution: False: P ⊂ NP. All polynomial-time algorithms are also in NP.

4. If someone proves that a given problem X in NP has an exponential lower bound, then no
problem in NP-complete can be solved in polynomial time.
Solution: True: All NP-complete problems are also in NP-hard. Therefore, all problems in
NP-complete are just as hard as problem X.

5. It is not possible that an algorithm that solves the 3-CNF problem in polynomial time exists.

Solution: False: We do not know. Prove P = NP for your prize!

problem 6 Create a Reduction

Reduce Element Uniqueness to Closest Pair of Points in O(n) time. Element Uniqueness is defined
as: given a list of numbers, return true if no number appears more than once (i.e., every number
is distinct). Closest Pair of Points is defined as: given a list of points (x, y), return the smallest
distance between any two points.
Solution: Create an instance for Closest Pair of Points by creating points (x, y) where x is in our
list of numbers for Element Uniqueness and y = 0. Return true if Closest Pair of Points doesn’t
return 0 distance, else return f alse.

problem 7 Gradescope Submission

Submit a version of this .tex file to Gradescope with your solutions added, along with the com-
piled PDF. You should only submit your .pdf and .tex files.


