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problem 1 Birthday Prank

Prof Hott’s brother-in-law loves pranks, and in the past he’s played the nested-present-boxes
prank. I want to repeat this prank on his birthday this year by putting his tiny gift in a bunch
of progressively larger boxes, so that when he opens the large box there’s a smaller box inside,
which contains a smaller box, etc., until he’s finally gotten to the tiny gift inside. The problem is
that I have a set of n boxes after our recent move and I need to find the best way to nest them
inside of each other. Write a dynamic programming algorithm which, given a list of dimensions
(length, width, and height) of the n boxes, returns the maximum number of boxes I can nest (i.e.
gives the count of the maximum number of boxes my brother-in-law must open).

Solution: Let us arbitrarily fix the ordering of our boxes and label them b1, b2, ..., bn. Define the
function f its(bi, bj) that defines when box bi fits inside of bj. We can then define our function
Best(bi), the best number of boxes to nest inside of box bi, as

Best(bi) =

{
maxj Best(bj) + 1 if f its(bj, bi)
1 otherwise

.

Even if you were to sort boxes, the box bi that’s “right below” may not have the best score of other
boxes below bi. So we have to find the max score of among all the boxes that could fit inside our
current box, and for that reason some kind of ordering isn’t necessary. If none of the other boxes
fit in bi, then its score is 1.
This top-down solution, using a memory, will then provide the best way to nest all boxes inside
of any bi. We don’t know which of the boxes had the best score, so we can find the solution by
finding

max
i

Best(bi).

(It’s not necessarily the box with the biggest volume, for example.)

problem 2 Arithmetic Optimization

You are given an arithmetic expression containing n integers and the only operations are additions
(+) and subtractions (−). There are no parenthesis in the expression. For example, the expression
might be: 1 + 2 − 3 − 4 − 5 + 6.

You can change the value of the expression by choosing the best order of operations:

((((1 + 2)− 3)− 4)− 5) + 6 = −3
(((1 + 2)− 3)− 4)− (5 + 6) = −15
((1 + 2)− ((3 − 4)− 5)) + 6 = 15
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Give a dynamic programming algorithm that computes the maximum possible value of the
expression. You may assume that the input consists of two arrays: nums which is the list of n
integers and ops which is the list of operations (each entry in ops is either ’+’ or ’-’), where
ops[0] is the operation between nums[0] and nums[1]. Hint: consider a similar strategy to our
algorithm for matrix chaining.

Solution: Let max[i][j] denote the maximum value of the expression starting from the ith value
and ending at the jth value. Define min[i][j] accordingly for the minimum value. Then, the
recurrence is

max[i][j] = max
i<k≤j

{
max[i][k - 1]+ max[k][j] if ops[k - 1] = ’+’

max[i][k - 1]− min[k][j] if ops[k - 1] = ’-’

min[i][j] = min
i<k≤j

{
min[i][k - 1]+ min[k][j] if ops[k - 1] = ’+’

min[i][k - 1]− max[k][j] if ops[k - 1] = ’-’

Finally, max[i][i] = nums[i] = min[i][i] for all i = 1, . . . , n. We compute max[i][j] and
min[i][j] along the “diagonal” (same as in matrix chain multiplication). The answer is max[1][n].

problem 3 Optimal Substructure

Please answer the following questions related to Optimal Substructure.

1. Briefly describe how you used optimal substructure for the Seam Carving algorithm.
Solution: We computed best seam ending at pixel (i, j). When looking at a pixel pij to find
the ”best seam ending here” S(i, j), we used optimal substructure to look at the best seams
ending at the three pixels below this one (S(i − 1, j − 1), S(i − 1, j), S(i − 1, j + 1)).

2. Do we need optimal substructure for Divide and Conquer solutions? Why or why not?
Solution: No. For D&C, we could combine the solutions to the smaller subproblems in
different ways. For example, with Mergesort, we used merge() to combine the subsolutions.
In DP, we need to incorporate the subsolutions directly.
In addition, optimal substructure is defined as a property of optimization problems, and the
problems we’ve solved with divide and conquer were not this type of problem. We know that
this property means that an optimal solution for an optimization problem can be constructed
from optimal solutions of its subproblems, so one could argue that there’s no concept of an
optimal solution to, say, the sorting problem (because a sequence is sorted or not). But if we
think of “optimal” as meaning “correct” then what’s said earlier about D&C makes sense
and is a true difference between how these approaches work and when they’re appropriate.

problem 4 Dynamic Programming

1. If a problem can be defined recursively but its subproblems do not overlap and are not
repeated, then is dynamic programming a good design strategy for this problem? If not, is
there another design strategy that might be better?
Solution: No, DP’s strength is that is addresses those two issues. Divide and Conquer is a
better thing to try here, since your can recursively calculate each subproblem one time, and
combine solutions to independent, non-overlapping subproblems.

2. As part of our process for creating a dynamic programming solution, we searched for a good
order for solving the subproblems. Briefly (and intuitively) describe the difference between
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a top-down and bottom-up approach. Do both approaches to the same problem produce the
same runtime?
Solution: Top-down is usually the recursive solution, which looks at the larger problem and
breaks it down into smaller components to solve. Bottom-up solves the smallest subproblems
first, building up to the solution for the larger problem.

In terms of runtime, it’s complicated. While both are valid solutions, the bottom-up ap-
proach will result in less recursive overhead and likely fewer accesses to the memory.

problem 5 Gradescope Submission

Submit a version of this .tex file to Gradescope with your solutions added, along with the com-
piled PDF. You should only submit your .pdf and .tex files.


