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problem 1 Short Questions on BFS

A. What is the maximum number of vertices that can be on the queue at one time in a BFS
search? Briefly explain the situation that would cause this number to be on the queue.

Solution: n − 1 vertices can be on the queue, if the starting vertex has an edge to every
other vertex.

B. If you draw the BFS tree for an undirected graph G, some of the edges in G will not be part
of the tree. Explain why it’s not possible for one of these non-tree edges to connect two
vertices that have a difference of depth that’s greater than 1 in the tree.

Solution: If a non-tree edge connects v to vertex w then it’s possible they’re at the same
depth (when there are paths of the same length from the start vertex to both vertices). But
if v is higher than w in the BFS tree, then the difference in their depths can be at most 1,
since otherwise BFS would have chosen the non-tree edge (v, w) as a tree edge when it was
processing the vertices adjacent to v.
(This would not be true if the graph was directed.)

problem 2 True or False. (You don’t have to explain this in your submission, but you should understand
the reason behind your answer.)

A. If you use BFS to detect a cycle in an undirected graph, an edge that connects to a vertex
that’s currently on the queue or has been removed from the queue indicates a cycle as long
as that vertex is not the parent of the current node.

Solution: True. Both types of vertices have been seen or discovered, and thus edges to them
are non-tree edges which indicate cycles in an undirected graph.

B. If you use DFS-visit on a directed graph with V > 1 starting at vertex v1, you will always
visit the same number of vertices that you would if you started at another node v2.

Solution: False. The direction of edges affect this. Consider a graph with two vertices and
one directed edge between them. In a directed graph, vertex v may be reachable from w but
not vice versa.
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C. If you use DFS-visit on a connected undirected graph with V > 1 starting at vertex v1, you
will always visit the same number of vertices that you would if you started at another node
v2. (If it were not connected, would you answer change?)

Solution: True. In a connected undirected graph, if vertex v is reachable from w, then w is
reachable from v. If the graph were not connected, it could be false because v could be in a
different connected component than w.

problem 3 Finding Cycles Using DFS

In a few sentences, explain how to recognize a directed graph has a cycle in the DFS-visit
algorithm’s code we saw in class. How does this need to be modified if the graph is undirected?

Solution: Referring to CLRS’s code for DFS-visit, when visiting vertex u there is a for-loop that
looks at each of u’s neighbors. If one of those vertices v has color gray, then the edge (u, v) is a
back-edge and thus part of a cycle. If we add an else-if clause to the if-statement in that loop, we
can do whatever we want to do when we recognize a cycle (set a flag, print the edge, at it to a list,
etc.)
If the graph is undirected, then we must also make sure that v is not u’s parent. So the else-if
clause would start:
else if v.color == GRAY and v != u.pi

where u.pi is the parent of u in the DFS tree.

problem 4 Finding a path between two vertices

Describe the modifications you would make to DFS-visit() given in class to allow it to find a
path from a start node s to a target node t. The function should stop the search when it finds the
target and return the path from s to t.

Solution:

1. Add an additional parameter, tgt, to DFS-visit.

2. Modify DFS-visit() so that it returns something to indicate the search has found the target
node. There are options, but here we’ll return True if the target is found and False otherwise.

3. At the start of DFS-visit() check to see if you’ve found the target:
if (u == tgt) return True

4. If the recursive call later in DFS-visit() succeeds, then return True immediately.
if DFS-visit(G, v, tgt) return True Otherwise continuing searching other neighbors
of u.

5. If you get to the last line in the function, you didn’t find tgt, so return False.

6. To use this to find the path, call DFS-visit() and pass it s as the start node and t as the new
parameter tgt. If it returns True, you can loop starting at t and use each node’s pi value to
trace from parent to parent until you get to s — this give you all the vertices in the path
(visited in reverse order).

problem 5 Labeling Nodes in a Connected Components
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In a few sentences, explain how you’d modify the DFS functions taught in class to assign a
value v.cc to each vertex v in an undirected graph G so that all vertices in the same connected
component have the same cc values. Also, count the number of connected components in G.
In addition to your explanation, give the order-class of the time-complexity of your algorithm.

Solution:

1. Add an additional parameter, cc num, to DFS-visit(). In DFS-visit(), assign this value to u.cc.

2. Modify DFS-sweep() to have a variable cc ctr that’s initialized to 0.

3. Before calling DFS-visit(), increment cc ctr and pass that as the new parameter.

4. When the loop in DFS-sweep() finishes calling DFS-visit() on all unvisited vertices, all ver-
tices will be numbered and the variable cc ctr will be the count of the connected components
in G.

5. This does not change the cost of DFS-sweep, so it’s Θ(V + E).

problem 6 BFS and DFS Trees

Consider the BFS tree TB and the DFS tree TD for the same graph G and same starting vertex
s. In a few sentences, clearly explain why for every vertex v in G, the depth of v in the BFS tree
cannot be greater than its depth in the DFS tree. That is:

∀ v ∈ G.V, depth(TB, v) ≤ depth(TD, v)

(Here the depth of a node is the number of edges from the node to the tree’s root node. Also, you
can use properties of BFS and DFS that you’ve been taught in class. We’re not asking you to prove
those properties.)

Solution: Let’s assume the opposite of that is true: ∃ v ∈ G.V, depth(TB, v) > depth(TD, v)
This means there is a path in the DFS tree TD from s to v that has fewer edges than the path from
s to v in the BFS tree TB. But this is not possible, because we know that BFS finds the shortest
possible path from a start node to any other node. (Don’t forget the paths in both trees are made
up of edges from G so paths in the trees are in G too.) Thus we’ve proved the original claim (using
proof by contradiction).

problem 7 Gradescope Submission

Submit a version of this .tex file to Gradescope with your solutions added, along with the com-
piled PDF. You should only submit your .pdf and .tex files.


