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PROBLEM 1 QuickSort

1. Briefly describe a scenario when Quicksort runs in O(nlogn) time.
Solution: When by luck or by using an algorithm, the median value is found by Partition
for every call to Quicksort.

2. For Quicksort to be a stable sort when sorting a list with non-unique values, the Partition

algorithm it uses would have to have a certain property (or would have to behave a certain
way). In a sentence or two, explain what would have to be true of Partition for it to result in
a stable Quicksort. (Note: we’re not asking you to analyze or explain a particular implemen-
tation of Partition, but to describe a general behavior or property.)
Solution: To maintain stability, Partition must make sure that duplicate values are still in
the same relative order to each other as elements are swapped around to put the partition
value in its correct location. (Note: different implementations of Partition vary in this. If
you're curious, the one in the slides, we need to change < to < to make it handle duplicate
values correctly, but this breaks stability when there is a second element with the value of
the pivot value.)

PROBLEM 2 QuickSelect and Median of Medians

1. When we add the median-of-medians method to QuickSelect in order to find a good pivot
for QuickSelect, name the algorithm we use to find the median value in the list of medians
from the 5-element “chunks”.

Solution: QuickSelect (called recursively inside QuickSelect itself).

2. Let’s say we used the median-of-medians method to find a “pretty good” pivot and used that
value for the Partition we use for Quicksort. (We're not using that value with QuickSelect
to find the real median, but instead we’ll just use this “pretty good” value for the pivot
value before we call QuickSort recursively.) Fill in the blanks in this recurrence to show the
time-complexity Quicksort if the size of the two sub-lists on either side of the pivot were as
uneven as possible in this situation:

T(n) = T(2?)+T(2?)+0O(n)

Replace each “??” with some fraction of n, such as 0.5n or 0.95n etc.

Solution: T(n) =~ T(0.3n) + T(0.7n) + ©(n)

The median of medians method will find a “pretty good” pivot value that is guaranteed to
be larger or smaller than 30% of the items in the list, so the most uneven split would be a
30%/70% split.
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PROBLEM 3 Other Divide and Conguer Problems

1. What trade-off did the arithmetic “trick” of both Karatsuba’s algorithm allow us to make,
compared with the initial divide and conquer solutions for the problem that we first dis-
cussed? Why did making that change reduce the overall run-time of the algorithm?
Solution: It was able to solve one less subproblem. The cost of combining grew, but only
by a constant factor. This improved the order-class as we can see by applying the Master
Theorem to the two recurrences.

2. Would it be feasible (without reducing the time complexity) to implement the closest pair of
points algorithm from class by handling the points in the runway first, and then recursively
solving the left and right sub-problems? If your answer is “no”, briefly explain the reason
why.

Solution: No. You need the best value from the left and right subproblems to determine the
width of the runway.

3. In the closest pair of points algorithm, when processing points in the runway, which of the
following are true?

(a) It's possible that the pair of points we're seeking could be in the runway and both
points could be on the same side of the midpoint.

(b) The algorithm will have a worse time-complexity if we needed to check 50 points above
a given point instead of 7 (as we did in class).

(c) The algorithm will have a worse time-complexity if we needed to check /1 points
above a given point instead of 7 (as we did in class).

Solution: The first is not true. If they were on the same side, that pair would have been
found when solving the left or right subproblem, which happens before we process the
runway. The second is false, because as long a processing the runway is ©(n) we get the
recurrence that makes the algorithm log-linear. For the same reason, the third item is fatse€
true. This would make the combine step w(n).

PROBLEM 4 Lower Bounds Proof for Comparison Sorts

In class, we saw a lower-bounds proof that general comparison sorts are always Q(nlogn).
Answer the following questions about the decision tree proof that we did.

1. What did the internal nodes in the decision tree represent?
Solution: A comparison between two elements in the list being sorted.

2. What did leaf nodes of the decision tree represent?
Solution: A permutation of the elements in the list, i.e. an answer to the sorting problem,
what order the elements should be in.

PROBLEM 5 Gradescope Submission

Submit a version of this .tex file to Gradescope with your solutions added. You should only
submit your .pdf and .tex files.



