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Collaboration Policy: You are encouraged to collaborate with up to 3 other students, but all work submitted must be your
own independently written solution. List the computing ids of all of your collaborators in the collabs command at the top
of the tex file. Do not share written notes, documents (including Google docs, Overleaf docs, discussion notes, PDFs), or
code. Do not seek published or online solutions for any assignments. If you use any published or online resources (which
may not include solutions) when completing this assignment, be sure to cite by naming the book etc. or listing a website’s
URL. Do not submit a solution that you are unable to explain orally to a member of the course staff. Any solutions that
share similar text/code will be considered in breach of this policy. Please refer to the syllabus for a complete description
of the collaboration policy.

Collaborators: list collaborators’s computing IDs
Sources: Cormen, et al, Introduction to Algorithms. (add others here)

PROBLEM 1 Asymptotics

1. Write a mathematical statement using the appropriate order-class to express “Algorithm A’s
worst-case W(n) is quadratic.”
Solution: W(n) € ®@(n?). (Notes: In CS we often us = instead of €. Either is fine., though
order-classes are sets. A W(n) is a specific formula so we an be precise and use ® instead of
Oor Q)

2. Write a mathematical statement using the appropriate order-class to express “Algorithm A’s
time-complexity T(n) is never worse than cubic for any input.”
Solution: T(n) € O(n?).

3. Write a statement using words and an appropriate order-class to express “It’s not possible
for an algorithm that solves problem P to succeed unless it does at least a cubic number of
operations.”

Solution: Any algorithm that solves P will be Q(1%) (or something similar using Q).

4. Prove or disprove the following statement: n(logn)? € O (n>(logn)).

Solution: True. We must show Jc > 0,19 > 0 such that Vn > ng, n(log n)2 < cnl?d logn. Let
¢ =1and ng = 1, then

n(logn)®> < cn'’logn
n(logn)? < n'Slogn
n(logn)(logn) < n'’logn
(logn)(logn) < n'’?logn
(logn) < nl/2

Forall n > 1, logn < \/n and therefore n(logn)? € O(n'logn).

Solution (Alternative): A second way to solve this is to use the limit definition for order
classes:
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if f(n) € O(g(n)) then lim fn) = ¢ where ¢ < .

n—sco g(n)
2

lim nilogn)” = lim logn (cancel terms)
n—soo p15 logn n—oo 105

— 1 k/n (apply L'Hopital’s rule)

n—eo (1/2)n=05 PPy opttats tHie
. 2k . .
= n]gr.}o ] (simplify)
=0 (limit of a constant over function of n is zero)

Therefore n(logn)? € O(n'*logn) (and in fact it’s in “little-oh” and grows more slowly).

PROBLEM 2 Basic Sorting

1. In a few sentences, explain if changing the comparison done in mergesort’s merge() function

from < to < makes the sorting algorithm incorrect, and also whether it makes the sort
unstable.
Solution: This change will only make an impact when merge is is comparing elements
in the sublists that are equal. In this case, either element can be moved without affecting
correctness, so the algorithm is still correct. This does make this sort unstable, since the
change will move the item in the second sublist before the element from the first sublist.

2. Which of the following are true about insertion sort and mergesort?

(@) Insertion sort would run reasonably fast when the list is nearly in reverse-sorted order
but with a few items out of order.

(b) For small inputs we would still expect mergesort to run more quickly that insertion
sort.

(c) The lower-bounds argument that showed that sorts like insertion sort must be Q)(1?)
does not apply to mergesort because when a list item is moved in merge() it may un-do
more than one inversion.

(d) We say the cost of “dividing” in mergesort is 1 because we must do a constant amount
of work to find the midpoint of the subproblem we’re sorting.

Solution: The 3rd item is true, and the others are false. The 1st is false because many items
would have to move a great distance if the list is nearly in reverse-sorted order. (It would be
true if we said in “forward” sorted order.) For the 2nd question, for small inputs we don’t
expect to see much difference in the run-times. For the 4th question, we count comparisons
and so we’d say 0 are done during the divide step.

PROBLEM 3 Recurrence Relations

1. Reduce the following recurrence to its closed form (i.e. remove the recursive part of its
defininiton) using the unrolling method.

T(n) =3T(n/3)+nand T(1) =1
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Be sure to show the general form of the recurrence in terms of how many times you've “un-
rolled”, as well as a formula for how many times you “un-roll” before getting to the base

case.
Solution:
T(n) =3T (g) +n (count is i = 1)
:3[3T(g>+g}+n:9T(g)+2n (count is i = 2)
—9 3T(%)+g} +n:27T(2’i7)+3n (count is i = 3)
=3iT (%) +in (after i iterations)

The unrolling will continue until n = 1, so solving for i when 1 = % finds i = logyn.
Substituting this back into the general form shows:

T(n) = 3'98"T (310g3n) + (logzn)n = n +nlogyn € O(nlogn)
(So the order class is just like mergesort’s recurrence. Are you surprised? No, if you've
studied the Master Theorem.)

2. Use the Master Theorem to find the order-class for this recurrence: T(n) = 3T(n/2) 4+ nlogn.
State which case applies, and if no case applies and the Master Theorem cannot be used, state
that and explain why.

Solution: We're comparing f(n) = nlogn to nl°%23 =n . At first glance it appears f(n)
grows more slowly, so let’s try Case 1. That applies if nlogn € O(n'87€). If say € = 0.1
then this is true. Therefore Case 1 does apply, and T(n) € @(n!°823).

1.585)

3. Use the Master Theorem to find the order-class for this recurrence: T(n) = 3T(n/4) + nlogn.
State which case applies, and if no case applies and the Master Theorem cannot be used, state
that and explain why.

Solution: We're comparing f(n) = nlogn to n'°843 = 1n079). (Even without a calculator,
you know that log, 3 < 1.0.) At first glance it appears f(n) grows more quickly, so let’s try
Case 3. That applies if nlogn € Q(n%791€). If € is something small, say 0.1 then this is true.

0.79)

For Case 3 we do have to check the regularity condition and show 3(n/4)(log(n/4)) <
cnlogn for some ¢ < 1. You can see that 0.75(nlogn —log4) < cnlogn when c = 0.75.

Therefore Case 3 does apply, and T(n) € ©(nlogn).

Note: For the above two problems, we were able to find an € to make a case apply. Study
the example where this is not possible in CLRS pp. 95f.

4. Show you understand how to do a proof using the “guess and check” method and induction.
Show that the following recurrence € O(nlog, n):

T(n) =4T(n/4)+nand T(1) =1

You can assume 7 is a power of 4.

Hints: For the induction, you have to prove the relationship for a small value of n. You'll
find n = 1 doesn’t work, but you can show it holds for the next larger value of n. (Again,
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assume 7 is a power of 4.) It’s OK for the induction proof if the relationship holds for some
small value of n even if it doesn’t hold for n = 1.

Also, you'll need to guess a value for c. For this problem, the value of ¢ is not anything
strange or unusual. A small value will work, you will find it easiest to just keep ¢ in your
math calculations and when you get to the final step you can see what value of ¢ makes your
relationship true. (This problem is much easier than the example we did in class!)

Solution: To show T(n) = 4T(n/4) +n € O(nlog, n), we need to find a value c such that
T(n) < cnlog, n for all n greater than some .

Let’s first find a base case for our induction proof. We cannot find a ¢ to make the rela-
tionship hold for n = 1: T(1) = 1 and ¢ x 1 x logo1 = 0. But it does hold for n = 4:
T(4) =4T(4/4) +4 = 8, which is < ¢ x 4 x log, 4 for any ¢ > 1.

For our induction hypothesis, we'll assume Vn < ng, T(n) < cnlog,n. So our goal is to
show T(ng+1) < c(ng+1)log,(ng + 1) for some value c. (We could guess at ¢ right now,
but let’s keep it in the math and see what it needs to be at the very end.)

T(np+1) =4T (Tlo;' 1) + (ng+1) (apply recurrence)
<4 {c (”OZ‘ 1) log, (”02‘ ! )} + (ng+1) (apply induction hypothesis)
=c(np+1)log (”02‘ 1) + (ng+1) (simplify)
=c(ng+1) [log,(ng + 1) — log, 4] + (19 + 1) (some rules of logs)
= c(ng +1)log,(no+1) —2c(ng+1) + (ng +1) (simplify)
< c(ng+1)log,(ng+1) (for c > %)

Solution (Alternative): It's equally valid to state our induction hypothesis with a < rather
than a <, like this: Vn < ng, T(n) < cnlog, n. Then our goal is to show T (1) < cnglog, (1)
for some value c. The proof looks the same but you won't have all those “+1” and it may be
easier to follow (and type). You may have learned to do induction proofs this way.

PROBLEM 4 Divide and Conquer #1

Write pseudo-code that implements a divide and conquer algorithm for the following problem.
Given a list L of size n, find values of the largest and second largest items in the list. (Assume that
L contains unique values.)
In your pseudo-code, you can indicate that a pair of values is returned by a function using
Python-like syntax, if you wish. For example, a function funky() that had this return statement:
return a, b
would could be used to assign a to x and b to y if called this way:
(x, y) = funkyQ

Solution: See code below. Note how the entire list is passed and first and last are used to control
what subsection of the list is processed by a recursive call. This avoids creating sublists at cost
O(n) every time you make a recursive call.
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def find_max_max2(L, first, last):
if first+1 == last: # handle base case of size n==2
if L{first] > L[last]:
return ( L[first], L[last] )
else
return ( L[last], L[first] )

mid = (first + last) / 2

(max_left, maxz2_left) = find_-max-max2(L, first, mid)
(max_right, max2_right) = find_max_max2(L, mid+1. last)

max_val = max(max_left, max_right)
max2_val = max( max2_left, maxz2_right, min(max_left, max_right) )
return (max_val, max2_val)

PROBLEM 5 Divide and Conquer #2

Conference Superstar. There is a CS conference with n attendees. One attendee is a “superstar”
— she is new to the field and has written the top paper at the conference. She is the attendee
whom all other attendees know, yet she knows no other attendee. Specifically, if attendee a; is
the superstar, then Va; # a;, knows(u]-,ai) == true and knows(a;, a]-) == false. Other attendees
may or may not know each other, as is true for “normal” meetings. Give a O(n) algorithm which
determines who the superstar is.

Hint: Compare pairs of attendees and try to eliminate one of them. Then you might want to do
a swap for each comparison to make sure all attendees that have a certain property are together
in one part of your list so you can recurse on just those.

Solution: Divide the list into two sublists. Iterate, comparing a person A from the first sublist
with a person B in the second sublist. If A knows B, then A is not superstar. If A doesn’t know
B, then B is not the superstar. So we can eliminate one from each pair. If needed, do a swap to
move the eliminated person into one of the sublists, so that after you've iterated over all pairs, one
sublist contains only eliminated attendees. Then recurse on the other sublist. (Note: if the number
of attendees at any step is not even, make sure the “leftover” attendee is included in the sublist
that you recurse on (since you cannot eliminate them). You’'ll reach a base case of one attendee
who has not been eliminated, and that must be the superstar.
The recurrence is T(n) = T(n/2) +n/2, which is ©(n).

PROBLEM 6 Gradescope Submission

Submit a version of this .tex file to Gradescope with your solutions added. You should only
submit your .pdf and .tex files.



