CS4102 Algorithms

Spring 2022

Warm up

If the “nodes” here
represent whole numbers,
when is there a connection
from value i to valuej ?

Graphs — Basic Review, BFS, and
Intro. to DFS

Tom Horton, Robbie Hott
CLRS Chapter 22.1 and 22.2

Definition: Directed graph

* Directed Graph
— A directed graph, or digraph, is a pair
- G=(V, E)
— where V is a set whose elements are called vertices, and
— E is a set of ordered pairs of elements of V.

Vertices are often also called nodes.

Elements of E are called edges, or directed edges, or arcs.
For directed edge (v, w) in E, vis its tail and w its head,

(v, w) is represented in the diagrams as the arrow, v -> w.
In text we often simply write vw.

vw is said to be incident upon the vertices vand w

Definition: Undirected graph

* Undirected Graph
— A undirected graph is a pair
- G=(V, E)
— where V is a set whose elements are called vertices, and
— E is a set of unordered pairs of distinct elements of V.

Vertices are often also called nodes.

Elements of E are called edges, or undirected edges.

Each edge may be considered as a subset of V containing two elements,
{v, w} denotes an undirected edge

In diagrams this edge is the line v---w.

In text we simple write vw, or wv

vw is said to be incident upon the vertices vand w

Terms You Should Know

* Edge Weights: A graphs can be
— Weighted or not weighted
* Every edge has a numeric weight value. (Weights can be reals, integers, etc.)
* Weight often represent things like cost, length, distance, capacity,...
e Often indicated by wt(vw) or W(vw) for edge vw, or wt(e) for edge e (or sometimes e.wt)
— Directed or undirected graphs can be weighted or unweighted

* Degree of a vertex: how many adjacent vertices
— Digraph: in-degree (num. of incoming edges) vs. out-degree

 Can an edge connect a vertex to itself?

— Undirected graphs: Normally an edge can’t connect a vertex to itself
* If so, we call this a multigraph and these are parallel edges

— Directed graph (digraph): an edge may connect a vertex to itself

Formal Definition: Weighted Graph

A weighted graph is a triple (V, E, W)
— where (V, E) is a graph (directed or
undirected) and
— W is a function from E into R,

the reals (or integers
or rational numbers).

— For an edge e, W(e) is called
the weight of e.

Image from Stanford’s cs106b course website

Terms You Should Know or Learn Now

e Size of graph? Two measures:

— Number of nodes: usually ‘V’ (some people use n)
* Note: we really mean |V|, size of set V. But we drop the | | here.

— Number of edges: usually ‘E° (some people use m)
 Dense graph: many edges
— Maximally dense?

— Undirected: each node connects to all others, so
E=V(V-1)/2
Called a complete graph

— Directed: E =V(V-1) why?
e Sparse graph: fewer edges
— Could be zero edges...

Terms You Should Know or Learn Now

e Path and simple path
— One vertex is reachable from another vertex
— ”Simple” means path contains an edge at most once
* A connected graph
— undirected graph, where each vertex is reachable from all others

* Astrongly connected digraph:
— direction affects what this means!
— node u may be reachable from v, but not v from u
— Strongly connected means both directions

* |f an undirected graph is not connected, then connected subgraphs are
called connected components

Terms You Should Know or Learn Now

e Cycle
— Directed graph: non-empty path with same starting and ending node

— An edge may appear more than once (but why?)
* Simple cycle: no node repeated except start and end

— Undirected graph: same idea

. gan edge appears more than once (l.e. non-simple) then we traverse it in the same
irection

* Acyclic: no-cycles
* A connected, acyclic undirected graph: free tree

— If we specify a root, it’s a rooted tree
— Acyclic but not connected? an undirected forest

* Directed acyclic graph: a DAG

Self-test: Understand these Terms?

* Subgraph

 Symmetric digraph
 complete graph

* Adjacency relation

* Path, simple path, reachable
* Connected, Strongly Connected
* Cycle, simple cycle

e acyclic

* undirected forest

* free tree, undirected tree

* rooted tree

 Connected component

10

Data Structures for Undirected Grapns

A WO M =+ O

Figure 11.4 Using the graph representations for undirected graphs. (a) An undi-
rected graph. (b) The adjacency matrix for the graph of (a). (c) The adjacency list

for the graph of (a).

A WO N =+ O

_L_L_l._h

Ol || |W| |o] |—

AL AR

= IN| [P |

(c

~—"

Adjacency Matrix:
Alu][v] is 1 if edge (u,v)
exists.

Note symmetrical around
diagonal. Could just store
info in one half of matrix.

Adjacency List:

Note each edge (u,v) has
an edge-node on u’s list
and also v’s list.

Image of diagrams from

https://people.cs.vt.edu/~shaffer/Book/

11

Data Structures for Digrapns

Adjacency Matrix:
Not symmetrical around
diagonal for digraph.

Adjacency List:

Note each directed edge
(u,v) has an edge-node on
just one vertex’s list.

()

Figure 11.3 Two graph representations. (a) A directed graph. (b) The adjacency Image of diagrams from
matrix for the graph of (a). (c) The adjacency list for the graph of (a). https://people.cs.vt.edu/~shaffer/Book/

12

Data Structures for Weighted Graphs

0O 1 2 3 4
0 ..‘1 1
1(1 1 1
2 1 1
3 1 1 .
41 1 1 -
(b)
Images are of
unweighted I ;‘ i
graphs. — .
.)
How would we e
store weights? ©

Figure 11.4 Using the graph representations for undirected graphs. (a) An undi-
rected graph. (b) The adjacency matrix for the graph of (a). (c) The adjacency list
for the graph of (a).

Adjacency Matrix:

Store weight (u,v) in matrix
cell. Use O or negative value
if edge not in graph.

Adjacency List:

Add a field to the the edge
node object to store the
weight.

Image of diagrams from
https://people.cs.vt.edu/~shaffer/Book/

13

[dentitying Vertices as Strings

Vertices may be identified symbol table inverted index undirected graph
With strings not integers ST<String, Integer> st String[] keys Graph C
int V | 10
(1) Could use an adjacency A1 0 ; L
. . MCO 1
map instead of an adjacency —T3 2 |orD b 3 s
list, and also store strings in — o s Bag() adj 473
0 — —

edge-nodes HOU | 4 2 g;: 1 ? o {6 {5 {43]
(2) Programmers often have oFw) 3 ; t:; i e ~[9 {62

. PHX —
an index and/or lookup table = ;’ 9 | LAS | T 7 2]

. ?
to convertfbetween int’s and T s|_ a2 1[¢]
string IDs for vertices. 6 f ,
B e~ GG
Understand the example here- AN \
key 8 -]

There are other ways to do o1 —

. . ~[o}~{6]]
this. Use your programming =
skills! ~6{s-3]|

Image from

https://algs4.cs.princeton.edu/home/ 14

Breadth-First Search

Traversing Graphs

* “Traversing” means processing each vertex edge in some organized fashion by
following edges between vertices
— We speak of visiting a vertex. Might do something while there.

* Recall traversal of binary trees:
— Several strategies: In-order, pre-order, post-order
— Traversal strategy implies an order of visits
— We used recursion to describe and implement these

* Graphs can be used to model interesting, complex relationships

— Often traversal used just to process the set of vertices or edges
— Sometimes traversal can identify interesting properties of the graph

— Sometimes traversal (perhaps modified, enhanced) can answer interesting questions about the
problem-instance that the graph models

20

BFS: Overall Strategy

* Breadth-first search’s strategy
— Choose a starting vertex

— Vertices are visited in order of increasing distance from the starting
vertex

* For starting vertex, distanced =0

— Examine all edges leading from vertices (at distance d) to adjacent
vertices (at distance d+1)

— Then, examine all edges leading from vertices at distance d+1 to
distance d+2, and so on,

— Until no new vertex is discovered

21

BFS: Specific Input/Output

* |nput:
— Agraph G
— single start vertex s

* Qutput:
— Distance from s to each node in G (distance = number of edges)
— Breadth-First Tree of G with root s

* Important: The paths in this BFS tree represent the shortest paths from s
to each node in G

— But edge weight’s (if any) not used, so “short” is in terms of number of edges in
path

22

Breadth-first search, quick example

e Let’s start at VO

Breadth-first search implementation

BFS(G,s)
1 foreachvertexu € G.V — {s}

U.color = WHITE
u.d = oo
u.m = NIL
s.color = GRAY
§d = 0
S.7T = NIL
0=290
ENQUEUE(Q, s)
while O # 0
u = DEQUEUE(Q)
for each v € G.Adju]
if v.color == WHITE
v.color = GRAY
v.d = u.d+1
Ve = 1l
ENQUEUE(Q, v)
u.color = BLACK

* From CLRS

* Vertices here have some properties:
— color = white/qgray/black
— d =distance from start node
— pi = parent in tree, i.e. v.pi is vertex by
which v was connected to BFS tree
* Color meanings here:
— White: haven’t seen this vertex yet

— Gray: vertex has been seen and added to
the queue for processing later

— Black: vertex has been removed from
gueue and its neighbors seen and added
to the queue

24

Breadth-first search: Analysis

* For a digraph having V vertices and E edges
— Each edge is processed once in the while loop for a cost of O(E)

— Each vertex is put into the queue once and removed from the queue
and processed once, for a cost O(V)

— Total time-complexity: O(V+E)
* For graph algorithm’s this is called “linear”

— Space complexity: extra space is used for color array and queue, so
0(V)

25

BFS Can be Useful

* Not all vertices are necessarily reachable from a selected starting vertex

— E.g. for an undirected graph that’s not connected

— Could you use BFS to test if an undirected graph is connected? Count connected
components?

e Earlier we said: The paths in this BFS tree represent the shortest paths
from s to each node in G

— The path in the tree from start vertex s to any vertex v contains the minimum
number of edges of any path from stov

— BFS is the choice for “shortest path” problems where distance is in terms of
edges or connections, and not edge-weights

* Next let’s make an argument to justify this property of BFS.

26

Informal Argument on BFS Trees

Assume there exists a vertex v with distance v.d from the
BFS tree, but there’s a path P2 with length <v.d fromsto v o

) o

Let p be the vertex that would be v’s “parent” on

this shorter path e \

— Our example: For shorter path A-E, p would be A

— For the other shorter path A-B-E, p would be B \
— Vertex p is closer to start node than v.pi e \ /
But wait! When BFS processes p, it would add unvisited
vertex v to queue and assign v's parent v.pi to be p Q
and v.d to be p.d+1. G

If the path P2 is shorter than the path in the BFS tree, then

v would have been attached to the tree at the same level as v.pi

or higher

— BFS adds a vertex to the tree as “early” as possible, as soon as it sees an edge connection

27

Readings

* CLRS:
— Section 22.3 on DFS

— Later/eventually:
e Section 22.4 on Topological Sort
e Section 22.5 on Strongly Connected Components

29

DFS: the Strategy in \WWords

* Depth-first search: Strategy
— Go as deep as can visiting un-visited nodes
* Choose any un-visited vertex when you have a choice

— When stuck at a dead-end, backtrack as little as
possible

* Back up to where you could go to another unvisited
vertex

— Then continue to go on from that point

— Eventually you’ll return to where you started
e Reach all vertices? Maybe, maybe not

30

Observations about the DFS Strategy

* Note: we must keep track of what nodes we’ve visited

* DFS traverses a subset of E (the set of edges)
— Creates a tree, rooted at the starting point: the Depth-first Search Tree (DFS tree)

— Each node in the DFS tree has a distance from the start. (We often don’t care
about this, but we could.)

e At any point, all nodes are either:
— Un-discovered
— Finished (you backed up from it), or

— Discovered (i.e. visited) but not finished
* On the path from the current node back to the root
* We might back up to it

— (Later we’ll call these states: white, black and gray respectively)

31

DFS Strategy 1: Use a stack

 Maintain a Stack (Let’s call it S)

e Start at some node ‘s’ (push ‘s’ to S and mark as visited)
 While S not empty

— Pop anode ‘n’ from S

— Process ‘n’ if necessary (depending on problem you are solving)

— For each non-visited neighbor of ‘n’
* Mark neighbor as visited
e Push neighbor onto S

— Repeat

* Sound familiar? Same as BFS but uses stack instead of queue!
 Or we can implement recursively (see next slide)

32

DFS Strategy #2

e Use a recursive function to “visit” each node
— Need a non-recursive function to initialize and make first call

* Before we look at this code... Important!
— Best to think of DFS is a strategy as well as a single, particular bit of pseudo-code

— We often add things to DFS code to solve problems
e Code shown next is very minimal

— We can use a DFS-based approach to solve many problems.
* It’s kind of the ”Swiss Army Knife” of graph algorithms! ©

33

DFS Strategy 2: Recursion

def dfs(graph, start): //Main loop, inits and call on one start node
visited = {}
dfs_visit(graph, start, visited)

def dfs_visit(graph, curnode, visited): //sometimes called dfs_recurse()
visited[curnode] = True
alist = graph.get_adjlist(curnode) //get the neighbors of curnode
for vin alist:

if v not in visited:
print(" dfs traversing edge:", curnode, v)
dfs_visit(graph, v, visited)
end for-all adjacent vertices
return

34

depth-first search, example

e Let’s start at VO

DFS to Process all Vertices in a Graph

* Purpose: do all required initializations, then call dfs_visit() as many times as needed to visit all nodes.
— May create a DFS forest.

e Can be used to count connected components
— Could remember which nodes are in each connected component

* CLRS text calls this version dfs() but it’s really doing >1 DFS each from a different start node

def dfs_sweep(graph, start):
visited = {}

loop repeats DFS on every unvisited node
for vin graph:
if v not in visited:
dfs_visit(graph, v, visited)

36

Using DFS to Find if a Graphic is Acyclic

* Does a graph have a cycle?
— DFS is great for this
— But, slightly harder if graph is undirected

e Use DFS tree: classify edges and nodes as you process them

— Nodes:
* White: unvisited
* Black: done with it, backed up from it (never to return)
* Gray: Have reached it; exploring its adjacent nodes; but not done with it

37

CLRS’s DFS Algorithm (non-recursive part)

DFS_sweep(G) // CLRS calls this just dfs()

1 for each vertex uin G.V

2 u.color = WHITE

3 u.at=NIL

4time=0

5 for each vertex u in G.V

6 if u.color == WHITE // if unseen

7 DFS-VISIT(G, u) // explore paths out of u

CLRS’s DFS Algorithm (recursive part)

DFS-VISIT(G, u) // sometimes called this dfs_recurse()
time =time + 1 // white vertex u has just been discovered
u.d = time // discovery time of u
u.color = GRAY // mark as seen
for each vin G.Adj[u] // explore edge (u, v)
if v.color == WHITE //if unseen

V.U = U

DFS-VISIT(G, v) // explore paths out of v (i.e., go “deeper”)
u.color = BLACK // u is finished
time =time + 1
10 u.f = time // finish time of u

OCoOoO~NOOUL DB WDN -

Depth-first search tree

* As DFS traverses a digraph, edges classified as:
— tree edge, back edge, descendant edge, or cross edge

— If graph undirected, do we have all 4 types?

Graph G DFS tree from X

”
back edge @"
Cross edge
descendent edge 40

Using Non-Tree Edges to [dentity Cycles

* From the previous graph, note that:

* Back edges (indicates a cycle)
— dfs_visit() sees a vertex that is gray

— This back edge goes back up the DFS tree to a vertex that is on the path
from the current node to the root

* Cross Edges and Descendant Edges (not cycles)
— dfs_visit() sees a vertex that is black
— Descendant edge: connects current node to a descendant in the DFS tree

— Cross edge: connects current node to a node in another subtree — not a
descendant of current node

41

Non-tree Edges in DFS

* Question 1: Finding back edges for an undirected graph is not quite this simple:

— The parent node of the current node is gray
— Not a cycle, is it? It’s the same edge you just traversed
— Question: how would you modify our code to recognize this?

* Question 2:
— In digraph, how could you modify the code to distinguish cross edges from descendant

edges?
— Need to record the “time” at which a node was discovered (set to “gray”) and finished
(set to “black”)
— Also, have a “time counter”, say, ctr
* Set d[v] = ctr++ as discovery time
* Set f[v] = ctr++ as finish time

42

Time Complexity of DFS

* For a digraph having V vertices and E edges

— g?Ec)h edge is processed once in the while loop of dfs_visit() for a cost of
* Think about adjacency list data structure.
* Traverse each list exactly once. (Never back up)
* There are a total of 2*E nodes in all the lists

— The non-recursive dfs_sweep() algorithm will do (V) work even if there

are no edges in the graph
— Thus over all time-complexity is O(V+E)

« Remember: this means the larger of the two values

* Note: This is considered “linear” for graphs since there are two size parameters for
graphs.

— Extra space is used for color array.
» Space complexity is 6(V)

43

depth-first search, example

e Let’s start at VO

DFS Examples

e Source vertex: 1

e

e Source vertex: s

b 4 Z) t

X w \% u

Properties of DFS Search, DFS Trees

| .S I Sl T T R R W | I o S
C GO EDNWW)@V @
* “Parentheses Structure”. See pp. 606-609

Properties of DFS Search, DFS Trees

(a)

(c)

e Edge Classification. See pp. 606-609

