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Warm up
If the “nodes” here
represent whole numbers,
when is there a connection 
from value i to value j ?
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Graphs – Basic Review, BFS, and
Intro. to DFS

Tom Horton, Robbie Hott
CLRS Chapter 22.1 and 22.2
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Definition: Directed graph
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• Directed Graph
– A directed graph, or digraph, is a pair 
– G = (V, E) 
– where V is a set whose elements are called vertices, and
– E is a set of ordered pairs of elements of V. 

• Vertices are often also called nodes. 
• Elements of E are called edges, or directed edges, or arcs. 
• For directed edge (v, w) in E, v is its tail and w its head; 
• (v, w) is represented in the diagrams as the arrow, v -> w. 
• In text we often simply write vw.
• vw is said to be incident upon the vertices v and w



Definition: Undirected graph
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• Undirected Graph
– A undirected graph is a pair 
– G = (V, E) 
– where V is a set whose elements are called vertices, and
– E is a set of unordered pairs of distinct elements of V. 

• Vertices are often also called nodes. 
• Elements of E are called edges, or undirected edges. 
• Each edge may be considered as a subset of V containing two elements,
• {v, w} denotes an undirected edge
• In diagrams this edge is the line v---w.
• In text we simple write vw, or wv
• vw is said to be incident upon the vertices v and w



Terms You Should Know
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• Edge Weights:  A graphs can be
– Weighted or not weighted

• Every edge has a numeric weight value.  (Weights can be reals, integers, etc.)
• Weight often represent things like cost, length, distance, capacity,…
• Often indicated by wt(vw) or W(vw) for edge vw, or wt(e) for edge e (or sometimes e.wt)

– Directed or undirected graphs can be weighted or unweighted

• Degree of a vertex: how many adjacent vertices
– Digraph: in-degree (num. of incoming edges) vs. out-degree

• Can an edge connect a vertex to itself?
– Undirected graphs:  Normally an edge can’t connect a vertex to itself

• If so, we call this a multigraph and these are parallel edges
– Directed graph (digraph): an edge may connect a vertex to itself



Formal Definition: Weighted Graph

A weighted graph is a triple (V, E, W) 
– where (V, E) is a graph (directed or 

undirected) and
– W is a function  from E into R, 

the reals (or integers 
or rational numbers). 

– For an edge e, W(e) is called 
the weight of e.

Image from Stanford’s cs106b course website
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Terms You Should Know or Learn Now
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• Size of graph? Two measures:
– Number of nodes: usually  ‘V’  (some people use n)

• Note: we really mean |V|, size of set V.  But we drop the | | here.
– Number of edges: usually ‘E’     (some people use m)

• Dense graph: many edges
– Maximally dense?
– Undirected: each node connects to all others, so 

E = V(V-1)/2
Called a complete graph

– Directed:   E = V(V-1)        why?
• Sparse graph: fewer edges
– Could be zero edges…



Terms You Should Know or Learn Now
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• Path and simple path
– One vertex is reachable from another vertex
– ”Simple” means path contains an edge at most once

• A connected graph
– undirected graph, where each vertex is reachable from all others

• A strongly connected digraph:
– direction affects what this means!
– node u may be reachable from v, but not v from u
– Strongly connected means both directions

• If an undirected graph is not connected, then connected subgraphs are 
called connected components



Terms You Should Know or Learn Now
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• Cycle
– Directed graph: non-empty path with same starting and ending node
– An edge may appear more than once (but why?)

• Simple cycle: no node repeated except start and end
– Undirected graph: same idea

• If an edge appears more than once (I.e. non-simple) then we traverse it in the same 
direction

• Acyclic:  no-cycles
• A connected, acyclic undirected graph: free tree
– If we specify a root, it’s a rooted tree
– Acyclic but not connected?  an undirected forest

• Directed acyclic graph: a DAG



Self-test: Understand these Terms?
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• Subgraph
• Symmetric digraph
• complete graph
• Adjacency relation
• Path, simple path, reachable
• Connected, Strongly Connected
• Cycle, simple cycle
• acyclic
• undirected forest 
• free tree, undirected tree
• rooted tree
• Connected component



Data Structures for Undirected Graphs
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Adjacency Matrix:
A[u][v] is 1 if edge (u,v)
exists.
Note symmetrical around 
diagonal. Could just store 
info in one half of matrix.

Adjacency List:
Note each edge (u,v) has 
an edge-node on u’s list 
and also v’s list.

Image of diagrams from
https://people.cs.vt.edu/~shaffer/Book/



Data Structures for Digraphs
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Adjacency List:
Note each directed edge 
(u,v) has an edge-node on 
just one vertex’s list.

Image of diagrams from
https://people.cs.vt.edu/~shaffer/Book/

Adjacency Matrix:
Not symmetrical around 
diagonal for digraph.



Data Structures for Weighted Graphs
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Adjacency Matrix:
Store weight (u,v) in matrix 
cell. Use 0 or negative value 
if edge not in graph.

Adjacency List:
Add a field to the the edge 
node object to store the 
weight. 

Image of diagrams from
https://people.cs.vt.edu/~shaffer/Book/

Images are of  
unweighted
graphs. 

How would we 
store weights?



Identifying Vertices as Strings
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Vertices may be identified 
with strings not integers. 

(1) Could use an adjacency 
map instead of an adjacency 
list, and also store strings in 
edge-nodes

(2) Programmers often have 
an index and/or lookup table 
to convert between int’s and 
string IDs for vertices. 
Understand the example here?

There are other ways to do 
this. Use your programming 
skills!

Image from
https://algs4.cs.princeton.edu/home/



Breadth-First Search
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Traversing Graphs
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• “Traversing” means processing each vertex edge in some organized fashion by 
following edges between vertices
– We speak of visiting a vertex.  Might do something while there.

• Recall traversal of binary trees:
– Several strategies: In-order, pre-order, post-order
– Traversal strategy implies an order of visits
– We used recursion to describe and implement these

• Graphs can be used to model interesting, complex relationships
– Often traversal used just to process the set of vertices or edges
– Sometimes traversal can identify interesting properties of the graph
– Sometimes traversal (perhaps modified, enhanced) can answer interesting questions about the 

problem-instance that the graph models



BFS: Overall Strategy
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• Breadth-first search’s strategy
– Choose a starting vertex
– Vertices are visited in order of increasing distance from the starting 

vertex
• For starting vertex, distance d = 0

– Examine all edges leading from vertices (at distance d) to adjacent 
vertices (at distance d+1)

– Then, examine all edges leading from vertices at distance d+1 to 
distance d+2, and so on, 

– Until no new vertex is discovered



BFS: Specific Input/Output
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• Input: 
– A graph G
– single start vertex s

• Output:
– Distance from s to each node in G (distance = number of edges)
– Breadth-First Tree of G with root s

• Important: The paths in this BFS tree represent the shortest paths from s 
to each node in G
– But edge weight’s (if any) not used, so “short” is in terms of number of edges in 

path



Breadth-first search, quick example
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• Let’s start at V0



Breadth-first search implementation
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• From CLRS
• Vertices here have some properties:

– color = white/gray/black
– d = distance from start node
– pi = parent in tree, i.e. v.pi is vertex by 

which v was connected to BFS tree
• Color meanings here:

– White: haven’t seen this vertex yet
– Gray: vertex has been seen and added to 

the queue for processing later
– Black: vertex has been removed from 

queue and its neighbors seen and added 
to the queue 



Breadth-first search: Analysis
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• For a digraph having V vertices and E edges
– Each edge is processed once in the while loop for a cost of q(E)
– Each vertex is put into the queue once and removed from the queue 

and processed once, for a cost q(V)
– Total time-complexity: q(V+E)
• For graph algorithm’s this is called “linear”

– Space complexity: extra space is used for color array and queue, so 
q(V)



BFS Can be Useful

• Not all vertices are necessarily reachable from a selected starting vertex
– E.g. for an undirected graph that’s not connected
– Could you use BFS to test if an undirected graph is connected? Count connected 

components?

• Earlier we said: The paths in this BFS tree represent the shortest paths 
from s to each node in G
– The path in the tree from start vertex s to any vertex v contains the minimum

number of edges of any path from s to v
– BFS is the choice for “shortest path” problems where distance is in terms of 

edges or connections, and not edge-weights

• Next let’s make an argument to justify this property of BFS.
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Informal Argument on BFS Trees
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• Assume there exists a vertex v with distance v.d from the
BFS tree, but there’s a path P2 with length < v.d from s to v

• Let p be the vertex that would be v’s “parent” on
this shorter path
– Our example: For shorter path A-E, p would be A
– For the other shorter path A-B-E, p would be B
– Vertex p is closer to start node than v.pi

• But wait! When BFS processes p, it would add unvisited
vertex v to queue and assign v’s parent v.pi to be p
and v.d to be p.d+1.

• If the path P2 is shorter than the path in the BFS tree, then
v would have been attached to the tree at the same level as v.pi
or higher
– BFS adds a vertex to the tree as “early” as possible, as soon as it sees an edge connection



DFS

CLRS Section 22.3 on DFS
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Readings

• CLRS:
– Section 22.3 on DFS
– Later/eventually:
• Section 22.4 on Topological Sort
• Section 22.5 on Strongly Connected Components
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DFS: the Strategy in Words
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• Depth-first search: Strategy
– Go as deep as can visiting un-visited nodes
• Choose any un-visited vertex when you have a choice

– When stuck at a dead-end, backtrack as little as 
possible
• Back up to where you could go to another unvisited 

vertex
– Then continue to go on from that point
– Eventually you’ll return to where you started
• Reach all vertices?  Maybe, maybe not



Observations about the DFS Strategy
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• Note: we must keep track of what nodes we’ve visited
• DFS traverses a subset of E (the set of edges)
– Creates a tree, rooted at the starting point: the Depth-first Search Tree (DFS tree)
– Each node in the DFS tree has a distance from the start.  (We often don’t care 

about this, but we could.)
• At any point, all nodes are either:
– Un-discovered
– Finished (you backed up from it), or
– Discovered (i.e. visited) but not finished

• On the path from the current node back to the root
• We might back up to it

– (Later we’ll call these states: white, black and gray respectively)



DFS Strategy 1: Use a stack
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• Maintain a Stack (Let’s call it S)

• Start at some node ‘s’ (push ‘s’ to S and mark as visited)
• While S not empty

– Pop a node ‘n’ from S
– Process ‘n’ if necessary (depending on problem you are solving)
– For each non-visited neighbor of ‘n’

• Mark neighbor as visited
• Push neighbor onto S

– Repeat

• Sound familiar? Same as BFS but uses stack instead of queue!
• Or we can implement recursively (see next slide)



DFS Strategy #2
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• Use a recursive function to “visit” each node
– Need a non-recursive function to initialize and make first call

• Before we look at this code… Important!
– Best to think of DFS is a strategy as well as a single, particular bit of pseudo-code
– We often add things to DFS code to solve problems

• Code shown next is very minimal

– We can use a DFS-based approach to solve many problems.
• It’s kind of the ”Swiss Army Knife” of graph algorithms! J



DFS Strategy 2: Recursion
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def dfs(graph, start): //Main loop, inits and call on one start node
visited = {}
dfs_visit(graph, start, visited)

def dfs_visit(graph, curnode, visited): //sometimes called dfs_recurse()
visited[curnode] = True
alist = graph.get_adjlist(curnode) //get the neighbors of curnode
for v in alist:

if v not in visited:
print("  dfs traversing edge:", curnode, v)
dfs_visit(graph, v, visited)

# end for-all adjacent vertices
return



depth-first search, example
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• Let’s start at V0



DFS to Process all Vertices in a Graph
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• Purpose: do all required initializations, then call dfs_visit() as many times as needed to visit all nodes.
– May create a DFS forest.

• Can be used to count connected components
– Could remember which nodes are in each connected component

• CLRS text calls this version dfs() but it’s really doing >1 DFS each from a different start node

def dfs_sweep(graph, start): 
visited = {}

# loop repeats DFS on every unvisited node
for v in graph:

if v not in visited:
dfs_visit(graph, v, visited)



Using DFS to Find if a Graphic is Acyclic
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• Does a graph have a cycle?
– DFS is great for this
– But, slightly harder if graph is undirected

• Use DFS tree: classify edges and nodes as you process them
– Nodes:
• White: unvisited
• Black: done with it, backed up from it (never to return)
• Gray: Have reached it; exploring its adjacent nodes; but not done with it



CLRS’s DFS Algorithm (non-recursive part)

DFS_sweep(G)
1 for each vertex u in G.V
2     u.color = WHITE
3     u.π = NIL
4 time = 0
5 for each vertex u in G.V
6     if u.color == WHITE  // if unseen
7         DFS-VISIT(G, u)  // explore paths out of u

// CLRS calls this just dfs()



CLRS’s DFS Algorithm (recursive part)
DFS-VISIT(G, u)
1   time = time + 1  // white vertex u has just been discovered
2   u.d = time  // discovery time of u
3   u.color = GRAY  // mark as seen
4   for each v in G.Adj[u]  // explore edge (u, v)
5       if v.color == WHITE   // if unseen
6           v.π = u
7           DFS-VISIT(G, v)  // explore paths out of v (i.e., go “deeper”)
8   u.color = BLACK  // u is finished
9   time = time + 1
10 u.f = time  // finish time of u

// sometimes called this dfs_recurse() 



Depth-first search tree
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• As DFS traverses a digraph, edges classified as:
– tree edge, back edge, descendant edge, or cross edge
– If graph undirected, do we have all 4 types?



Using Non-Tree Edges to Identify Cycles
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• From the previous graph, note that:
• Back edges (indicates a cycle)
– dfs_visit() sees a vertex that is gray
– This back edge goes back up the DFS tree to a vertex that is on the path 

from the current node to the root
• Cross Edges and Descendant Edges (not cycles)
– dfs_visit() sees a vertex that is black
– Descendant edge: connects current node to a descendant in the DFS tree
– Cross edge: connects current node to a node in another subtree – not a 

descendant of current node



Non-tree Edges in DFS
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• Question 1: Finding back edges for an undirected graph is not quite this simple:
– The parent node of the current node is gray
– Not a cycle, is it?  It’s the same edge you just traversed
– Question: how would you modify our code to recognize this?

• Question 2:
– In digraph, how could you modify the code to distinguish cross edges from descendant 

edges?
– Need to record the “time” at which a node was discovered (set to “gray”) and finished 

(set to “black”)
– Also, have a “time counter”, say, ctr

• Set d[v] = ctr++ as discovery time
• Set f[v] = ctr++ as finish time



Time Complexity of DFS
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• For a digraph having V vertices and E edges
– Each edge is processed once in the while loop of dfs_visit() for a cost of 
q(E)
• Think about adjacency list data structure.
• Traverse each list exactly once. (Never back up)
• There are a total of 2*E nodes in all the lists

– The non-recursive dfs_sweep() algorithm will do q(V) work even if there 
are no edges in the graph

– Thus over all time-complexity is q(V+E)
• Remember: this means the larger of the two values
• Note: This is considered “linear” for graphs since there are two size parameters for 

graphs.
– Extra space is used for color array.

• Space complexity is q(V)



depth-first search, example
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• Let’s start at V0



DFS Examples

• Source vertex: 1

• Source vertex: s



Properties of DFS Search, DFS Trees

• “Parentheses Structure”.  See pp. 606-609



Properties of DFS Search, DFS Trees

• Edge Classification.  See pp. 606-609


