
CS4102 Algorithms
Spring 2022

Warm up
If the “nodes” here
represent whole numbers,
when is there a connection 
from value i to value j ?

1



Graphs – Basic Review, BFS, and
Intro. to DFS

Tom Horton, Robbie Hott
CLRS Chapter 22.1 and 22.2

2



Definition: Directed graph

3

• Directed Graph
– A directed graph, or digraph, is a pair 
– G = (V, E) 
– where V is a set whose elements are called vertices, and
– E is a set of ordered pairs of elements of V. 

• Vertices are often also called nodes. 
• Elements of E are called edges, or directed edges, or arcs. 
• For directed edge (v, w) in E, v is its tail and w its head; 
• (v, w) is represented in the diagrams as the arrow, v -> w. 
• In text we often simply write vw.
• vw is said to be incident upon the vertices v and w



Definition: Undirected graph

4

• Undirected Graph
– A undirected graph is a pair 
– G = (V, E) 
– where V is a set whose elements are called vertices, and
– E is a set of unordered pairs of distinct elements of V. 

• Vertices are often also called nodes. 
• Elements of E are called edges, or undirected edges. 
• Each edge may be considered as a subset of V containing two elements,
• {v, w} denotes an undirected edge
• In diagrams this edge is the line v---w.
• In text we simple write vw, or wv
• vw is said to be incident upon the vertices v and w



Terms You Should Know

5

• Edge Weights:  A graphs can be
– Weighted or not weighted

• Every edge has a numeric weight value.  (Weights can be reals, integers, etc.)
• Weight often represent things like cost, length, distance, capacity,…
• Often indicated by wt(vw) or W(vw) for edge vw, or wt(e) for edge e (or sometimes e.wt)

– Directed or undirected graphs can be weighted or unweighted

• Degree of a vertex: how many adjacent vertices
– Digraph: in-degree (num. of incoming edges) vs. out-degree

• Can an edge connect a vertex to itself?
– Undirected graphs:  Normally an edge can’t connect a vertex to itself

• If so, we call this a multigraph and these are parallel edges
– Directed graph (digraph): an edge may connect a vertex to itself



Formal Definition: Weighted Graph

A weighted graph is a triple (V, E, W) 
– where (V, E) is a graph (directed or 

undirected) and
– W is a function  from E into R, 

the reals (or integers 
or rational numbers). 

– For an edge e, W(e) is called 
the weight of e.

Image from Stanford’s cs106b course website
6



Terms You Should Know or Learn Now

7

• Size of graph? Two measures:
– Number of nodes: usually  ‘V’  (some people use n)

• Note: we really mean |V|, size of set V.  But we drop the | | here.
– Number of edges: usually ‘E’     (some people use m)

• Dense graph: many edges
– Maximally dense?
– Undirected: each node connects to all others, so 

E = V(V-1)/2
Called a complete graph

– Directed:   E = V(V-1)        why?
• Sparse graph: fewer edges
– Could be zero edges…



Terms You Should Know or Learn Now

8

• Path and simple path
– One vertex is reachable from another vertex
– ”Simple” means path contains an edge at most once

• A connected graph
– undirected graph, where each vertex is reachable from all others

• A strongly connected digraph:
– direction affects what this means!
– node u may be reachable from v, but not v from u
– Strongly connected means both directions

• If an undirected graph is not connected, then connected subgraphs are 
called connected components



Terms You Should Know or Learn Now

9

• Cycle
– Directed graph: non-empty path with same starting and ending node
– An edge may appear more than once (but why?)

• Simple cycle: no node repeated except start and end
– Undirected graph: same idea

• If an edge appears more than once (I.e. non-simple) then we traverse it in the same 
direction

• Acyclic:  no-cycles
• A connected, acyclic undirected graph: free tree
– If we specify a root, it’s a rooted tree
– Acyclic but not connected?  an undirected forest

• Directed acyclic graph: a DAG



Self-test: Understand these Terms?

10

• Subgraph
• Symmetric digraph
• complete graph
• Adjacency relation
• Path, simple path, reachable
• Connected, Strongly Connected
• Cycle, simple cycle
• acyclic
• undirected forest 
• free tree, undirected tree
• rooted tree
• Connected component



Data Structures for Undirected Graphs

11

Adjacency Matrix:
A[u][v] is 1 if edge (u,v)
exists.
Note symmetrical around 
diagonal. Could just store 
info in one half of matrix.

Adjacency List:
Note each edge (u,v) has 
an edge-node on u’s list 
and also v’s list.

Image of diagrams from
https://people.cs.vt.edu/~shaffer/Book/



Data Structures for Digraphs

12

Adjacency List:
Note each directed edge 
(u,v) has an edge-node on 
just one vertex’s list.

Image of diagrams from
https://people.cs.vt.edu/~shaffer/Book/

Adjacency Matrix:
Not symmetrical around 
diagonal for digraph.



Data Structures for Weighted Graphs

13

Adjacency Matrix:
Store weight (u,v) in matrix 
cell. Use 0 or negative value 
if edge not in graph.

Adjacency List:
Add a field to the the edge 
node object to store the 
weight. 

Image of diagrams from
https://people.cs.vt.edu/~shaffer/Book/

Images are of  
unweighted
graphs. 

How would we 
store weights?



Identifying Vertices as Strings

14

Vertices may be identified 
with strings not integers. 

(1) Could use an adjacency 
map instead of an adjacency 
list, and also store strings in 
edge-nodes

(2) Programmers often have 
an index and/or lookup table 
to convert between int’s and 
string IDs for vertices. 
Understand the example here?

There are other ways to do 
this. Use your programming 
skills!

Image from
https://algs4.cs.princeton.edu/home/



Breadth-First Search

19



Traversing Graphs

20

• “Traversing” means processing each vertex edge in some organized fashion by 
following edges between vertices
– We speak of visiting a vertex.  Might do something while there.

• Recall traversal of binary trees:
– Several strategies: In-order, pre-order, post-order
– Traversal strategy implies an order of visits
– We used recursion to describe and implement these

• Graphs can be used to model interesting, complex relationships
– Often traversal used just to process the set of vertices or edges
– Sometimes traversal can identify interesting properties of the graph
– Sometimes traversal (perhaps modified, enhanced) can answer interesting questions about the 

problem-instance that the graph models



BFS: Overall Strategy

21

• Breadth-first search’s strategy
– Choose a starting vertex
– Vertices are visited in order of increasing distance from the starting 

vertex
• For starting vertex, distance d = 0

– Examine all edges leading from vertices (at distance d) to adjacent 
vertices (at distance d+1)

– Then, examine all edges leading from vertices at distance d+1 to 
distance d+2, and so on, 

– Until no new vertex is discovered



BFS: Specific Input/Output

22

• Input: 
– A graph G
– single start vertex s

• Output:
– Distance from s to each node in G (distance = number of edges)
– Breadth-First Tree of G with root s

• Important: The paths in this BFS tree represent the shortest paths from s 
to each node in G
– But edge weight’s (if any) not used, so “short” is in terms of number of edges in 

path



Breadth-first search, quick example

23

• Let’s start at V0



Breadth-first search implementation

24

• From CLRS
• Vertices here have some properties:

– color = white/gray/black
– d = distance from start node
– pi = parent in tree, i.e. v.pi is vertex by 

which v was connected to BFS tree
• Color meanings here:

– White: haven’t seen this vertex yet
– Gray: vertex has been seen and added to 

the queue for processing later
– Black: vertex has been removed from 

queue and its neighbors seen and added 
to the queue 



Breadth-first search: Analysis

25

• For a digraph having V vertices and E edges
– Each edge is processed once in the while loop for a cost of q(E)
– Each vertex is put into the queue once and removed from the queue 

and processed once, for a cost q(V)
– Total time-complexity: q(V+E)
• For graph algorithm’s this is called “linear”

– Space complexity: extra space is used for color array and queue, so 
q(V)



BFS Can be Useful

• Not all vertices are necessarily reachable from a selected starting vertex
– E.g. for an undirected graph that’s not connected
– Could you use BFS to test if an undirected graph is connected? Count connected 

components?

• Earlier we said: The paths in this BFS tree represent the shortest paths 
from s to each node in G
– The path in the tree from start vertex s to any vertex v contains the minimum

number of edges of any path from s to v
– BFS is the choice for “shortest path” problems where distance is in terms of 

edges or connections, and not edge-weights

• Next let’s make an argument to justify this property of BFS.

26



Informal Argument on BFS Trees

27

• Assume there exists a vertex v with distance v.d from the
BFS tree, but there’s a path P2 with length < v.d from s to v

• Let p be the vertex that would be v’s “parent” on
this shorter path
– Our example: For shorter path A-E, p would be A
– For the other shorter path A-B-E, p would be B
– Vertex p is closer to start node than v.pi

• But wait! When BFS processes p, it would add unvisited
vertex v to queue and assign v’s parent v.pi to be p
and v.d to be p.d+1.

• If the path P2 is shorter than the path in the BFS tree, then
v would have been attached to the tree at the same level as v.pi
or higher
– BFS adds a vertex to the tree as “early” as possible, as soon as it sees an edge connection



DFS

CLRS Section 22.3 on DFS

28



Readings

• CLRS:
– Section 22.3 on DFS
– Later/eventually:
• Section 22.4 on Topological Sort
• Section 22.5 on Strongly Connected Components

29



DFS: the Strategy in Words

30

• Depth-first search: Strategy
– Go as deep as can visiting un-visited nodes
• Choose any un-visited vertex when you have a choice

– When stuck at a dead-end, backtrack as little as 
possible
• Back up to where you could go to another unvisited 

vertex
– Then continue to go on from that point
– Eventually you’ll return to where you started
• Reach all vertices?  Maybe, maybe not



Observations about the DFS Strategy

31

• Note: we must keep track of what nodes we’ve visited
• DFS traverses a subset of E (the set of edges)
– Creates a tree, rooted at the starting point: the Depth-first Search Tree (DFS tree)
– Each node in the DFS tree has a distance from the start.  (We often don’t care 

about this, but we could.)
• At any point, all nodes are either:
– Un-discovered
– Finished (you backed up from it), or
– Discovered (i.e. visited) but not finished

• On the path from the current node back to the root
• We might back up to it

– (Later we’ll call these states: white, black and gray respectively)



DFS Strategy 1: Use a stack

32

• Maintain a Stack (Let’s call it S)

• Start at some node ‘s’ (push ‘s’ to S and mark as visited)
• While S not empty

– Pop a node ‘n’ from S
– Process ‘n’ if necessary (depending on problem you are solving)
– For each non-visited neighbor of ‘n’

• Mark neighbor as visited
• Push neighbor onto S

– Repeat

• Sound familiar? Same as BFS but uses stack instead of queue!
• Or we can implement recursively (see next slide)



DFS Strategy #2

33

• Use a recursive function to “visit” each node
– Need a non-recursive function to initialize and make first call

• Before we look at this code… Important!
– Best to think of DFS is a strategy as well as a single, particular bit of pseudo-code
– We often add things to DFS code to solve problems

• Code shown next is very minimal

– We can use a DFS-based approach to solve many problems.
• It’s kind of the ”Swiss Army Knife” of graph algorithms! J



DFS Strategy 2: Recursion

34

def dfs(graph, start): //Main loop, inits and call on one start node
visited = {}
dfs_visit(graph, start, visited)

def dfs_visit(graph, curnode, visited): //sometimes called dfs_recurse()
visited[curnode] = True
alist = graph.get_adjlist(curnode) //get the neighbors of curnode
for v in alist:

if v not in visited:
print("  dfs traversing edge:", curnode, v)
dfs_visit(graph, v, visited)

# end for-all adjacent vertices
return



depth-first search, example

35

• Let’s start at V0



DFS to Process all Vertices in a Graph

36

• Purpose: do all required initializations, then call dfs_visit() as many times as needed to visit all nodes.
– May create a DFS forest.

• Can be used to count connected components
– Could remember which nodes are in each connected component

• CLRS text calls this version dfs() but it’s really doing >1 DFS each from a different start node

def dfs_sweep(graph, start): 
visited = {}

# loop repeats DFS on every unvisited node
for v in graph:

if v not in visited:
dfs_visit(graph, v, visited)



Using DFS to Find if a Graphic is Acyclic

37

• Does a graph have a cycle?
– DFS is great for this
– But, slightly harder if graph is undirected

• Use DFS tree: classify edges and nodes as you process them
– Nodes:
• White: unvisited
• Black: done with it, backed up from it (never to return)
• Gray: Have reached it; exploring its adjacent nodes; but not done with it



CLRS’s DFS Algorithm (non-recursive part)

DFS_sweep(G)
1 for each vertex u in G.V
2     u.color = WHITE
3     u.π = NIL
4 time = 0
5 for each vertex u in G.V
6     if u.color == WHITE  // if unseen
7         DFS-VISIT(G, u)  // explore paths out of u

// CLRS calls this just dfs()



CLRS’s DFS Algorithm (recursive part)
DFS-VISIT(G, u)
1   time = time + 1  // white vertex u has just been discovered
2   u.d = time  // discovery time of u
3   u.color = GRAY  // mark as seen
4   for each v in G.Adj[u]  // explore edge (u, v)
5       if v.color == WHITE   // if unseen
6           v.π = u
7           DFS-VISIT(G, v)  // explore paths out of v (i.e., go “deeper”)
8   u.color = BLACK  // u is finished
9   time = time + 1
10 u.f = time  // finish time of u

// sometimes called this dfs_recurse() 



Depth-first search tree

40

• As DFS traverses a digraph, edges classified as:
– tree edge, back edge, descendant edge, or cross edge
– If graph undirected, do we have all 4 types?



Using Non-Tree Edges to Identify Cycles

41

• From the previous graph, note that:
• Back edges (indicates a cycle)
– dfs_visit() sees a vertex that is gray
– This back edge goes back up the DFS tree to a vertex that is on the path 

from the current node to the root
• Cross Edges and Descendant Edges (not cycles)
– dfs_visit() sees a vertex that is black
– Descendant edge: connects current node to a descendant in the DFS tree
– Cross edge: connects current node to a node in another subtree – not a 

descendant of current node



Non-tree Edges in DFS

42

• Question 1: Finding back edges for an undirected graph is not quite this simple:
– The parent node of the current node is gray
– Not a cycle, is it?  It’s the same edge you just traversed
– Question: how would you modify our code to recognize this?

• Question 2:
– In digraph, how could you modify the code to distinguish cross edges from descendant 

edges?
– Need to record the “time” at which a node was discovered (set to “gray”) and finished 

(set to “black”)
– Also, have a “time counter”, say, ctr

• Set d[v] = ctr++ as discovery time
• Set f[v] = ctr++ as finish time



Time Complexity of DFS

43

• For a digraph having V vertices and E edges
– Each edge is processed once in the while loop of dfs_visit() for a cost of 
q(E)
• Think about adjacency list data structure.
• Traverse each list exactly once. (Never back up)
• There are a total of 2*E nodes in all the lists

– The non-recursive dfs_sweep() algorithm will do q(V) work even if there 
are no edges in the graph

– Thus over all time-complexity is q(V+E)
• Remember: this means the larger of the two values
• Note: This is considered “linear” for graphs since there are two size parameters for 

graphs.
– Extra space is used for color array.

• Space complexity is q(V)



depth-first search, example

44

• Let’s start at V0



DFS Examples

• Source vertex: 1

• Source vertex: s



Properties of DFS Search, DFS Trees

• “Parentheses Structure”.  See pp. 606-609



Properties of DFS Search, DFS Trees

• Edge Classification.  See pp. 606-609


