CS4102 Algorithms
Spring 2022

Last Day of Unit A!




Announcements

e Homework schedule on course website

— Unit A Basic HW3 now available

— Unit A Advanced and Programming HW now available

— Unit A Programming submission opens Wednesday

— Hard deadline for Unit A Basic HW: Friday, 11:30 pm on GradeScope

e TA Office Hours

— 7-10pm Sun-Thurs in Ols 011
— Online hours also available

* Unit A Exam: Tuesday, February 22, in class



Today’s Keywords

* Finish up Median of Medians
— how that applies to QuickSelect and Quicksort

* Quicksort and expected time
* Lower bounds proof for comparison sorts

* Review of sorts and their properties






How to pick the pivot?




Good Pivot

 What makes a good Pivot?
— Roughly even split between left and right

— Ideally: median

e Can we find median in linear time?
— Yes!
— Quickselect



Quickselect

* Finds it" order statistic
— ith smallest element in the list
— 1St order statistic: minimum
— nth order statistic: maximum

n . L. .
— ;th order statistic: median

* CLRS, Section 9.1

— Selection problem: Given a list of distinct numbers and value i, find
value x in list that is larger than exactly i-1 list elements



Quickselect

e Finds it" order statistic

* |dea: pick a pivot element, partition, then recurse on sublist
containing index i

* Divide: select an element p, Partition(p)

* Conquer: if i = index of p, done!
— if i < index of p recurse left. Else recurse right

* Combine: Nothing!



Partition (Divide step)

Given: a list, a pivot value p

Start: unordered list

. 5 7 3 112110 1 2 4 9 6 | 11

Goal: All elements on left, all > p on right




Conquer
|

All elements < p All'elements > p

Exactly where it belongs!

Recurse on sublist that contains index i
(adjust i accordingly if recursing right)
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CLRS Pseudocode for Quickselect

A —the list

RANDOMIZED-SELECT (A, p,r,i) p — index of first item

. r —index of last item
1 if p == i — find ith smallest item
2 return A[p] q — pivot location
3 g = RANDOMIZED-PARTITION (A4, p, ) k= number on left + 1
4 k =qg—p+1 [/ numberof elements in left sub-list + 1
5 ifi== // the pivot value is the answer
6 return A[g]
7 elseifi <k
8 return RANDOMIZED-SELECT (A4, p,q — 1,i) note adjustment
9 else return RANDOMIZED-SELECT(A,q + 1,r,i — k) to i parameter

when recursing

Note: In CLRS, they’re using a partition that randomly chooses the pivot element. on right side

That’s why you see “Randomized” in the names here. Ignore that for the moment.
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Work These Examples!

* For each of the following calls, show

— The value of g after each partition,

— Which recursive calls made

1. Se
2. Se
3. Se

ect(
ect(

ect(

:31 2) 9) OI 7) 5) 6) 1:
:31 2) 9) OI 7) 5) 6) 1:

:31 2) 9) OI 7) 5) 6) 1:

, p=0, r=7, i=2)
, p=0, r=7, i=5)
, p=0, r=7, i=7)
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Quickselect Run Time

If the pivot is always the median:

T[]

Then we divide in half each time

S(n) =S(§)+n

S(n) =0(n)
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Quickselect Run Time

If the partition is always unbalanced:

_

Then we shorten by 1 each time

Sn)=Sn—1)+n

S(n) = 0(n?)
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Good Pivot for Quickselect

* What makes a good Pivot for Quickselect? S
— Roughly even split between left and right J \,b

— ldeally: median Oe

* Here’s what’s next:
— First, median of medians algorithm
* Finds something close to the median in ©®(n) time

— Second, we can prove that when its result used with Quickselect’s partition, then
Quickselect is guaranteed 0(n)
* Because we now have a ©(n) way to find the median, this guarantees Quicksort will be ©(nlgn)
— Notes:
* We have to do all this for every call to Partition in Quicksort
* We could just use the value returned by median of medians for Quicksort’s Partition
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Pretty Good Pivot

 What makes a “pretty good” Pivot?
— Both sides of Pivot >30%

>30%

O Select Pivot from
r this range

T
T

>30%
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Median of Medians

e Fast way to select a “pretty good” pivot

* Guarantees pivot is greater than 30% of elements and less than
30% of the elements

— |.e. it’s in the middle 40% (£20% of the true median)

* |dea: break list into chunks, find the median of each chunk, use the
median of those medians

* CLRS, pp. 220-221
* https://en.wikipedia.org/wiki/Median of medians
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https://en.wikipedia.org/wiki/Median_of_medians

Median of Medians

* Fast way to select a “good” pivot

* Guarantees pivot is greater than 30% of elements and less than
30% of the elements

* |dea: break list into chunks, find the median of each chunk, use
the median of those medians
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Median of Medians

1. Break list into chunks of size 5

List could be long, many
more than 5 chunks!

2. Find the median of each chunk
(using insertion sort: n=5, max 20 comparisons per chunk)

3. Return median of medians (using Quickselect, this
algorithm, called recursively, on list of medians)

\

List could be long, many
more than 5 medians!
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Why is this good"?

Each chunk sorted, chunks ordered by their medians

MedianofMedians l
is Greater than all NN TN A
of these x A x X n

List could be long, so not

[Yg} / a small number!
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Why is this good?

MedianofMedians
is larger than all
of these A A X ~ n

Larger than 3 T Worried about the details of
. . ny . 3
things in each E this math? See CLRS p. 221

(but one) list to 1 i
TR -2) =2 -
the left 3 (2 E ) — — 6 elements < []
Imi . 1 In] _ 5\ 30 _
Similarly: 3 (2 - 2) ~— 6 elements > [] )




Run-time of Quickselect with Median of Medians

* Divide: select an element p using Median of Medians,
Partition(p) M(n) + ©(n)

* Conquer: ifi = index of p, done, if i < index of p recurse left.

Else recurse right 7
<3S (—n)
10

* Combine: Nothing!

S(h) < S (1—7071) + M(n) + 0(n) 23



Median of Medians, Run Time

1. Break list into chunks of 5 ©(1)

2. Find the median of each chunk ©(n)

3. Return median of medians (using Quickselect)
[ S (E)
5

Mn) =S (g) + 0(n)
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Quickselect

n (M
S(n)<S (1—0) + M(n) + 0(n) M) =S (g) +0(n)
—5(7n) +5(2) +6m)
~°\10 5) " N
—S(7n) +5(2") +0
1 T
<9 % O _ CLRS gives a more rigorous proof!
o 1 +0(n)  Because S(n) = (n) See p. 222 for more details

Master theorem Case 3!

=0 S(n) = 0(n)



Compare to ‘Obvious’ Approach

* An “obvious” approach to Selection Problem:
— Given list and value i: Sort list, then choose i-th item
— We've only seen sorting algorithms that are (A(nlogn)
— Later we’ll show this really is a lower-bound
— So this approach is ®(nlogn)

* Therefore Quickselect is asymptotically better than this
sorting-based solution for Selection Problem!
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Phew! Back to Quicksort

Using Quickselect, with a median-of-medians partition:

e[ [rof ] ]

2 5 1 3 6 4

2 1.5 6 4

Then we divide in half each time

T(n) = 2T (g) + o)

T(n) = O(nlogn)
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s it worth [t7?

* Using Quickselect to pick median guarantees ®(nlogn) run
time

* But, this approach has very large constants
— If you really want ©(n logn), better off using MergeSort
e Better approach: Choose random pivot for Quicksort

— Very small constant (random() is a fast algorithm)

— Can prove the expected runtime is @(nlogn)
 Why? Unbalanced partitions are very unlikely
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Quicksort Run Time

If the pivot is always 1%”‘ order statistic:

. 0
.
T(n) =T(1n—0)+T((i—g)+n
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n
T(n) =T(E)+T(1_O)+n
n n
n
‘4\ 9n/10
n/10 + 9n/10 n
m_%/mo —T7/100~ 817/100

n/100| + 9n/100| + 9n/100 + 81n/100 n

1

1

_|_

On

>10g(

10

)Tl



Quicksort Run Time

If the pivot is always 1%”‘ order statistic:

. 0
.
T(n) =T(1n—0)+T((i—g)+n

T(n) = O(nlogn)
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Quicksort Run Time

If the pivot is always d™" order statistic:

_

Then we shorten by d each time
Tn)=T(n—d)+n
T(n) = 0(n?)
What'’s the probability of this occurring?
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Probability of n# run time

We must consistently select pivot from within the first d terms

Probability first pivot is among d smallest: %

Probability second pivot is among d smallest: n;fd
Probability all pivots are among d smallest:
d d d d 1
nn—-dn-2d " 2d ()|

33
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Sorting, so far

e Sorting algorithms we have discussed:
— Mergesort O(nlogn)
— Quicksort O(nlogn)

e Other sorting algorithms (will discuss):
— Bubblesort 0(n?)
— Insertionsort  0(n?)

— Heapsort O(nlogn)

Can we do better than O(nlogn)?



Mental Stretch
Show log(n!) = O(nlogn)

Hint: show n! < n"
n
2

Hint 2: show n! > (g)
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logn! = 0O(nlogn)

nNn=n-n-1))-n—-2)-..-2-1

| N\ N\ N N
n=n- n . n  -.omn-n

n! <n"

= log(n!) < log(n™)
= log(n!) < nlogn

= log(n!) = O(nlogn)




logn! = Q(nlogn)

n n
| — . _ . _ v e e o — — ) . .
n=n-(n—1) 2)...2(2 1)..21
V V V | \/ VAN
n
n\ 2 n n n n
V==. = _ L. 1 .11
(2) 2 2 2 2
n

= log(n!) > log ((—)

n! > (g)z
n ’;)
2

n. n
= log(n!) = Elogi
= log(n!) = Q(nlogn)



Worst Case |Lower Bounds

* Prove that there is no algorithm which can sort faster than
O(nlogn)
* Non-existence proof!

— Might seem like it would be hard to do?
— But we’re learning how to do lower bounds proofs!
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Example Lower Bound Proof: FInd Min

Show that finding the minimum of an unordered
list requires {1(n) comparisons

Suppose (toward contradiction) that there is an algorithm for
Find Min that does fewer than — = (}(n) comparisons.

This means there is at least one “uncompared” element
We can’t know that this element wasn’t the min!

2 8 | 19 20. 3 O | 4

0 1 2 3 4 5 6 7
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Strategy: Decision Tree

e Sorting algorithms use comparisons to figure out the
order of input elements

* Draw tree to illustrate all possible execution paths

Possible Result of

execution path comparison

>or<?

[ >or<? ][ >or<? ][ >or<? ] : [ >or<? ] >or<? ][ >or<? [ >or<?

Permutation

[ 5,2,4,1,3] ] [ 54,3211 ] of sorted list

[ [1,2,3,4,5] ] [ [2,1,3,4,5] ]

41



Strategy: Decision Tree

* Worst case run time is the longest execution path

* j.e., “height” of the decision tree

log(n!) =
O(nlogn)

Possible
execution path

>or<?

Result of

comparison

[ >or<? ][ >or<? ][ >or<? ] : [ >or<? ] >or<? ][ >or<? [ >or<?

[ [1,2,3,4,5] ] [ [2,1,3,4,5] ]

| 524131 | -

—

\

| 154321 |

J

|
n! Possible permutations

Permutation
of sorted list
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Strategy: Decision Tree

* Conclusion: Worst Case Optimal run time of sorting is

O(nlogn)
— There is no (comparison-based) sorting algorithm with run time
o(nlogn)
Possible Result of

— execution path comparison

>or<?

log(n!) =
O(nlogn)

[ >or<? ][ >or<? ][ >or<? ] : [ >or<? ] >or<? ][ >or<? [ >or<?

l 12345 | [ 20%45 | | 524131 | - | 54321 | z‘]fzr:r‘:te?j“ﬁ;

\ )
|

n! Possible permutations
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Sorting, so far

e Sorting algorithms we have discussed:
— Mergesort O(nlogn) Optimal!
— Quicksort O(nlogn) Optimal!

e Other sorting algorithms (will discuss):
— Bubblesort 0(n?)
— Insertionsort  0(n?)

— Heapsort O(nlogn) Optimal!
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Speed Isn't Everything

Important properties of sorting algorithms:

* Run Time
— Asymptotic Complexity
— Constants
* In Place (or In-Situ)
— Done with only constant additional space
* Adaptive
— Faster if list is nearly sorted
e Stable
— Equal elements remain in original order

e Parallelizable
— Runs faster with multiple computers

45



Mergesort

e Divide: Run Time?

— Break n-element list into two lists of */, elements
* Conquer: @ (Tl lOg n)

— If n > 1: Sort each sublist recursively Opt| mal |
— Ifn = 1: List is already sorted (base case)

e Combine:

— Merge together sorted sublists into one sorted list

In Place? Adaptive? Stable?

No No Yes!
(usually)




* Combine: Merge sorted sublists into one sorted list

e We have:
— 2 sorted lists (L1, L)
— 1 output list (Lyy¢)

While (L1 and L, not empty):
Stable:

If L1[0] = L[0]: If elements are
Loyt-append(Lq.pop()) equal, leftmost

Else: comes first
Lou¢-append(L;.pop())

Lyyt-append(L4)

Lyyt-append(L;)

47



Mergesort

Divide:

— Break n-element list into two lists of */, elements
Conquer:

— Ifn > 1: Sort each sublist recursively

— Ifn = 1: List is already sorted (base case)
Combine:

— Merge together sorted sublists into one sorted list

In Place? Adaptive? Stable?

No No Yes!
(usually)

Run Time?

O(nlogn)
Optimall

Parallelizable?

Yes!

48



Mergesort

Parallelizable:
. Divide: AIIow-different
machines to work

— Break n-element list into two lists of "/, elements |, cach sublist
* Conquer:

—Ifn > 1:
e Sort each sublist recursively

—Ifn=1:
* Listis already sorted (base case)
* Combine:
— Merge together sorted sublists into one sorted list

49



Mergesort (Sequential)

T(n) = zr(g) tn

n n |
/\ , n total / level
n/2 |2 n/2 |2
— " N7 P N >1
n/4 4| n/4 |* n/4 ' n/4 0g, n levels
AW /. AN 7/ of recursion
1 1 1 . ; 1 . 1
1 1 1 /|1 1 )

Run Time: O(n logn)



Mergesort (Parallel)

T(n) = T(g) +n

n

Done in Parallel n i
n/2 |2 n/2 |2 i
/IEA\ m /4—}\ am
n/4 |4+| n/4 * n/4 *| n/4 |*
7 7~ 7 7~
|74 :\ | 4 :\ "4 :\ K: N 1
1 1 1 1 1 1
1 1 1 1 1

Run Time: O(n)



Quicksort

Idea: pick a partition element, recursively sort two
sublists around that element

* Divide: select an element p, Partition(p)
* Conquer: recursively sort left and right sublists
* Combine: Nothing!

In Place? Adaptive? Stable?

kinda No! No

Uses stack for
recursive calls

Run Time?
O(nlogn)

(almost always)
Better constants
than Mergesort

Parallelizable?

Yes!



* Horton’s lecture on 2/15 stopped here (or one slide earlier?)
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Bubble Sort

dea: March through list, swapping adjacent
elements if out of order, repeat until sorted

- 7 9 112|110 | 1 2 4 3 6 | 11
- [

5 7 - 12 1 10 | 1 2 4 3 6 | 11
5 7 8 - 10 | 1 2 4 3 6 | 11

9 112|110} 1 2 4 3 6 | 11
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Bubble Sort

' ?
* Idea: March through list, swapping adjacent Run Time:
elements if out of order, repeat until sorted ® (nZ)

Constants worse

than Insertion Sort
In Place? Adaptive?

Yes Kinda

“Compared to straight
insertion [...], bubble sorting
requires a more complicated
program and takes about
twice as long!” —Donald
Knuth



Bubble Sort is “amost” Adaptive

ldea: March through list, swapping adjacent
elements if out of order

4 5 6 7 8 9 110 | 11 | 12

5 6 7 8 9 110 | 11 | 12

Only makes one “pass”

2 3 4 5 6 7 8 9 11011 |12 ] 1

After one “pass”

2 3 4 5 6 7 8 9 10| 11| 1 | 12

Requires n passes, thus is 0(n?) 56



Bubble Sort

Run Time?

* |dea: March through list, swapping adjacent
elements if out of order, repeat until sorted ) (nz)

Constants worse
than Insertion Sort

In Place? Adaptive? Stable? Parallelizable?

Yes! Kinda Yes No
Not really

"the bubble sort seems to have nothing to
recommend it, except a catchy name and
the fact that it leads to some interesting
theoretical problems” —Donald Knuth, The
Art of Computer Programming




Insertion Sort

ldea: Maintain a sorted list prefix, extend that
prefix by “inserting” the next element

Sorted Prefix

Sorted Prefix

11

I—
N
I
(@)}
[N

58




Insertion Sort

* |dea: Maintain a sorted list prefix, extend that Run Time?
prefix by “inserting” the next element Q) (le)
(but with very small
constants)
In Place? Adaptive? Great for short lists!

Yes! Yes



Insertion Sort is Adaptive

ldea: Maintain a sorted list prefix, extend that
prefix by “inserting” the next element

Sorted Prefix

Sorted Prefix

Only one comparison needed per element!  Runtime: O(n)

8 9 110 | 11 | 12
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Insertion Sort

' ?
* Idea: Maintain a sorted list prefix, extend that Run Time:
prefix by “inserting” the next element @ (le)

(but with very small
constants)

In Place? Adaptive? Stable?  Greatiorshortlists!

Yes! Yes Yes




Insertion Sort Is Stable

* |dea: Maintain a sorted list prefix, extend that
prefix by “inserting” the next element

Sorted Prefix

Sorted Prefix

11

I—
N
I
(@)}
[N

The “second” 10 will stay to the right
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Insertion Sort

* |dea: Maintain a sorted list prefix, extend that
prefix by “inserting” the next element

Run Time?
O(n?)

(but with very small constants)

Great for short lists!

In Place? Adaptive? Stable? Parallelizable?

Yes! Yes Yes

Can sort a list as it is received,
i.e., don’t need the entire list
“All things considered, it’s to begin Sorting

actually a pretty good sorting

algorithm!” —Nate Brunelle

No

Online?

Yes




Heap Sort

* |dea: Build a Heap, repeatedly extract max element
from the heap to build sorted list Right-to-Left

101 9 6 3 7 5 2 4 1 3

Max Heap
Property: Each
node is larger
than its children
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Heap Sort

 Remove the Max element (i.e. the root) from the
Heap: replace with last element, call Heapify(root)

6 3 7 5 2 4 1

Max Heap
Property: Each
node is larger
than its children

Heapify(node): if node satisfies heap
3 9 property, done. Else swap with largest
child and recurse on that subtree 65



Heap Sort

 Remove the Max element (i.e. the root) from the
Heap: replace with last element, call Heapify(root)

9.6 8 7 5 2 4 1

0 1 2 3 4 5 6 7 8 9 10

Max Heap
Property: Each
node is larger
than its children

Heapify(node): if node satisfies heap
3 9 property, done. Else swap with largest
child and recurse on that subtree 66



Heap Sort

 Remove the Max element (i.e. the root) from the
Heap: replace with last element, call Heapify(root)

5 2 4 1

9 8

Max Heap ° 1 2

Property: Each
node is larger
than its children

Heapify(node): if node satisfies heap
3 9 property, done. Else swap with largest
child and recurse on that subtree 67



Heap Sort

 Remove the Max element (i.e. the root) from the
Heap: replace with last element, call Heapify(root)

9 8 6 4 7 5 2 3 1

Max Heap 0 1 2 3 4 5 6 7 8 9 10

Property: Each
node is larger
than its children

Heapify(node): if node satisfies heap
3 9 property, done. Else swap with largest
child and recurse on that subtree 68



Heap Sort

' ?
* |dea: Build a Heap, repeatedly extract max Run Time:
element from the heap to build sorted list Right-
to-Left ® (Tl lOg Tl)

Constants worse

than Quick Sort
In Place? Whenremoving an element
from the heap, move it to the
Yes! (now unoccupied) end of the list




In Place Heap Sort

* |dea: When removing an element from the heap,
move it to the (now unoccupied) end of the list

101 9 6 3 7 5 2 4 1 3

MaxHeap ¢ 1 2 3 4 5 6 7 8 9 10

Property: Each
node is larger
than its children
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In Place Heap Sort

* |dea: When removing an element from the heap,
move it to the (now unoccupied) end of the list

:.9687524110
Max Heap

Property: Each
node is larger
than its children
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In Place Heap Sort

* |dea: When removing an element from the heap,
move it to the (now unoccupied) end of the list

9 8 6 4 7 5 2 3 1 | 10

MaXHeap012345678910

Property: Each
node is larger
than its children

72



In Place Heap Sort

* |dea: When removing an element from the heap,
move it to the (now unoccupied) end of the list

8 7 6 4 1 5 2 3 9 | 10

MaXHeap012345678910

Property: Each
node is larger
than its children

73



In Place Heap Sort

* |dea: When removing an element from the heap,
move it to the (now unoccupied) end of the list

7 4 6 3 1 5 2 8 9 | 10

MaxHeap ¢ 1 2 3 4 5 6 7 8 9 10

Property: Each
node is larger
than its children
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Heap Sort

' ?
\dea: Build a Heap, repeatedly extract max Run Time:
element from the heap to build sorted list Right-
to-Left G)(Tl lOg Tl)

Constants worse
than Quick Sort
In Place? Adaptive? Stable? Parallelizable?

Yes! No No No




Sorting, so far

e Sorting algorithms we have discussed:
— Mergesort O(nlogn) Optimal!
— Quicksort O(nlogn) Optimal!

e Other sorting algorithms (will discuss):
— Bubblesort 0(n?)
— Insertionsort  0(n?)

— Heapsort O(nlogn) Optimal!
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