# CS4102 Algorithms

Spring 2022

#### **Last Day of Unit A!**

#### Announcements

- Homework schedule on course website
  - Unit A Basic HW3 now available
  - Unit A Advanced and Programming HW now available
  - Unit A Programming submission opens Wednesday
  - Hard deadline for Unit A Basic HW: Friday, 11:30 pm on GradeScope
- TA Office Hours
  - 7-10pm Sun-Thurs in Ols 011
  - Online hours also available
- Unit A Exam: Tuesday, February 22, in class

## Today's Keywords

- Finish up Median of Medians
  - how that applies to QuickSelect and Quicksort
- Quicksort and expected time
- Lower bounds proof for comparison sorts
- Review of sorts and their properties

## How to pick the pivot?

## Good Pivot

- What makes a good Pivot?
  - Roughly even split between left and right
  - Ideally: median
- Can we find median in linear time?
  - Yes!
  - Quickselect

## Quickselect

- Finds  $i^{th}$  order statistic
  - $-i^{th}$  smallest element in the list
  - 1<sup>st</sup> order statistic: minimum
  - $-n^{\text{th}}$  order statistic: maximum
  - $-\frac{n_{\rm th}}{2}$  order statistic: median
- CLRS, Section 9.1
  - Selection problem: Given a list of distinct numbers and value i, find value x in list that is larger than exactly i-1 list elements

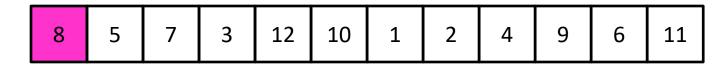
## Quickselect

- Finds  $i^{th}$  order statistic
- Idea: pick a pivot element, partition, then recurse on sublist containing index i
- Divide: select an element p, Partition(p)
- Conquer: if i = index of p, done!
  - if i < index of p recurse left. Else recurse right
- Combine: Nothing!

## Partition (Divide step)

Given: a list, a pivot value p

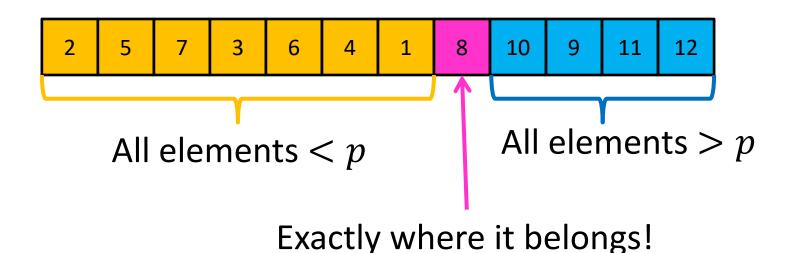
Start: unordered list



Goal: All elements < p on left, all > p on right



## Conquer



Recurse on sublist that contains index *i* (adjust *i* accordingly if recursing right)

## CLRS Pseudocode for Quickselect

```
p – index of first item
RANDOMIZED-SELECT (A, p, r, i)
                                                            r – index of last item
   if p == r
                                                            i – find ith smallest item
        return A[p]
                                                            q – pivot location
                                                            k – number on left + 1
   q = \text{RANDOMIZED-PARTITION}(A, p, r)
4 k = q - p + 1 // number of elements in left sub-list + 1
5 if i == k
                      // the pivot value is the answer
        return A[q]
   elseif i < k
        return RANDOMIZED-SELECT (A, p, q - 1, i)
   else return RANDOMIZED-SELECT(A, q + 1, r, i - k)
```

note adjustment to *i* parameter when recursing on right side

A – the list

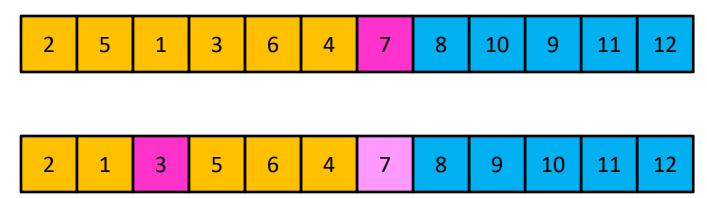
Note: In CLRS, they're using a partition that randomly chooses the pivot element. That's why you see "Randomized" in the names here. Ignore that for the moment.

## Work These Examples!

- For each of the following calls, show
  - The value of q after each partition,
  - Which recursive calls made
  - 1. Select([3, 2, 9, 0, 7, 5, 6, 1], p=0, r=7, i=2)
  - 2. Select([3, 2, 9, 0, 7, 5, 6, 1], p=0, r=7, i=5)
  - 3. Select([3, 2, 9, 0, 7, 5, 6, 1], p=0, r=7, i=7)

#### Quickselect Run Time

If the pivot is always the median:

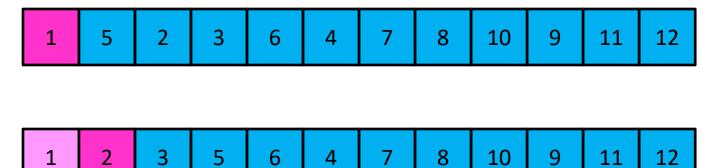


Then we divide in half each time

$$S(n) = S\left(\frac{n}{2}\right) + n$$
$$S(n) = O(n)$$

#### Quickselect Run Time

If the partition is always unbalanced:



Then we shorten by 1 each time

$$S(n) = S(n-1) + n$$

$$S(n) = O(n^2)$$

## Good Pivot for Quickselect

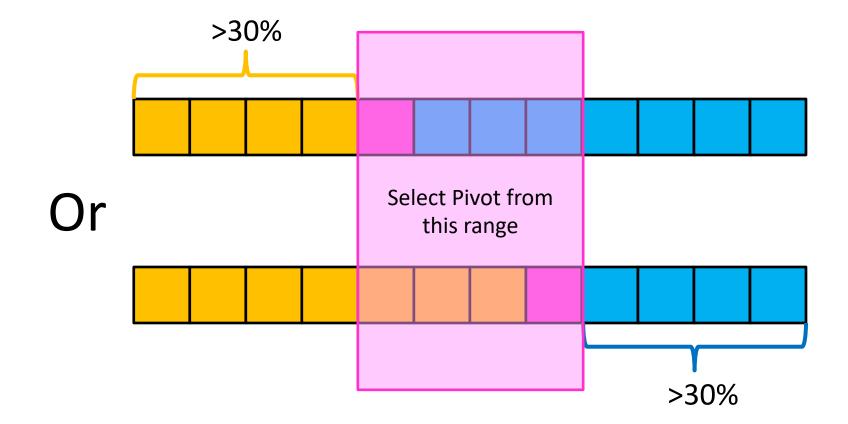
- What makes a good Pivot for Quickselect?
  - Roughly even split between left and right
  - Ideally: median



- Here's what's next:
  - First, median of medians algorithm
    - Finds something close to the median in  $\Theta(n)$  time
  - Second, we can prove that when its result used with Quickselect's partition, then Quickselect is guaranteed  $\Theta(n)$ 
    - Because we now have a  $\Theta(n)$  way to find the median, this guarantees Quicksort will be  $\Theta(n \lg n)$
  - Notes:
    - We have to do all this for every call to Partition in Quicksort
    - We could just use the value returned by median of medians for Quicksort's Partition

## Pretty Good Pivot

- What makes a "pretty good" Pivot?
  - Both sides of Pivot >30%



#### Median of Medians

- Fast way to select a "pretty good" pivot
- Guarantees pivot is greater than 30% of elements and less than 30% of the elements
  - I.e. it's in the middle 40% (±20% of the true median)
- Idea: break list into chunks, find the median of each chunk, use the median of those medians

- CLRS, pp. 220-221
- https://en.wikipedia.org/wiki/Median of medians

#### Median of Medians

- Fast way to select a "good" pivot
- Guarantees pivot is greater than 30% of elements and less than 30% of the elements
- Idea: break list into chunks, find the median of each chunk, use the median of those medians

#### Median of Medians

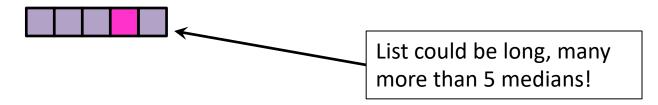
1. Break list into chunks of size 5

List could be long, many more than 5 chunks!

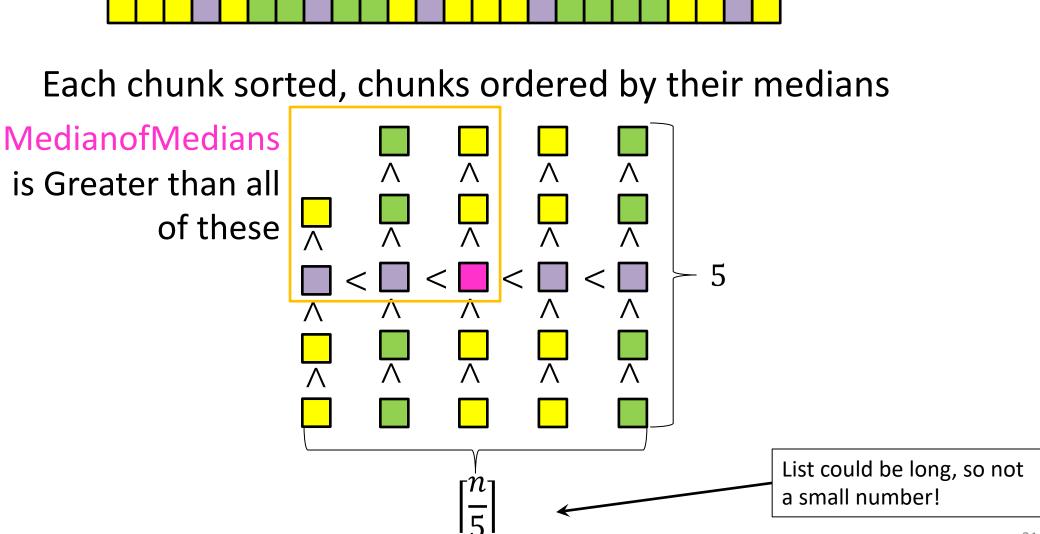
2. Find the median of each chunk (using insertion sort: n=5, max 20 comparisons per chunk)



3. Return median of medians (using Quickselect, this algorithm, called recursively, on list of medians)



## Why is this good?

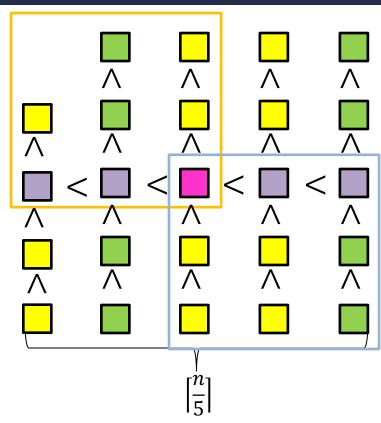


## Why is this good?

#### MedianofMedians

is larger than all of these

Larger than 3 things in each (but one) list to the left
Similarly:



Worried about the details of this math? See CLRS p. 221

$$3\left(\frac{1}{2}\cdot\left\lceil\frac{n}{5}\right\rceil-2\right)\approx\frac{3n}{10}-6 \text{ elements } < \square$$

$$3\left(\frac{1}{2}\cdot\left\lceil\frac{n}{5}\right\rceil-2\right)\approx\frac{3n}{10}-6 \text{ elements } > \square$$

#### Run-time of Quickselect with Median of Medians

• Divide: select an element p using Median of Medians, Partition(p)  $M(n) + \Theta(n)$ 

- Conquer: if i = index of p, done, if i < index of p recurse left. Else recurse right  $\leq S\left(\frac{7}{10}n\right)$
- Combine: Nothing!  $S(n) \le S\left(\frac{7}{10}n\right) + M(n) + \Theta(n)$

## Median of Medians, Run Time

1. Break list into chunks of 5  $\Theta(n)$ 



2. Find the median of each chunk  $\Theta(n)$ 



3. Return median of medians (using Quickselect)

$$S\left(\frac{n}{5}\right)$$

$$M(n) = S\left(\frac{n}{5}\right) + \Theta(n)$$

#### Quickselect

$$S(n) \le S\left(\frac{7n}{10}\right) + M(n) + \Theta(n) \qquad M(n) = S\left(\frac{n}{5}\right) + \Theta(n)$$
$$= S\left(\frac{7n}{10}\right) + S\left(\frac{n}{5}\right) + \Theta(n)$$
$$= S\left(\frac{7n}{10}\right) + S\left(\frac{2n}{10}\right) + \Theta(n)$$

CLRS gives a more rigorous proof! See p. 222 for more details

 $\leq S\left(\frac{9n}{10}\right) + \Theta(n)$  Because  $S(n) = \Omega(n)$ 

Master theorem Case 3!

$$S(n) = O(n)$$

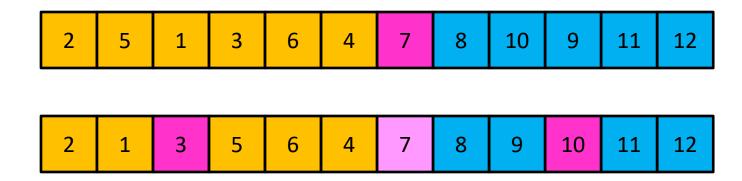
$$S(n) = \Theta(n)$$

## Compare to 'Obvious' Approach

- An "obvious" approach to Selection Problem:
  - Given list and value i: Sort list, then choose i-th item
  - We've only seen sorting algorithms that are  $\Omega(n \log n)$
  - Later we'll show this really is a lower-bound
  - So this approach is  $\Theta(n \log n)$
- Therefore Quickselect is asymptotically better than this sorting-based solution for Selection Problem!

## Phew! Back to Quicksort

Using Quickselect, with a median-of-medians partition:



Then we divide in half each time

$$T(n) = 2T\left(\frac{n}{2}\right) + \Theta(n)$$
$$T(n) = \Theta(n\log n)$$

## Is it worth it?

- Using Quickselect to pick median guarantees  $\Theta(n \log n)$  run time
- But, this approach has very large constants
  - If you really want  $\Theta(n \log n)$ , better off using MergeSort
- Better approach: Choose random pivot for Quicksort
  - Very small constant (random() is a fast algorithm)
  - Can prove the *expected runtime* is  $\Theta(n \log n)$ 
    - Why? Unbalanced partitions are very unlikely

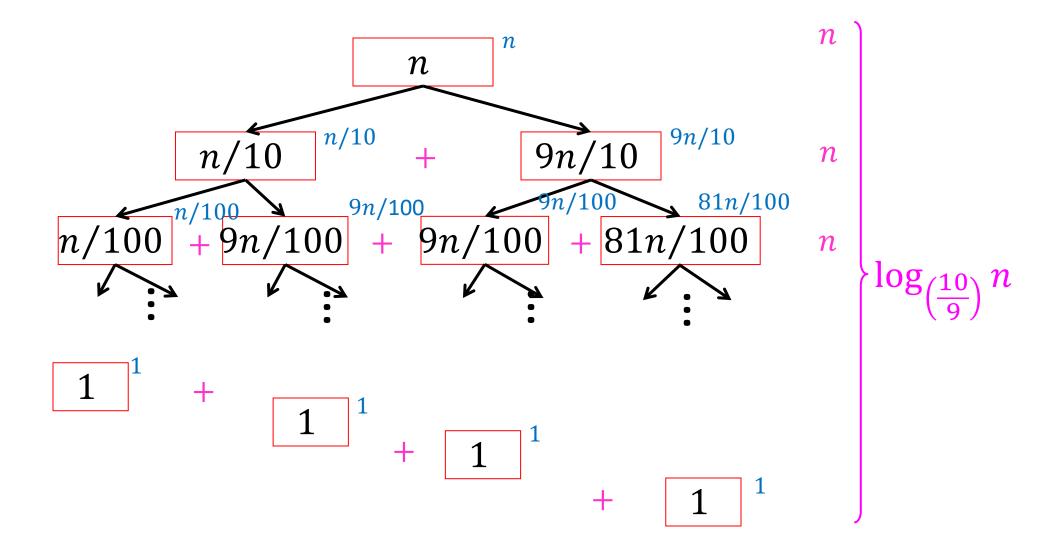
## Quicksort Run Time

If the pivot is always  $\frac{n}{10}$ th order statistic:



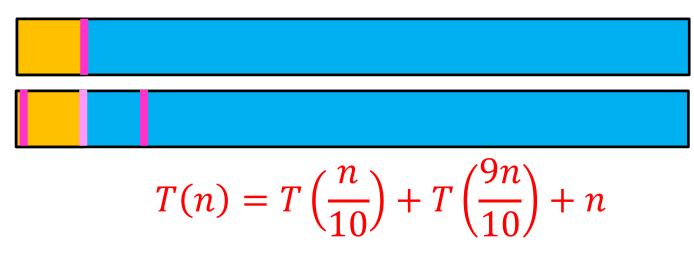
$$T(n) = T\left(\frac{n}{10}\right) + T\left(\frac{9n}{10}\right) + n$$

$$T(n) = T\left(\frac{n}{10}\right) + T\left(\frac{9n}{10}\right) + n$$



## Quicksort Run Time

If the pivot is always  $\frac{n}{10}$ th order statistic:



 $T(n) = \Theta(n \log n)$ 

#### Quicksort Run Time

If the pivot is always  $d^{th}$  order statistic:





Then we shorten by d each time

$$T(n) = T(n - d) + n$$
$$T(n) = O(n^2)$$

What's the probability of this occurring?

## Probability of $n^2$ run time

We must consistently select pivot from within the first d terms

Probability first pivot is among d smallest:  $\frac{d}{n}$ 

Probability second pivot is among d smallest:  $\frac{d}{n-d}$ 

Probability all pivots are among d smallest:

$$\frac{d}{n} \cdot \frac{d}{n-d} \cdot \frac{d}{n-2d} \cdot \dots \cdot \frac{d}{2d} \cdot 1 = \frac{1}{\left(\frac{n}{d}\right)!}$$

## Sorting, so far

Sorting algorithms we have discussed:

```
- Mergesort O(n \log n)
```

```
- Quicksort O(n \log n)
```

Other sorting algorithms (will discuss):

```
- Bubblesort O(n^2)
```

- Insertionsort 
$$O(n^2)$$

- Heapsort  $O(n \log n)$ 

Can we do better than  $O(n \log n)$ ?

#### **Mental Stretch**

Show 
$$\log(n!) = \Theta(n \log n)$$

Hint: show  $n! \leq n^n$ 

Hint 2: show 
$$n! \ge \left(\frac{n}{2}\right)^{\frac{n}{2}}$$

## $\log n! = O(n \log n)$

```
n! \le n^n

\Rightarrow \log(n!) \le \log(n^n)

\Rightarrow \log(n!) \le n \log n

\Rightarrow \log(n!) = O(n \log n)
```

# $\log n! = \Omega(n \log n)$

$$n! = n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot \frac{n}{2} \cdot \left(\frac{n}{2} - 1\right) \cdot \dots \cdot 2 \cdot 1$$

$$\vee \qquad \vee \qquad \qquad | \qquad \qquad | \qquad \qquad | \qquad \qquad | \qquad \qquad |$$

$$\left(\frac{n}{2}\right)^{\frac{n}{2}} = \frac{n}{2} \cdot \frac{n}{2} \cdot \frac{n}{2} \cdot \dots \cdot \frac{n}{2} \cdot \dots \cdot \frac{n}{2} \cdot 1 \cdot \dots \cdot 1 \cdot 1$$

$$n! \ge \left(\frac{n}{2}\right)^{\frac{n}{2}}$$

$$\Rightarrow \log(n!) \ge \log\left(\left(\frac{n}{2}\right)^{\frac{n}{2}}\right)$$

$$\Rightarrow \log(n!) \ge \frac{n}{2} \log \frac{n}{2}$$

$$\Rightarrow \log(n!) = \Omega(n \log n)$$

### Worst Case Lower Bounds

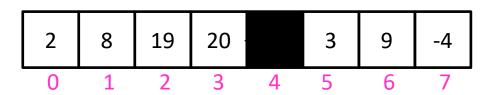
- Prove that there is no algorithm which can sort faster than  $O(n \log n)$
- Non-existence proof!
  - Might seem like it would be hard to do?
  - But we're learning how to do lower bounds proofs!

### Example Lower Bound Proof: Find Min

# Show that finding the minimum of an unordered list requires $\Omega(n)$ comparisons

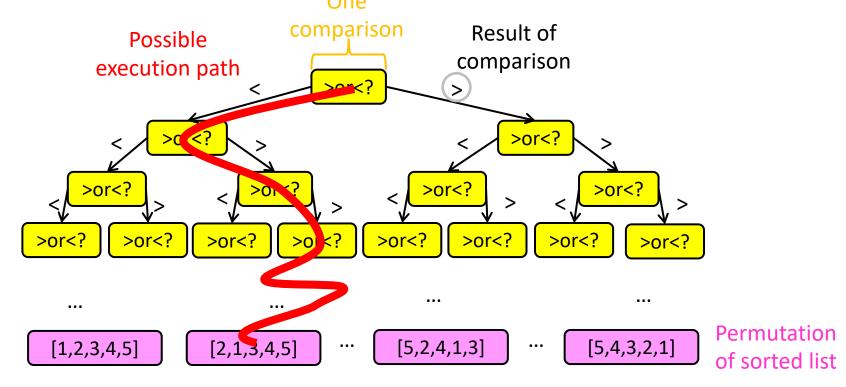
Suppose (toward contradiction) that there is an algorithm for Find Min that does fewer than  $\frac{n}{2} = \Omega(n)$  comparisons.

This means there is at least one "uncompared" element We can't know that this element wasn't the min!



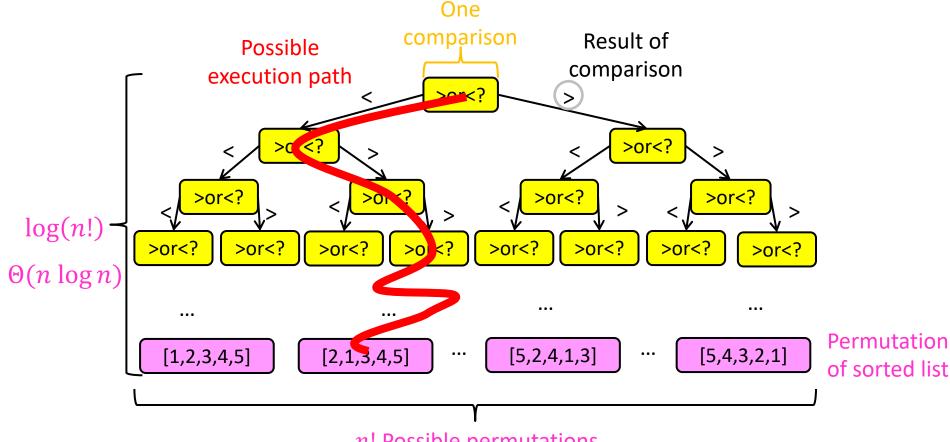
### Strategy: Decision Tree

- Sorting algorithms use comparisons to figure out the order of input elements
- Draw tree to illustrate all possible execution paths



### Strategy: Decision Tree

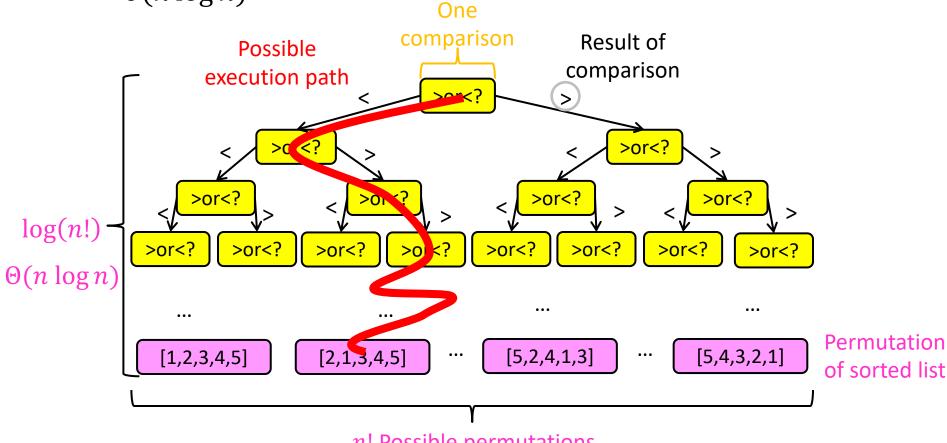
- Worst case run time is the longest execution path
- i.e., "height" of the decision tree



### Strategy: Decision Tree

• Conclusion: Worst Case Optimal run time of sorting is  $\Theta(n \log n)$ 

— There is no (comparison-based) sorting algorithm with run time  $o(n \log n)$ 



### Sorting, so far

Sorting algorithms we have discussed:

```
- Mergesort O(n \log n) Optimal!
```

- Quicksort  $O(n \log n)$  Optimal!
- Other sorting algorithms (will discuss):

```
- Bubblesort O(n^2)
```

- Insertionsort  $O(n^2)$
- Heapsort  $O(n \log n)$  Optimal!

# Speed Isn't Everything

#### Important properties of sorting algorithms:

- Run Time
  - Asymptotic Complexity
  - Constants
- In Place (or In-Situ)
  - Done with only constant additional space
- Adaptive
  - Faster if list is nearly sorted
- Stable
  - Equal elements remain in original order
- Parallelizable
  - Runs faster with multiple computers

### Mergesort

- Divide:
  - Break *n*-element list into two lists of n/2 elements
- Conquer:
  - If n > 1: Sort each sublist recursively
  - If n = 1: List is already sorted (base case)
- Combine:
  - Merge together sorted sublists into one sorted list

In Place? Adaptive? Stable?
No No Yes!
(usually)

Run Time?  $\Theta(n \log n)$ Optimal!

### Merge

- Combine: Merge sorted sublists into one sorted list
- We have:
  - -2 sorted lists  $(L_1, L_2)$
  - -1 output list ( $L_{out}$ )

```
While (L_1 and L_2 not empty):
```

```
If L_1[0] \le L_2[0]:
L_{out}.\mathsf{append}(L_1.\mathsf{pop}())
Else:
```

Stable:
If elements are equal, leftmost comes first

 $L_{out}$ .append( $L_2$ .pop())

 $L_{out}$ .append( $L_1$ )

 $L_{out}$ .append( $L_2$ )

### Mergesort

- Divide:
  - Break *n*-element list into two lists of n/2 elements
- Conquer:
  - If n > 1: Sort each sublist recursively
  - If n = 1: List is already sorted (base case)
- Combine:
  - Merge together sorted sublists into one sorted list

Run Time?  $\Theta(n \log n)$ Optimal!

In Place? Adaptive? Stable?

No No Yes!

(usually)

Parallelizable?
Yes!

## Mergesort

#### Divide:

- Break n-element list into two lists of n/2 elements

Parallelizable:
Allow different
machines to work
on each sublist

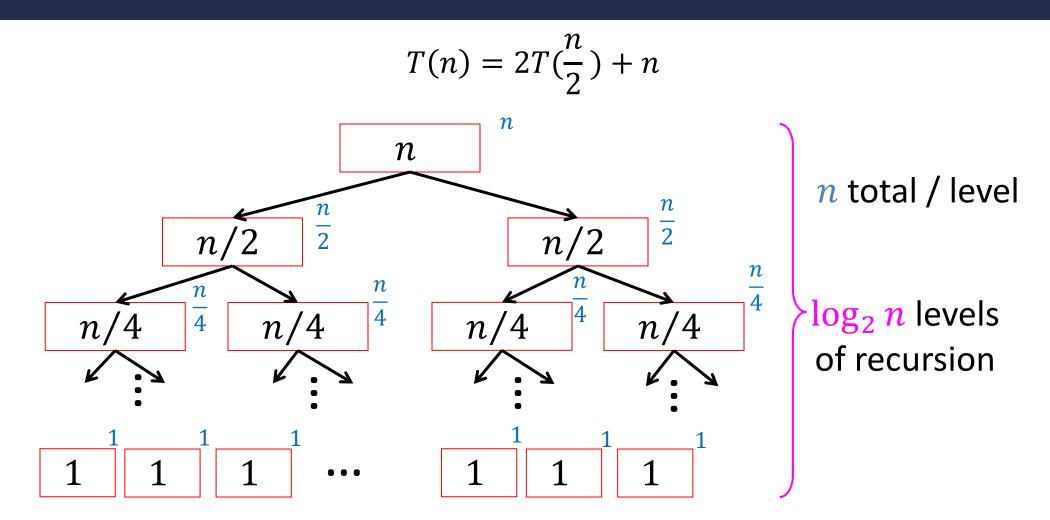
#### Conquer:

- If n > 1:
  - Sort each sublist recursively
- If n = 1:
  - List is already sorted (base case)

#### Combine:

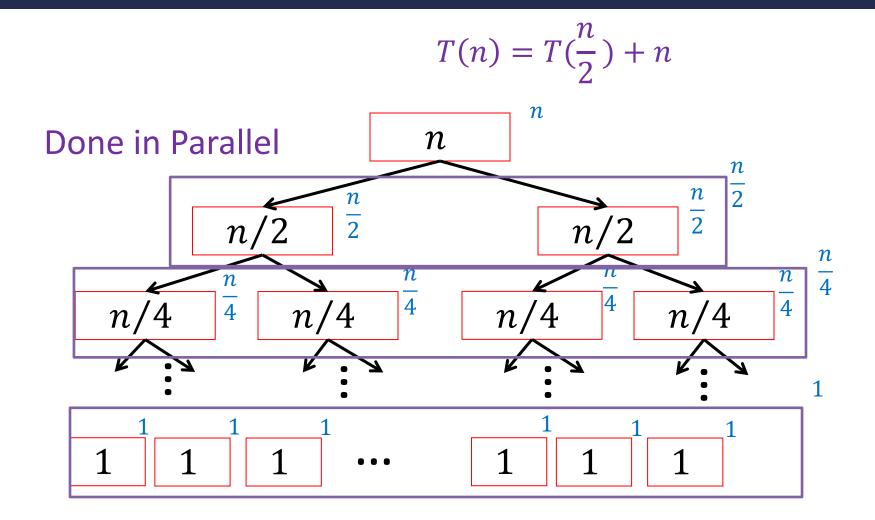
Merge together sorted sublists into one sorted list

# Mergesort (Sequential)



Run Time:  $\Theta(n \log n)$ 

# Mergesort (Parallel)



Run Time:  $\Theta(n)$ 

#### Quicksort

Idea: pick a partition element, recursively sort two sublists around that element

- Divide: select an element p, Partition(p)
- Conquer: recursively sort left and right sublists
- Combine: Nothing!

Run Time?

 $\Theta(n \log n)$ 

(almost always)

Better constants

than Mergesort

<u>In Place?</u> Adaptive?

Stable?

Parallelizable?

kinda

No!

No

Yes!

Uses stack for recursive calls

Horton's lecture on 2/15 stopped here (or one slide earlier?)

### Bubble Sort

Idea: March through list, swapping adjacent elements if out of order, repeat until sorted

| 8                          | 5 | 7 | 9 | 12 | 10 | 1 | 2 | 4 | 3 | 6 | 11 |
|----------------------------|---|---|---|----|----|---|---|---|---|---|----|
| 5                          | 8 | 7 | 9 | 12 | 10 | 1 | 2 | 4 | 3 | 6 | 11 |
|                            |   |   |   |    |    |   |   |   |   |   |    |
| 5 7 8 9 12 10 1 2 4 3 6 11 |   |   |   |    |    |   |   |   |   |   |    |
| 5                          | 7 | 8 | 9 | 12 | 10 | 1 | 2 | 4 | 3 | 6 | 11 |

### Bubble Sort

• Idea: March through list, swapping adjacent elements if out of order, repeat until sorted

Run Time?

 $\Theta(n^2)$ 

Constants worse than Insertion Sort

In Place?

Adaptive?

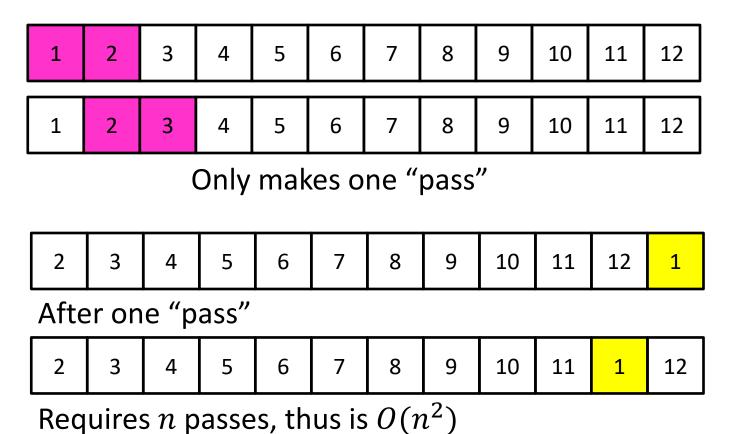
Yes

Kinda

"Compared to straight insertion [...], bubble sorting requires a more complicated program and takes about twice as long!" –Donald Knuth

### Bubble Sort is "almost" Adaptive

Idea: March through list, swapping adjacent elements if out of order



#### Bubble Sort

 Idea: March through list, swapping adjacent elements if out of order, repeat until sorted Run Time?

 $\Theta(n^2)$ 

Constants worse

than Insertion Sort

Parallelizable?

No

In Place?

Adaptive?

Stable?

Yes

Yes!

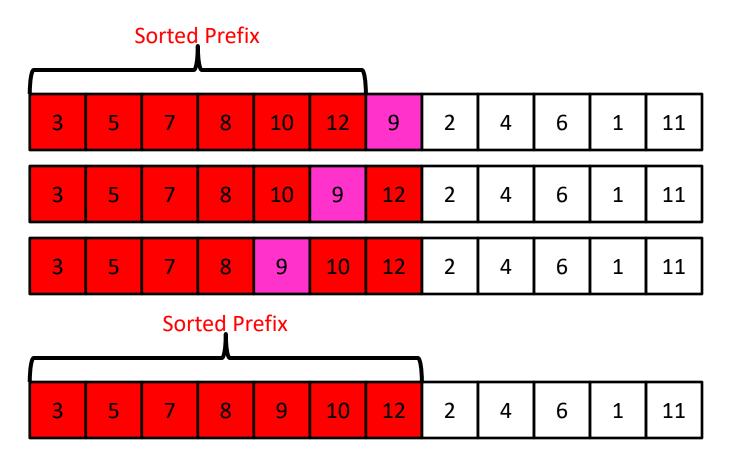
Kinda Not really

"the bubble sort seems to have nothing to recommend it, except a catchy name and the fact that it leads to some interesting theoretical problems" –Donald Knuth, The Art of Computer Programming



#### Insertion Sort

Idea: Maintain a sorted list prefix, extend that prefix by "inserting" the next element



### Insertion Sort

• Idea: Maintain a sorted list prefix, extend that prefix by "inserting" the next element

In Place? Adaptive?

Yes! Yes

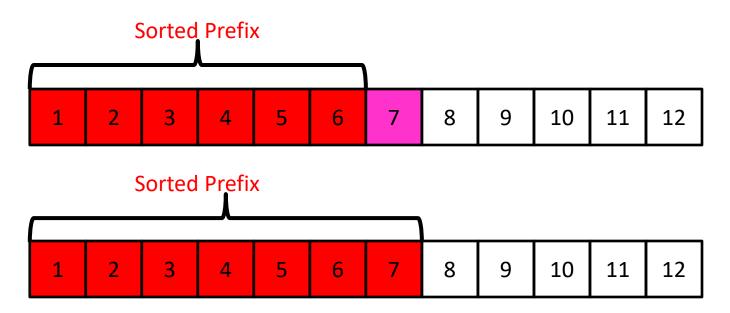
Run Time?

 $\Theta(n^2)$ 

(but with very small constants)
Great for short lists!

### Insertion Sort is Adaptive

Idea: Maintain a sorted list prefix, extend that prefix by "inserting" the next element



Only one comparison needed per element! Runtime: O(n)

### Insertion Sort

 Idea: Maintain a sorted list prefix, extend that prefix by "inserting" the next element **Run Time?** 

 $\Theta(n^2)$ 

(but with very small constants)

Great for short lists!

<u>In Place?</u>

Adaptive?

Stable?

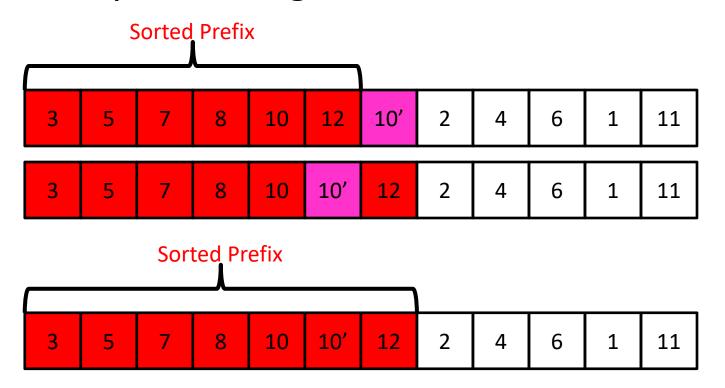
Yes!

Yes

Yes

#### Insertion Sort is Stable

 Idea: Maintain a sorted list prefix, extend that prefix by "inserting" the next element



The "second" 10 will stay to the right

#### Insertion Sort

 Idea: Maintain a sorted list prefix, extend that prefix by "inserting" the next element Run Time?

 $\Theta(n^2)$ 

(but with very small constants)

Great for short lists!

In Place?

Adaptive?

Stable?

Parallelizable?

Yes!

Yes

Yes

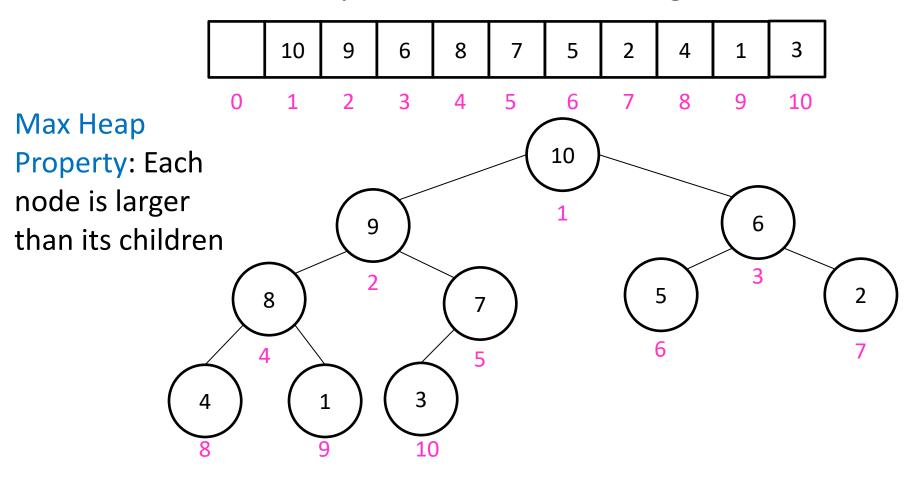
No

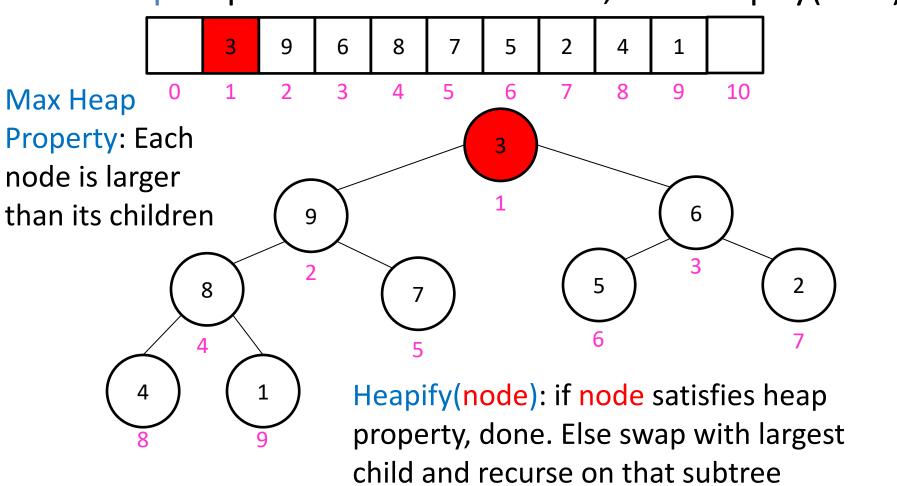
"All things considered, it's actually a pretty good sorting algorithm!" –Nate Brunelle

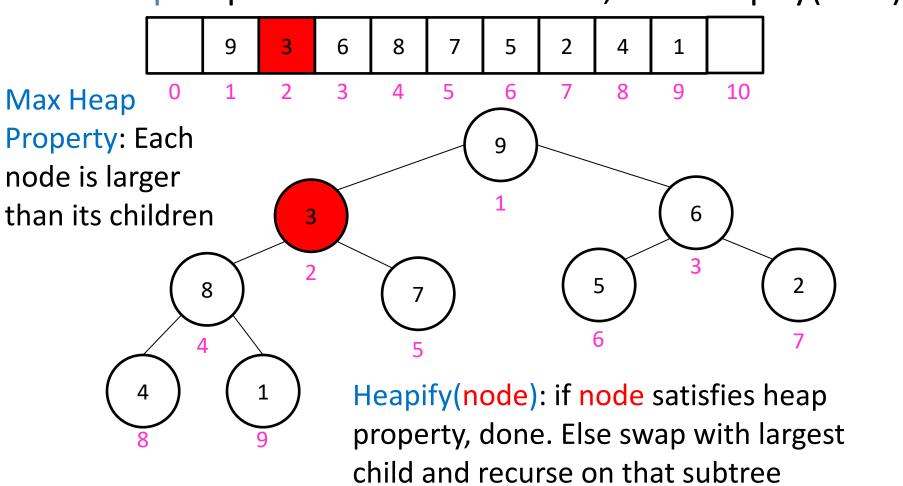
Can sort a list as it is received, i.e., don't need the entire list to begin sorting

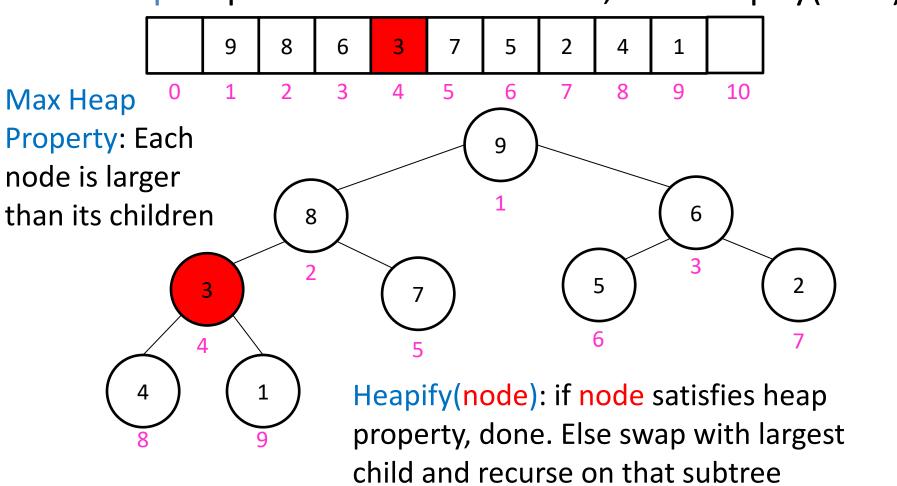
Online? Yes

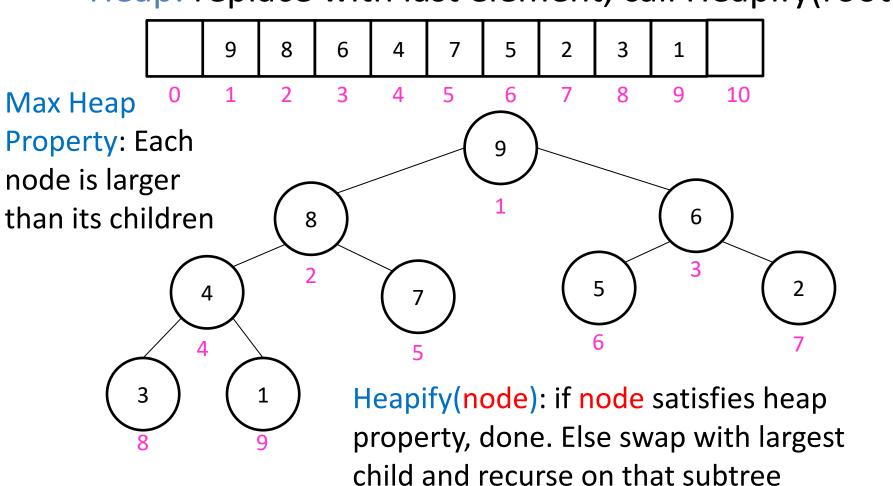
• Idea: Build a Heap, repeatedly extract max element from the heap to build sorted list Right-to-Left







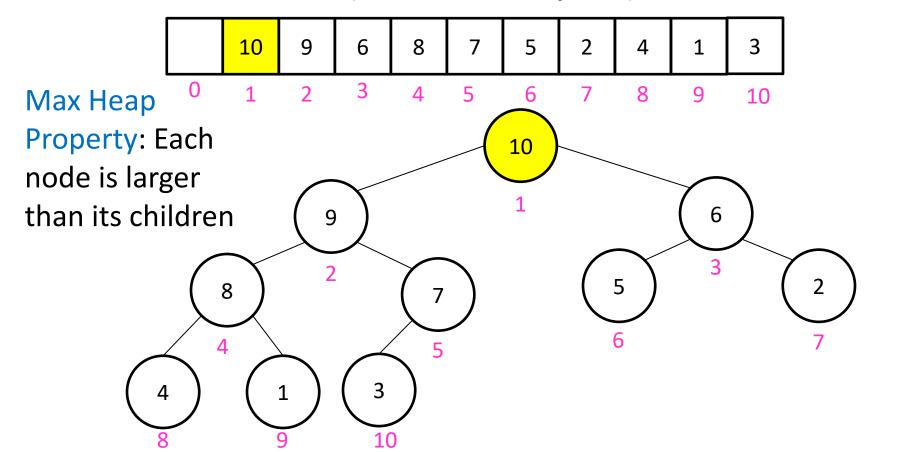


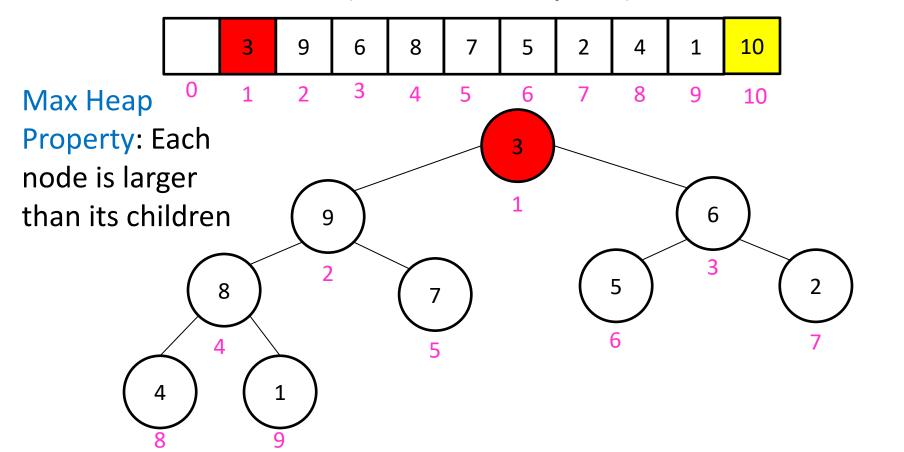


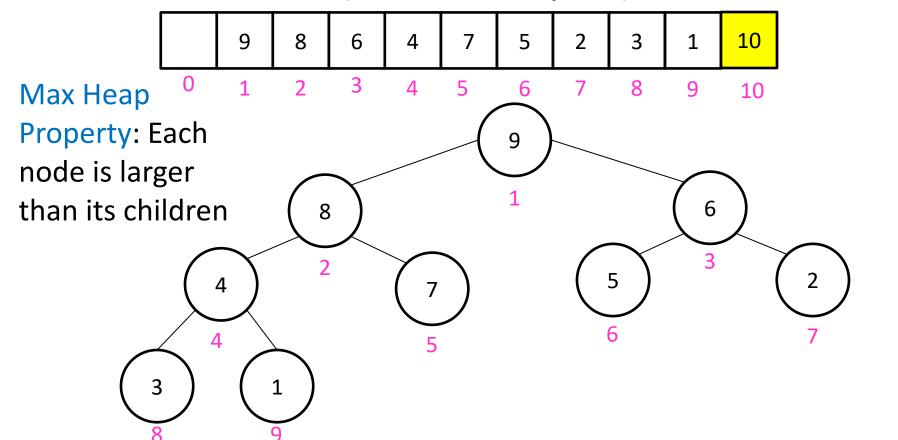
 Idea: Build a Heap, repeatedly extract max element from the heap to build sorted list Rightto-Left Run Time?  $\Theta(n \log n)$ Constants worse than Quick Sort

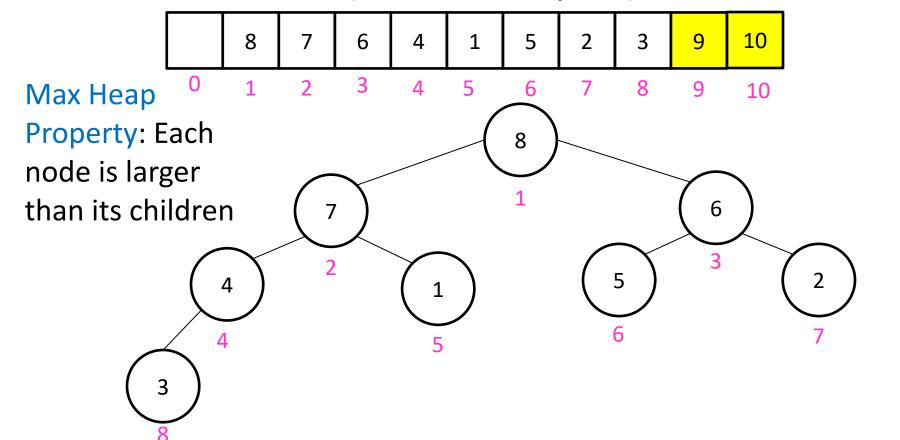
In Place?

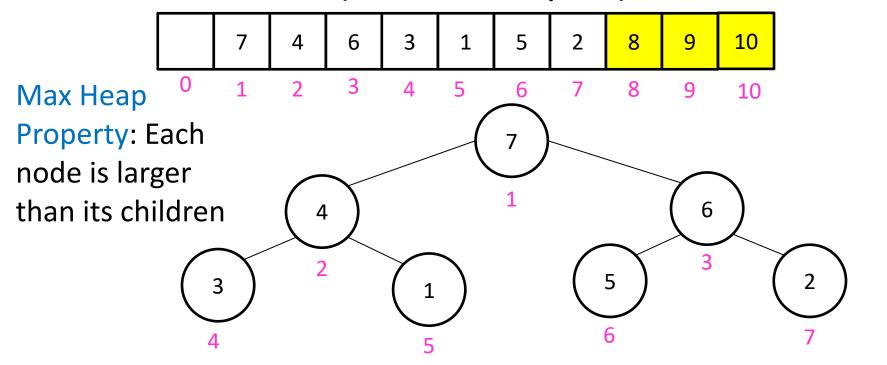
Yes!











 Idea: Build a Heap, repeatedly extract max element from the heap to build sorted list Rightto-Left

<u>In Place?</u> <u>Adaptive?</u> <u>Stable?</u> Yes! No No

Run Time?  $\Theta(n \log n)$ Constants worse than Quick Sort
Parallelizable?

No

### Sorting, so far

Sorting algorithms we have discussed:

```
- Mergesort O(n \log n) Optimal!
```

- Quicksort  $O(n \log n)$  Optimal!
- Other sorting algorithms (will discuss):

```
- Bubblesort O(n^2)
```

- Insertionsort  $O(n^2)$
- Heapsort  $O(n \log n)$  Optimal!