CS4102 Algorithms Spring 2022

Warm up

Show that finding the minimum of an unordered list requires $\Omega(n)$ comparisons

Find Min, Lower Bound Proof

Show that finding the minimum of an unordered list requires $\Omega(n)$ comparisons

Suppose (toward contradiction) that there is an algorithm for Find Min that does fewer than $\frac{n}{2} = \Omega(n)$ comparisons.

This means there is at least one "uncompared" element We can't know that this element wasn't the min!

Announcements

- Homework schedule on course website
 - Unit A Basic HW2 now available
 - Unit A Advanced and Programming HW now available
 - Unit A Programming submission opens Wednesday
- TA Office Hours
 - 7-10pm Sun-Thurs in Ols 011
 - Online hours also available
- Unit A Exam: Tuesday, February 22, in class

Today's Keywords

- Sorting
- Linear time Sorting
- Counting Sort
- Radix Sort
- Maximum Sum Continuous Subarray

Sorting, so far

- Sorting algorithms we have discussed:
 - Mergesort $O(n \log n)$
 - Quicksort $O(n \log n)$
- Other sorting algorithms (will discuss):
 - Bubblesort $O(n^2)$
 - Insertionsort $O(n^2)$
 - Heapsort $O(n \log n)$

Can we do better than $O(n \log n)$?

Worst Case Lower Bounds

- Prove that there is no algorithm which can sort faster than
 O(n log n)
- Non-existence proof!
 - Very hard to do

Strategy: Decision Tree

- Sorting algorithms use comparisons to figure out the order of input elements
- Draw tree to illustrate all possible execution paths

Strategy: Decision Tree

- Worst case run time is the longest execution path
- i.e., "height" of the decision tree

Strategy: Decision Tree

- Conclusion: Worst Case Optimal run time of sorting is $\Theta(n \log n)$
 - There is no (comparison-based) sorting algorithm with run time $o(n \log n)$

Sorting, so far

- Sorting algorithms we have discussed:
 - Mergesort $O(n \log n)$ Optimal!
 - Quicksort $O(n \log n)$ Optimal!
- Other sorting algorithms (will discuss):
 - Bubblesort $O(n^2)$
 - Insertionsort $O(n^2)$
 - Heapsort $O(n \log n)$ Optimal!

Speed Isn't Everything

Important properties of sorting algorithms:

- Run Time
 - Asymptotic Complexity
 - Constants
- In Place (or In-Situ)
 - Done with only constant additional space
- Adaptive
 - Faster if list is nearly sorted
- Stable
 - Equal elements remain in original order
- Parallelizable
 - Runs faster with multiple computers

Mergesort

• Divide:

- Break *n*-element list into two lists of n/2 elements
- Conquer:
 - If n > 1: Sort each sublist recursively
 - If n = 1: List is already sorted (base case)

• Combine:

- Merge together sorted sublists into one sorted list

Run Time?

 $\Theta(n \log n)$ Optimal!

In Place?	Adaptive?	Stable?
No	No	Yes!
		(usually)

Merge

- Combine: Merge sorted sublists into one sorted list
- We have:
 - 2 sorted lists (L_1 , L_2)
 - -1 output list (L_{out})

```
 \begin{array}{ll} \mbox{While } (L_1 \mbox{ and } L_2 \mbox{ not empty}): & & \\ \mbox{If } L_1[0] \leq L_2[0]: & & \\ \mbox{If } elements \mbox{ are } \\ \mbox{L}_{out}. \mbox{append}(L_1. \mbox{pop}()) & \\ \mbox{Else: } & & \\ \mbox{L}_{out}. \mbox{append}(L_2. \mbox{pop}()) & \\ \mbox{L}_{out}. \mbox{append}(L_1) & \\ \mbox{L}_{out}. \mbox{append}(L_2) & \\ \end{array}
```

Mergesort

• Divide:

- Break *n*-element list into two lists of n/2 elements
- Conquer:
 - If n > 1: Sort each sublist recursively
 - If n = 1: List is already sorted (base case)

• Combine:

Merge together sorted sublists into one sorted list

Run Time?

 $\Theta(n \log n)$ Optimal!

In Place?	Adaptive?	Stable?	Parallelizable?
No	No	Yes!	Yes!
		(usually)	

Mergesort

• Divide:

- Break *n*-element list into two lists of n/2 elements

Parallelizable: Allow different machines to work on each sublist

• Conquer:

- If n > 1:
 - Sort each sublist recursively
- If n = 1:
 - List is already sorted (base case)
- Combine:
 - Merge together sorted sublists into one sorted list

Mergesort (Sequential)

Run Time: $\Theta(n \log n)$

Mergesort (Parallel)

Run Time: $\Theta(n)$

Quicksort

Idea: pick a partition element, recursively sort two sublists around that element

- Divide: select an element *p*, Partition(*p*)
- Conquer: recursively sort left and right sublists
- Combine: Nothing!

 $\frac{\text{Run Time?}}{\Theta(n \log n)}$ (almost always)
Better constants
than Mergesort

In Place?	Adaptive?	Stable?	Parallelizable?
kinda	No!	No	Yes!
Jses stack fo	r		
ecursive call	S		

Bubble Sort

Idea: March through list, swapping adjacent elements if out of order, repeat until sorted

8	5	7	9	12	10	1	2	4	3	6	11
				-							-
5	8	7	9	12	10	1	2	4	3	6	11
5	7	8	9	12	10	1	2	4	3	6	11
5	7	8	9	12	10	1	2	4	3	6	11

Bubble Sort

• Idea: March through list, swapping adjacent elements if out of order, repeat until sorted

Run Time?

 $\Theta(n^2)$

Constants worse than Insertion Sort

Yes

Kinda

"Compared to straight insertion [...], bubble sorting requires a more complicated program and takes about twice as long!" –Donald Knuth

Bubble Sort is "almost" Adaptive

Idea: March through list, swapping adjacent elements if out of order

1	2	3	4	5	6	7	8	9	10	11	12
---	---	---	---	---	---	---	---	---	----	----	----

1	2	3	4	5	6	7	8	9	10	11	12
---	---	---	---	---	---	---	---	---	----	----	----

Only makes one "pass"

2	3	4	5	6	7	8	9	10	11	12	1
---	---	---	---	---	---	---	---	----	----	----	---

After one "pass"

2	3	4	5	6	7	8	9	10	11	1	12
---	---	---	---	---	---	---	---	----	----	---	----

Requires n passes, thus is $O(n^2)$

Bubble Sort

Stable?

 Idea: March through list, swapping adjacent elements if out of order, repeat until sorted

In Place?

 $\begin{array}{c}
\frac{\operatorname{Run Time?}}{\Theta(n^2)} \\
\operatorname{Constants worse} \\
\text{than Insertion Sort} \\
\underline{\operatorname{Parallelizable?}} \\
\end{array}$

Yes! Kinda Yes Not really

Adaptive?

"the bubble sort seems to have nothing to recommend it, except a catchy name and the fact that it leads to some interesting theoretical problems" –Donald Knuth, The Art of Computer Programming

Insertion Sort

Idea: Maintain a sorted list prefix, extend that prefix by "inserting" the next element

Insertion Sort

• Idea: Maintain a sorted list prefix, extend that prefix by "inserting" the next element

Run Time?

(but with very small constants) Great for short lists!

 $\Theta(n^2)$

Insertion Sort is Adaptive

Idea: Maintain a sorted list prefix, extend that prefix by "inserting" the next element

Only one comparison needed per element! Runtime: O(n)

Insertion Sort

• Idea: Maintain a sorted list prefix, extend that prefix by "inserting" the next element

Run Time?

In Place?Adaptive?Stable?Yes!YesYes

(but with very small constants) Great for short lists!

 $\Theta(n^2)$

Insertion Sort is Stable

 Idea: Maintain a sorted list prefix, extend that prefix by "inserting" the next element

The "second" 10 will stay to the right

Insertion Sort

 Idea: Maintain a sorted list prefix, extend that prefix by "inserting" the next element $\frac{\text{Run Time?}}{\Theta(n^2)}$ (but with very small constants) Great for short lists!

In Place?	Adaptive?	Stable?	Parallelizable?
Yes!	Yes	Yes	No

"All things considered, it's actually a pretty good sorting algorithm!" –Nate Brunelle Can sort a list as it is received, i.e., don't need the entire list to begin sorting

Online?

Yes

• Idea: Build a Heap, repeatedly extract max element from the heap to build sorted list Right-to-Left

 Idea: Build a Heap, repeatedly extract max element from the heap to build sorted list Rightto-Left $\frac{\text{Run Time?}}{\Theta(n \log n)}$ Constants worse
than Quick Sort

When removing an element from the heap, move it to the (now unoccupied) end of the list

In Place Heap Sort

• Idea: When removing an element from the heap, move it to the (now unoccupied) end of the list

In Place Heap Sort

• Idea: When removing an element from the heap, move it to the (now unoccupied) end of the list

In Place Heap Sort

• Idea: When removing an element from the heap, move it to the (now unoccupied) end of the list

In Place Heap Sort

• Idea: When removing an element from the heap, move it to the (now unoccupied) end of the list

In Place Heap Sort

 Idea: When removing an element from the heap, move it to the (now unoccupied) end of the list

Heap Sort

• Idea: Build a Heap, repeatedly extract max element from the heap to build sorted list Right-to-Left

<u>In Place?</u> <u>Adaptive?</u> <u>Stable?</u> Yes! No No Run Time? Θ(n log n) Constants worse than Quick Sort Parallelizable? No

Sorting in Linear Time

- Cannot be comparison-based
- Need to make some sort of assumption about the contents of the list
 - Small number of unique values
 - Small range of values
 - Etc.

• Idea: Count how many things are less than each element

$$L = \begin{bmatrix} 3 & 6 & 6 & 1 & 3 & 4 & 1 & 6 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \end{bmatrix}$$

1.Range is [1, k] (here [1,6]) make an array C of size k populate with counts of each value

For i in L: ++C[L[i]]

2.Take "running sum" of *C* to count things less than each value For i = 1 to len(*C*): C[i] = C[i - 1] + C[i]

• Idea: Count how many things are less than each element

$$L = \begin{bmatrix} 3 & 6 & 6 & 1 & 3 & 4 & 1 & 6 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \end{bmatrix} C = \begin{bmatrix} 2 & 2 & 4 & 5 & 5 & 7 \\ 1 & 2 & 3 & 4 & 5 & 6 \\ Last item of value 6 \\ goes at index 8 \end{bmatrix}$$

For each element of *L* (last to first):
Use *C* to find its proper place in *B*
$$\begin{bmatrix} For i = len(L) \text{ downto 1:} \\ B \begin{bmatrix} C[L[i]] \end{bmatrix} = L[i] \end{bmatrix}$$

Decrement that position of C

For
$$i = \operatorname{len}(L)$$
 downto 1:

$$B\left[C[L[i]]\right] = L[i]$$

$$C[L[i]] = C[L[i]] - 1$$

Idea: Count how many things are less than each element

$$L = \begin{bmatrix} 3 & 6 & 6 & 1 & 3 & 4 & 1 & 6 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \end{bmatrix} C = \begin{bmatrix} 1 & 2 & 4 & 5 & 5 & 7 \\ 1 & 2 & 3 & 4 & 5 & 6 \\ Last item of value 1 \end{bmatrix}$$

goes at index 2

For each element of *L* (last to first): Use *C* to find its proper place in *B* Decrement that position of C

For
$$i = \operatorname{len}(L)$$
 downto 1:

$$B\left[C[L[i]]\right] = L[i]$$

$$C[L[i]] = C[L[i]] - 1$$

Run Time: O(n + k)Memory: O(n + k)

- Why not always use counting sort?
- For 64-bit numbers, requires an array of length $2^{64} > 10^{19}$
 - -5 GHz CPU will require > 116 years to initialize the array
 - 18 Exabytes of data
 - Total amount of data that Google has (?)

One Exabyte = 10^{18} bytes 1 million terabytes (TB) 1 billion gigabytes (GB)

100,000 x Library of Congress (print)

12 Exabytes

https://en.wikipedia.org/wiki/Utah_Data_Center

Radix Sort

• Idea: Stable sort on each digit, from least significant to most significant

103	801	401	323	255	823	999	101	113	901	555	512	245	800	018	121
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Place each element into a "bucket" according to its 1's place

Radix Sort

• Idea: Stable sort on each digit, from least significant to most significant

Place each element into a "bucket" according to its 10's place

Radix Sort

 Idea: Stable sort on each digit, from least significant to most significant

Place each element into a "bucket" according to its 100's place

Run Time: O(d(n + b)) d =digits in largest value b =base of representation

Maximum Sum Continuous Subarray

The maximum-sum subarray of a given array of integers A is the interval [a, b] such that the sum of all values in the array between a and b inclusive is maximal.

Given an array of n integers (may include both positive and negative values), give a $O(n \log n)$ algorithm for finding the maximum-sum subarray.

Divide and Conquer $\Theta(n \log n)$

Divide and Conquer $\Theta(n \log n)$

Divide and Conquer $\Theta(n \log n)$

Return the Max of Left, Right, Center

Divide and Conquer Summary

Typically multiple subproblems. Typically all roughly the same size.

- Divide
 - Break the list in half
- Conquer
 - Find the best subarrays on the left and right
- Combine
 - Find the best subarray that "spans the divide"
 - I.e. the best subarray that ends at the divide concatenated with the best that starts at the divide

Generic Divide and Conquer Solution

def myDCalgo(problem): if baseCase(problem): solution = solve(problem) #brute force if necessary return solution subproblems = Divide(problem) for sub in subproblems: subsolutions.append(myDCalgo(sub)) solution = Combine(subsolutions) return solution

MSCS Divide and Conquer $\Theta(n \log n)$

```
def MSCS(list):
```

```
if list.length < 2:
      return list[0] #list of size 1 the sum is maximal
{listL, listR} = Divide (list)
for list in {listL, listR}:
      subSolutions.append(MSCS(list))
solution = max(solnL, solnR, span(listL, listR))
return solution
```

Types of "Divide and Conquer"

- Divide and Conquer
 - Break the problem up into several subproblems of roughly equal size, recursively solve
 - E.g. Karatsuba, Closest Pair of Points, Mergesort...
- Decrease and Conquer
 - Break the problem into a single smaller subproblem, recursively solve
 - E.g. Impossible Missions Force (Double Agents), Quickselect, Binary Search

Pattern So Far

- Typically looking to divide the problem by some fraction (½, ¼ the size)
- Not necessarily always the best!
 - Sometimes, we can write faster algorithms by finding unbalanced divides.

Chip and Conquer

• Divide

– Make a subproblem of all but the last element

• Conquer

- Find best subarray on the left (BSL(n-1))
- Find the best subarray ending at the divide (BED(n-1))

• Combine

- New Best Ending at the Divide:
 - $BED(n) = \max(BED(n-1) + arr[n], 0)$
- New best on the left:
 - $BSL(n) = \max(BSL(n-1), BED(n))$

Chip and Conquer

• Divide

– Make a subproblem of all but the last element

• Conquer

- Find best subarray on the left (BSL(n-1))
- Find the best subarray ending at the divide (BED(n-1))

• Combine

- New Best Ending at the Divide:
 - $BED(n) = \max(BED(n-1) + arr[n], 0)$
- New best on the left:
 - $BSL(n) = \max(BSL(n-1), BED(n))$

Was unbalanced better?YES

- Old:
 - We divided in Half
 - We solved 2 different problems:
 - Find the best overall on BOTH the left/right
 - Find the best which end/start on BOTH the left/right respectively
 - Linear time combine
- New:
 - We divide by 1, n-1
 - We solve 2 different problems:
 - Find the best overall on the left ONLY
 - Find the best which ends on the left ONLY
 - Constant time combine

$$T(n) = 2T\left(\frac{n}{2}\right) + n$$

 $T(n) = \Theta(n \log n)$

$$T(n) = \mathbf{1}T(n-1) + \mathbf{1}$$

 $T(n) = \Theta(n)$

MSCS Problem - Redux

- Solve in O(n) by increasing the problem size by 1 each time.
- Idea: Only include negative values if the positives on both sides of it are "worth it"

Remember two values:

Remember two values:

Remember two values:

Best ending here 19

Best ending here 14

Best ending here 25