
CS4102 Algorithms
Spring 2022

1

Warm up

Show that finding the minimum of an 
unordered list requires Ω(𝑛) comparisons



Find Min, Lower Bound Proof

Show that finding the minimum of an unordered 
list requires Ω(𝑛) comparisons

2

Suppose (toward contradiction) that there is an algorithm for 
Find Min that does fewer than 

𝑛

2
= Ω(𝑛) comparisons. 

This means there is at least one “uncompared” element
We can’t know that this element wasn’t the min!

2 8 19 20 −10100 3 9 -4

0 1 2 3 4 5 6 7



Announcements

• Homework schedule on course website

– Unit A Basic HW2 now available

– Unit A Advanced and Programming HW now available

– Unit A Programming submission opens Wednesday

• TA Office Hours

– 7-10pm Sun-Thurs in Ols 011

– Online hours also available 

• Unit A Exam: Tuesday, February 22, in class

3



Today’s Keywords

• Sorting

• Linear time Sorting

• Counting Sort

• Radix Sort

• Maximum Sum Continuous Subarray

4



Sorting, so far

• Sorting algorithms we have discussed:

– Mergesort

– Quicksort

• Other sorting algorithms (will discuss):

– Bubblesort

– Insertionsort

– Heapsort

5

𝑂(𝑛 log 𝑛)

𝑂(𝑛 log 𝑛)

𝑂(𝑛 log 𝑛)

𝑂(𝑛2)

𝑂(𝑛2)

Can we do better than ?



Worst Case Lower Bounds

• Prove that there is no algorithm which can sort faster than 
𝑂(𝑛 log𝑛)

• Non-existence proof!

– Very hard to do

6



Strategy: Decision Tree

• Sorting algorithms use comparisons to figure out the 
order of input elements

• Draw tree to illustrate all possible execution paths

7

>or<?

>or<? >or<?

>or<? >or<? >or<? >or<?

>or<?>or<?>or<?>or<?>or<?>or<?>or<?>or<?

[1,2,3,4,5] [2,1,3,4,5] [5,2,4,1,3] [5,4,3,2,1]… …

… … … …

><

< >

< > >> >

<

< <<

>

One 
comparison Result of 

comparison

Permutation 
of sorted list

Possible 
execution path



Strategy: Decision Tree

• Worst case run time is the longest execution path

• i.e., “height” of the decision tree

8

>or<?

>or<? >or<?

>or<? >or<? >or<? >or<?

>or<?>or<?>or<?>or<?>or<?>or<?>or<?>or<?

[1,2,3,4,5] [2,1,3,4,5] [5,2,4,1,3] [5,4,3,2,1]… …

… … … …

><

< >

< > >> >

<

< <<

>

One 
comparison Result of 

comparison

Permutation 
of sorted list

Possible 
execution path

𝑛! Possible permutations

log 𝑛!

Θ(𝑛 log 𝑛)



Strategy: Decision Tree

• Conclusion: Worst Case Optimal run time of sorting is 
Θ(𝑛 log𝑛)
– There is no (comparison-based) sorting algorithm with run time 
𝑜(𝑛 log 𝑛)

9

>or<?

>or<? >or<?

>or<? >or<? >or<? >or<?

>or<?>or<?>or<?>or<?>or<?>or<?>or<?>or<?

[1,2,3,4,5] [2,1,3,4,5] [5,2,4,1,3] [5,4,3,2,1]… …

… … … …

><

< >

< > >> >

<

< <<

>

One 
comparison Result of 

comparison

Permutation 
of sorted list

Possible 
execution path

𝑛! Possible permutations

log 𝑛!

Θ(𝑛 log 𝑛)



Sorting, so far

• Sorting algorithms we have discussed:

– Mergesort

– Quicksort

• Other sorting algorithms (will discuss):

– Bubblesort

– Insertionsort

– Heapsort

10

𝑂(𝑛 log 𝑛)

𝑂(𝑛 log 𝑛)

𝑂(𝑛 log 𝑛)

𝑂(𝑛2)

𝑂(𝑛2)

Optimal!

Optimal!

Optimal!



Speed Isn’t Everything

Important properties of sorting algorithms:
• Run Time

– Asymptotic Complexity
– Constants

• In Place (or In-Situ)
– Done with only constant additional space

• Adaptive
– Faster if list is nearly sorted

• Stable
– Equal elements remain in original order

• Parallelizable
– Runs faster with multiple computers

11



Mergesort

• Divide: 

– Break 𝑛-element list into two lists of Τ𝑛 2 elements

• Conquer:

– If 𝑛 > 1: Sort each sublist recursively

– If 𝑛 = 1: List is already sorted (base case)

• Combine:

– Merge together sorted sublists into one sorted list

Run Time?

Θ(𝑛 log𝑛)
Optimal!

In Place? Adaptive? Stable?

No No Yes!
(usually)



Merge

• Combine: Merge sorted sublists into one sorted list

• We have: 
– 2 sorted lists (𝐿1, 𝐿2)

– 1 output list (𝐿𝑜𝑢𝑡)

While (𝐿1 and 𝐿2 not empty):

If 𝐿1 0 ≤ 𝐿2[0]: 

𝐿𝑜𝑢𝑡.append(𝐿1.pop())

Else: 

𝐿𝑜𝑢𝑡.append(𝐿2.pop())

𝐿𝑜𝑢𝑡.append(𝐿1)

𝐿𝑜𝑢𝑡.append(𝐿2)
13

Stable:
If elements are 
equal, leftmost 
comes first



Mergesort

• Divide: 

– Break 𝑛-element list into two lists of Τ𝑛 2 elements

• Conquer:

– If 𝑛 > 1: Sort each sublist recursively

– If 𝑛 = 1: List is already sorted (base case)

• Combine:

– Merge together sorted sublists into one sorted list

14

Run Time?

Θ(𝑛 log𝑛)
Optimal!

In Place? Adaptive? Stable? Parallelizable?

No No Yes!
(usually)

Yes!



Mergesort

• Divide: 
– Break 𝑛-element list into two lists of Τ𝑛 2 elements

• Conquer:
– If 𝑛 > 1:

• Sort each sublist recursively

– If 𝑛 = 1:
• List is already sorted (base case)

• Combine:
– Merge together sorted sublists into one sorted list

15

Parallelizable:
Allow different 
machines to work 
on each sublist



Mergesort (Sequential)

𝑛 total / level

log2 𝑛 levels
of recursion

𝑛

𝑇 𝑛 = 2𝑇(
𝑛

2
) + 𝑛

Τ𝑛 2 Τ𝑛 2

Τ𝑛 4 Τ𝑛 4 Τ𝑛 4 Τ𝑛 4

… … … …

1 1 1 … 1 1 1

𝑛

𝑛

2

𝑛

2

𝑛

4

𝑛

4

𝑛

4

𝑛

4

1 1 1 1 1 1

Run Time: Θ(𝑛 log 𝑛)



Mergesort (Parallel)

𝑛

𝑇 𝑛 = 𝑇(
𝑛

2
) + 𝑛

Τ𝑛 2 Τ𝑛 2

Τ𝑛 4 Τ𝑛 4 Τ𝑛 4 Τ𝑛 4

… … … …

1 1 1 … 1 1 1

𝑛

𝑛

2

𝑛

2

𝑛

4

𝑛

4

𝑛

4
𝑛

4

1 1 1 1 1 1

Run Time: Θ(𝑛)

Done in Parallel
𝑛

2

𝑛

4

1



Quicksort

Run Time?

Θ(𝑛 log𝑛)
(almost always)
Better constants 
than Mergesort

In Place? Adaptive? Stable?

kinda No! No

Parallelizable?

Yes!

Idea: pick a partition element, recursively sort two 
sublists around that element

• Divide: select an element 𝑝, Partition(𝑝)

• Conquer: recursively sort left and right sublists

• Combine: Nothing!

Uses stack for 
recursive calls



Bubble Sort

Idea: March through list, swapping adjacent 
elements if out of order, repeat until sorted

19

8 5 7 9 12 10 1 2 4 3 6 11

5 8 7 9 12 10 1 2 4 3 6 11

5 7 8 9 12 10 1 2 4 3 6 11

5 7 8 9 12 10 1 2 4 3 6 11



Bubble Sort

Run Time?

Θ(𝑛2)
Constants worse 

than Insertion Sort
In Place? Adaptive?

Yes Kinda

• Idea: March through list, swapping adjacent 
elements if out of order, repeat until sorted

“Compared to straight 
insertion […], bubble sorting 
requires a more complicated 
program and takes about 
twice as long!” –Donald 
Knuth



Bubble Sort is “almost” Adaptive

Idea: March through list, swapping adjacent 
elements if out of order

21

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

Only makes one “pass”

2 3 4 5 6 7 8 9 10 11 12 1

After one “pass”

2 3 4 5 6 7 8 9 10 11 1 12

Requires 𝑛 passes, thus is 𝑂(𝑛2)



Bubble Sort

Run Time?

Θ(𝑛2)
Constants worse 

than Insertion Sort
In Place? Adaptive? Stable?

Yes! Kinda
Not really

Yes

Parallelizable?

No

• Idea: March through list, swapping adjacent 
elements if out of order, repeat until sorted

"the bubble sort seems to have nothing to 
recommend it, except a catchy name and 
the fact that it leads to some interesting 
theoretical problems” –Donald Knuth, The 
Art of Computer Programming



Insertion Sort

Idea: Maintain a sorted list prefix, extend that 
prefix by “inserting” the next element

23

3 5 7 8 10 12 9 2 4 6 1 11

Sorted Prefix

3 5 7 8 10 9 12 2 4 6 1 11

3 5 7 8 9 10 12 2 4 6 1 11

3 5 7 8 9 10 12 2 4 6 1 11

Sorted Prefix



Insertion Sort

Run Time?

Θ(𝑛2)
(but with very small 

constants)
Great for short lists!In Place? Adaptive?

Yes! Yes

• Idea: Maintain a sorted list prefix, extend that 
prefix by “inserting” the next element



Insertion Sort is Adaptive

Idea: Maintain a sorted list prefix, extend that 
prefix by “inserting” the next element

25

1 2 3 4 5 6 7 8 9 10 11 12

Sorted Prefix

1 2 3 4 5 6 7 8 9 10 11 12

Sorted Prefix

Only one comparison needed per element! Runtime: 𝑂(𝑛)



Insertion Sort

Run Time?

In Place? Adaptive? Stable?

Yes! Yes Yes

• Idea: Maintain a sorted list prefix, extend that 
prefix by “inserting” the next element Θ(𝑛2)

(but with very small 
constants)

Great for short lists!



Insertion Sort is Stable

• Idea: Maintain a sorted list prefix, extend that 
prefix by “inserting” the next element

27

3 5 7 8 10 12 10’ 2 4 6 1 11

Sorted Prefix

3 5 7 8 10 10’ 12 2 4 6 1 11

3 5 7 8 10 10’ 12 2 4 6 1 11

Sorted Prefix

The “second” 10 will stay to the right



Insertion Sort

Run Time?

In Place? Adaptive? Stable?

Yes! Yes Yes

Parallelizable?

No

• Idea: Maintain a sorted list prefix, extend that 
prefix by “inserting” the next element

Online?

Yes

Can sort a list as it is received, 
i.e., don’t need the entire list 
to begin sorting“All things considered, it’s 

actually a pretty good sorting 
algorithm!” –Nate Brunelle

Θ(𝑛2)
(but with very small constants)

Great for short lists!



Heap Sort

• Idea: Build a Heap, repeatedly extract max element 
from the heap to build sorted list Right-to-Left

29

10

9 6

8 7 5 2

4 1 3

10 9 6 8 7 5 2 4 1 3

Max Heap 
Property: Each 
node is larger 
than its children

0 1 2 3 4 5 6 7 8 9 10

1

2 3

4 65 7

8 9 10



Heap Sort

• Remove the Max element (i.e. the root) from the 
Heap: replace with last element, call Heapify(root)

30

3

9 6

8 7 5 2

4 1

3 9 6 8 7 5 2 4 1

Max Heap 
Property: Each 
node is larger 
than its children

0 1 2 3 4 5 6 7 8 9 10

1

2 3

4 65 7

8 9

Heapify(node): if node satisfies heap 
property, done. Else swap with largest 
child and recurse on that subtree



Heap Sort

• Remove the Max element (i.e. the root) from the 
Heap: replace with last element, call Heapify(root)

31

9

3 6

8 7 5 2

4 1

9 3 6 8 7 5 2 4 1

Max Heap 
Property: Each 
node is larger 
than its children

0 1 2 3 4 5 6 7 8 9 10

1

2 3

4 65 7

8 9

Heapify(node): if node satisfies heap 
property, done. Else swap with largest 
child and recurse on that subtree



Heap Sort

• Remove the Max element (i.e. the root) from the 
Heap: replace with last element, call Heapify(root)

32

9

8 6

3 7 5 2

4 1

9 8 6 3 7 5 2 4 1

Max Heap 
Property: Each 
node is larger 
than its children

0 1 2 3 4 5 6 7 8 9 10

1

2 3

4 65 7

8 9

Heapify(node): if node satisfies heap 
property, done. Else swap with largest 
child and recurse on that subtree



Heap Sort

• Remove the Max element (i.e. the root) from the 
Heap: replace with last element, call Heapify(root)

33

9

8 6

4 7 5 2

3 1

9 8 6 4 7 5 2 3 1

Max Heap 
Property: Each 
node is larger 
than its children

0 1 2 3 4 5 6 7 8 9 10

1

2 3

4 65 7

8 9

Heapify(node): if node satisfies heap 
property, done. Else swap with largest 
child and recurse on that subtree



Heap Sort

Run Time?

Θ(𝑛 log𝑛)
Constants worse 
than Quick Sort

In Place?

Yes!

• Idea: Build a Heap, repeatedly extract max 
element from the heap to build sorted list Right-
to-Left

When removing an element 
from the heap, move it to the 
(now unoccupied) end of the list



In Place Heap Sort

• Idea: When removing an element from the heap, 
move it to the (now unoccupied) end of the list

35

10

9 6

8 7 5 2

4 1 3

10 9 6 8 7 5 2 4 1 3

Max Heap 
Property: Each 
node is larger 
than its children

0 1 2 3 4 5 6 7 8 9 10

1

2 3

4 65 7

8 9 10



In Place Heap Sort

• Idea: When removing an element from the heap, 
move it to the (now unoccupied) end of the list

36

3

9 6

8 7 5 2

4 1

3 9 6 8 7 5 2 4 1 10

Max Heap 
Property: Each 
node is larger 
than its children

0 1 2 3 4 5 6 7 8 9 10

1

2 3

4 65 7

8 9



In Place Heap Sort

• Idea: When removing an element from the heap, 
move it to the (now unoccupied) end of the list

37

9

8 6

4 7 5 2

3 1

9 8 6 4 7 5 2 3 1 10

Max Heap 
Property: Each 
node is larger 
than its children

0 1 2 3 4 5 6 7 8 9 10

1

2 3

4 65 7

8 9



In Place Heap Sort

• Idea: When removing an element from the heap, 
move it to the (now unoccupied) end of the list

38

8

7 6

4 1 5 2

3

8 7 6 4 1 5 2 3 9 10

Max Heap 
Property: Each 
node is larger 
than its children

0 1 2 3 4 5 6 7 8 9 10

1

2 3

4 65 7

8



In Place Heap Sort

• Idea: When removing an element from the heap, 
move it to the (now unoccupied) end of the list

39

7

4 6

3 1 5 2

7 4 6 3 1 5 2 8 9 10

Max Heap 
Property: Each 
node is larger 
than its children

0 1 2 3 4 5 6 7 8 9 10

1

2 3

4 65 7



Heap Sort

Run Time?

Θ(𝑛 log𝑛)
Constants worse 
than Quick Sort

In Place? Adaptive? Stable?

Yes! No No

Parallelizable?

No

• Idea: Build a Heap, repeatedly extract max 
element from the heap to build sorted list Right-
to-Left



Sorting in Linear Time

• Cannot be comparison-based

• Need to make some sort of assumption about the contents of 
the list

– Small number of unique values

– Small range of values

– Etc.

42



Counting Sort

43

• Idea: Count how many things are less than each element

Range is [1, 𝑘] (here [1,6])
make an array 𝐶 of size 𝑘
populate with counts of each value

3 6 6 1 3 4 1 6

1 2 3 4 5 6 7 8

2 0 2 1 0 3

1 2 3 4 5 6

𝐶 =

For 𝑖 in 𝐿:

++C 𝐿 𝑖

1.

𝐿 =

Take “running sum” of 𝐶
to count things less than each value

2 2 4 5 5 8

1 2 3 4 5 6

𝐶 =

For 𝑖 = 1 to len(𝐶):
𝐶 𝑖 = 𝐶 𝑖 − 1 + 𝐶[𝑖]

2.

running sum

To sort: last item of 
value 3 goes at index 4



Counting Sort

44

• Idea: Count how many things are less than each element

3 6 6 1 3 4 1 6

1 2 3 4 5 6 7 8

𝐿 =

For each element of 𝐿 (last to first):
Use 𝐶 to find its proper place in 𝐵
Decrement that position of C

2 2 4 5 5 8

1 2 3 4 5 6

𝐶 =

Last item of value 6 
goes at index 8

1 2 3 4 5 6 7 8

𝐵 =

For 𝑖 = len(𝐿) downto1:

𝐵 𝐶 𝐿 𝑖 = 𝐿 𝑖

𝐶 𝐿 𝑖 = 𝐶 𝐿 𝑖 − 1

7

6



Counting Sort

45

• Idea: Count how many things are less than each element

3 6 6 1 3 4 1 6

1 2 3 4 5 6 7 8

𝐿 =

For each element of 𝐿 (last to first):
Use 𝐶 to find its proper place in 𝐵
Decrement that position of C

2 2 4 5 5 7

1 2 3 4 5 6

𝐶 =

Last item of value 1 
goes at index 2

6

1 2 3 4 5 6 7 8

𝐵 =

For 𝑖 = len(𝐿) downto1:

𝐵 𝐶 𝐿 𝑖 = 𝐿 𝑖

𝐶 𝐿 𝑖 = 𝐶 𝐿 𝑖 − 1

1

1

Run Time: 𝑂 𝑛 + 𝑘

Memory: 𝑂 𝑛 + 𝑘



Counting Sort

• Why not always use counting sort?

• For 64-bit numbers, requires an array of length 264 > 1019

– 5 GHz CPU will require > 116 years to initialize the array

– 18 Exabytes of data

• Total amount of data that Google has (?)

46

One Exabyte = 1018 bytes
1 million terabytes (TB)
1 billion gigabytes (GB)

100,000 x Library of Congress (print)



12 Exabytes

47https://en.wikipedia.org/wiki/Utah_Data_Center



Radix Sort

• Idea: Stable sort on each digit, from least 
significant to most significant

48

103 801 401 323 255 823 999 101

0 1 2 3 4 5 6 7

Place each element into 
a “bucket” according to 
its 1’s place

999018
255
555
245

103
323
823
113

512

113 901 555 512 245 800 018 121

8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7

801
401
101
901
121

800

8 9



Radix Sort

• Idea: Stable sort on each digit, from least 
significant to most significant

49

Place each element into 
a “bucket” according to 
its 10’s place

999018
255
555
245

103
323
823
113

512

0 1 2 3 4 5 6 7

801
401
101
901
121

800

8 9

999
255
555

245
121
323
823

0 1 2 3 4 5 6 7

512
113
018

800
801
401
101
901
103

8 9



Radix Sort

• Idea: Stable sort on each digit, from least 
significant to most significant

50

Place each element into 
a “bucket” according to 
its 100’s place

999
255
555

245
121
323
823

0 1 2 3 4 5 6 7

512
113
018

800
801
401
101
901
103

8 9

901
999

800
801
823

512
555

401323
245
255

0 1 2 3 4 5 6 7

101
103
113
121

018

8 9

Run Time: 𝑂 𝑑 𝑛 + 𝑏
𝑑 = digits in largest value
𝑏 = base of representation



Maximum Sum Continuous Subarray

The maximum-sum subarray of a given array of integers 𝐴 is the 
interval [𝑎, 𝑏] such that the sum of all values in the array 
between 𝑎 and 𝑏 inclusive is maximal. 

Given an array of 𝑛 integers (may include both positive and 
negative values), give a 𝑂(𝑛 log𝑛) algorithm for finding the 
maximum-sum subarray.

51



Divide and Conquer 

52

5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22

0 21 3 4 5 6 7 8 9 10 11 12 13

Divide in half
Recursively 

Solve on Left

Recursively 
Solve on Right



Divide and Conquer 

53

5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22

0 21 3 4 5 6 7 8 9 10 11 12 13

Divide in half
Recursively 

Solve on Left
19

Recursively 
Solve on Right

25Find Largest 
sum that spans 

the cut

2-13-6-3-716 -20-42-37135-128

Largest sum 
that ends here

+ Largest sum 
that starts here



Divide and Conquer 

54

5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22

0 21 3 4 5 6 7 8 9 10 11 12 13

Divide in half
Recursively 

Solve on Left
19

Recursively 
Solve on Right

25Find Largest 
sum that spans 

the cut
19

2-13-6-3-716 -20-42-37135-128

Return the Max of 
Left, Right, Center



Divide and Conquer Summary

• Divide

– Break the list in half

• Conquer

– Find the best subarrays on the left and right

• Combine

– Find the best subarray that “spans the divide”

– I.e. the best subarray that ends at the divide concatenated with the 
best that starts at the divide

Typically multiple subproblems.
Typically all roughly the same size.



Generic Divide and Conquer Solution

def myDCalgo(problem):

if baseCase(problem):

solution = solve(problem) #brute force if necessary

return solution

subproblems = Divide(problem)

for sub in subproblems:

subsolutions.append(myDCalgo(sub))

solution = Combine(subsolutions)

return solution
56



MSCS Divide and Conquer 

def MSCS(list):

if list.length < 2:

return list[0] #list of size 1 the sum is maximal

{listL, listR} = Divide (list)

for list in {listL, listR}:

subSolutions.append(MSCS(list))

solution = max(solnL, solnR, span(listL, listR))

return solution

57



Types of “Divide and Conquer”

• Divide and Conquer

– Break the problem up into several subproblems of roughly equal size, 
recursively solve

– E.g. Karatsuba, Closest Pair of Points, Mergesort…

• Decrease and Conquer

– Break the problem into a single smaller subproblem, recursively solve

– E.g. Impossible Missions Force (Double Agents), Quickselect, Binary 
Search



Pattern So Far

• Typically looking to divide the problem by some fraction 
(½, ¼ the size)

• Not necessarily always the best!

– Sometimes, we can write faster algorithms by finding unbalanced
divides.



Chip and Conquer

• Divide
– Make a subproblem of all but the last element

• Conquer
– Find best subarray on the left (𝐵𝑆𝐿(𝑛 − 1))
– Find the best subarray ending at the divide (𝐵𝐸𝐷(𝑛 − 1))

• Combine
– New Best Ending at the Divide:

• 𝐵𝐸𝐷 𝑛 = max(𝐵𝐸𝐷 𝑛 − 1 + 𝑎𝑟𝑟 𝑛 , 0)

– New best on the left: 

• 𝐵𝑆𝐿 𝑛 = max 𝐵𝑆𝐿 𝑛 − 1 , 𝐵𝐸𝐷 𝑛



5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22

0 21 3 4 5 6 7 8 9 10 11 12 13

DivideRecursively 
Solve on Left

25 Find Largest 
sum ending at 

the cut
22



5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22

0 21 3 4 5 6 7 8 9 10 11 12 13

DivideRecursively 
Solve on Left

25 Find Largest 
sum ending at 

the cut
0



5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22

0 21 3 4 5 6 7 8 9 10 11 12 13

DivideRecursively 
Solve on Left

25 Find Largest 
sum ending at 

the cut
0



5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22

0 21 3 4 5 6 7 8 9 10 11 12 13

DivideRecursively 
Solve on Left

25 Find Largest 
sum ending at 

the cut
25



5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22

0 21 3 4 5 6 7 8 9 10 11 12 13

DivideRecursively 
Solve on Left

19 Find Largest 
sum ending at 

the cut
17



5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22

0 21 3 4 5 6 7 8 9 10 11 12 13

DivideRecursively 
Solve on Left

19 Find Largest 
sum ending at 

the cut
0



5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22

0 21 3 4 5 6 7 8 9 10 11 12 13

DivideRecursively 
Solve on Left

13 Find Largest 
sum ending at 

the cut
12



Chip and Conquer

• Divide
– Make a subproblem of all but the last element

• Conquer
– Find best subarray on the left (𝐵𝑆𝐿(𝑛 − 1))
– Find the best subarray ending at the divide (𝐵𝐸𝐷(𝑛 − 1))

• Combine
– New Best Ending at the Divide:

• 𝐵𝐸𝐷 𝑛 = max(𝐵𝐸𝐷 𝑛 − 1 + 𝑎𝑟𝑟 𝑛 , 0)

– New best on the left: 

• 𝐵𝑆𝐿 𝑛 = max 𝐵𝑆𝐿 𝑛 − 1 , 𝐵𝐸𝐷 𝑛



Was unbalanced better?

• Old:
– We divided in Half
– We solved 2 different problems:

• Find the best overall on BOTH the left/right
• Find the best which end/start on BOTH the left/right respectively

– Linear time combine

• New:
– We divide by 1, n-1
– We solve 2 different problems:

• Find the best overall on the left ONLY 
• Find the best which ends on the left ONLY

– Constant time combine

𝑇 𝑛 = 1𝑇 𝑛 − 1 + 1

𝑇 𝑛 = Θ(𝑛 log 𝑛)

𝑇 𝑛 = Θ(𝑛)

YES



MSCS Problem - Redux

• Solve in 𝑂(𝑛) by increasing the problem size by 1 each time.

• Idea: Only include negative values if the positives on both sides 
of it are “worth it”



Solution

71

5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22

0 21 3 4 5 6 7 8 9 10 11 12 13

Begin here

Remember two values: Best So Far Best ending here
5 5



Solution

72

5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22

0 21 3 4 5 6 7 8 9 10 11 12 13

Remember two values: Best So Far Best ending here
13 13



Solution

73

5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22

0 21 3 4 5 6 7 8 9 10 11 12 13

Remember two values: Best So Far Best ending here
13 9



Solution

74

5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22

0 21 3 4 5 6 7 8 9 10 11 12 13

Remember two values: Best So Far Best ending here
13 12



Solution

75

5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22

0 21 3 4 5 6 7 8 9 10 11 12 13

Remember two values: Best So Far Best ending here
19 19



Solution

76

5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22

0 21 3 4 5 6 7 8 9 10 11 12 13

Remember two values: Best So Far Best ending here
19 4



Solution

77

5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22

0 21 3 4 5 6 7 8 9 10 11 12 13

Remember two values: Best So Far Best ending here
19 14



Solution

78

5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22

0 21 3 4 5 6 7 8 9 10 11 12 13

Remember two values: Best So Far Best ending here
19 0



Solution

79

5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22

0 21 3 4 5 6 7 8 9 10 11 12 13

Remember two values: Best So Far Best ending here
19 17



Solution

80

5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22

0 21 3 4 5 6 7 8 9 10 11 12 13

Remember two values: Best So Far Best ending here
25 25


