CS4102 Algorithms

Warm up

Show that finding the minimum of an unordered list requires $\Omega(n)$ comparisons

Find Min, Lower Bound Proof

Show that finding the minimum of an unordered list requires $\Omega(n)$ comparisons

Suppose (toward contradiction) that there is an algorithm for Find Min that does fewer than $\frac{n}{2}=\Omega(n)$ comparisons.

This means there is at least one "uncompared" element We can't know that this element wasn't the min!

2	8	19	20		3	9	-4
0	1	2	3	4	5	6	7

Announcements

- Homework schedule on course website
- Unit A Basic HW2 now available
- Unit A Advanced and Programming HW now available
- Unit A Programming submission opens Wednesday
- TA Office Hours
- 7-10pm Sun-Thurs in Ols 011
- Online hours also available
- Unit A Exam: Tuesday, February 22, in class

Today's Keywords

- Sorting
- Linear time Sorting
- Counting Sort
- Radix Sort
- Maximum Sum Continuous Subarray

Sorting, so far

- Sorting algorithms we have discussed:
- Mergesort $\quad O(n \log n)$
- Quicksort $\quad O(n \log n)$
- Other sorting algorithms (will discuss):
- Bubblesort $O\left(n^{2}\right)$
- Insertionsort $O\left(n^{2}\right)$
- Heapsort $\quad O(n \log n)$

Can we do better than $O(n \log n)$?

Worst Case Lower Bounds

- Prove that there is no algorithm which can sort faster than $O(n \log n)$
- Non-existence proof!
- Very hard to do

Strategy: Decision Tree

- Sorting algorithms use comparisons to figure out the order of input elements
- Draw tree to illustrate all possible execution paths

Strategy: Decision Tree

- Worst case run time is the longest execution path
- i.e., "height" of the decision tree

Strategy: Decision Tree

- Conclusion: Worst Case Optimal run time of sorting is $\Theta(n \log n)$
- There is no (comparison-based) sorting algorithm with run time $o(n \log n)$

Possible comparison
Result of

Sorting, so far

- Sorting algorithms we have discussed:
- Mergesort $O(n \log n) \quad$ Optimal!
- Quicksort $O(n \log n) \quad$ Optimal!
- Other sorting algorithms (will discuss):
- Bubblesort $O\left(n^{2}\right)$
- Insertionsort $O\left(n^{2}\right)$
- Heapsort $O(n \log n) \quad$ Optimal!

Speed Isn’t Everything

Important properties of sorting algorithms:

- Run Time
- Asymptotic Complexity
- Constants
- In Place (or In-Situ)
- Done with only constant additional space
- Adaptive
- Faster if list is nearly sorted
- Stable
- Equal elements remain in original order
- Parallelizable
- Runs faster with multiple computers

Mergesort

- Divide:
- Break n-element list into two lists of $n / 2$ elements
- Conquer:
- If $n>1$: Sort each sublist recursively
- If $n=1$: List is already sorted (base case)
- Combine:
- Merge together sorted sublists into one sorted list

In Place? Adaptive? Stable?
 No
 Yes!
 (usually)

Run Time?

$\Theta(n \log n)$
Optimal!

Merge

- Combine: Merge sorted sublists into one sorted list
- We have:
- 2 sorted lists $\left(L_{1}, L_{2}\right)$
- 1 output list ($L_{\text {out }}$)

While (L_{1} and L_{2} not empty):

$$
\begin{aligned}
& \text { If } L_{1}[0] \leq L_{2}[0] \text { : } \\
& \quad L_{\text {out }} \cdot \operatorname{append}\left(L_{1} \cdot \operatorname{pop}()\right)
\end{aligned}
$$

Else:

$$
L_{\text {out }} . \text { append }\left(L_{2} \cdot \operatorname{pop}()\right)
$$

$L_{\text {out }}$.append $\left(L_{1}\right)$
$L_{\text {out }}$.append $\left(L_{2}\right)$

Mergesort

- Divide:
- Break n-element list into two lists of $n / 2$ elements
- Conquer:
- If $n>1$: Sort each sublist recursively
- If $n=1$: List is already sorted (base case)
- Combine:
- Merge together sorted sublists into one sorted list

In Place? Adaptive? Stable? Parallelizable?
 No
 No
 Yes!
 (usually)

Run Time?

$$
\begin{gathered}
\Theta(n \log n) \\
\text { Optimal! }
\end{gathered}
$$

Mergesort

- Divide:

- Break n-element list into two lists of $n / 2$ elements

Parallelizable:

Allow different machines to work on each sublist

- Conquer:
- If $n>1$:
- Sort each sublist recursively
- If $n=1$:
- List is already sorted (base case)
- Combine:
- Merge together sorted sublists into one sorted list

Mergesort (Sequential)

$$
T(n)=2 T\left(\frac{n}{2}\right)+n
$$

Run Time: $\Theta(n \log n)$

Mergesort (Parallel)

$$
T(n)=T\left(\frac{n}{2}\right)+n
$$

Run Time: $\Theta(n)$

Quicksort

Idea: pick a partition element, recursively sort two sublists around that element

- Divide: select an element p, Partition (p)
- Conquer: recursively sort left and right sublists
- Combine: Nothing!

Run Time?

$$
\Theta(n \log n)
$$

(almost always) Better constants than Mergesort

Parallelizable?

Yes!

Uses stack for recursive calls

Bubble Sort

Idea: March through list, swapping adjacent elements if out of order, repeat until sorted

| 8 | 5 | 7 | 9 | 12 | 10 | 1 | 2 | 4 | 3 | 6 | 11 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | 5 | 8 | 7 | 9 | 12 | 10 | 1 | 2 | 4 | 3 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

5	7	8	9	12	10	1	2	4	3	6	11

5	7	8	9	12	10	1	2	4	3	6	11

Bubble Sort

- Idea: March through list, swapping adjacent elements if out of order, repeat until sorted

Run Time?

$\Theta\left(n^{2}\right)$
Constants worse than Insertion Sort

In Place? Adaptive?

Kinda
"Compared to straight insertion [...], bubble sorting requires a more complicated program and takes about
twice as long!" -Donald Knuth

Bubble Sort is "almost" Adaptive

Idea: March through list, swapping adjacent elements if out of order

1	2	3	4	5	6	7	8	9	10	11	12
1	2	3	4	5	6	7	8	9	10	11	12
Only makes one "pass"											
2	3	4	5	6	7	8	9	10	11	12	1
After one "pass"											
2	3	4	5	6	7	8	9	10	11	1	12

Requires n passes, thus is $O\left(n^{2}\right)$

Bubble Sort

- Idea: March through list, swapping adjacent

Run Time?

 $\Theta\left(n^{2}\right)$Constants worse than Insertion Sort

In Place? Adaptive? Stable? Yes! Kinda Yes
 Not really

"the bubble sort seems to have nothing to recommend it, except a catchy name and the fact that it leads to some interesting theoretical problems" -Donald Knuth, The Art of Computer Programming

Insertion Sort

Idea: Maintain a sorted list prefix, extend that prefix by "inserting" the next element

Insertion Sort

- Idea: Maintain a sorted list prefix, extend that prefix by "inserting" the next element

In Place? Adaptive? Yes! Yes

Run Time? $\Theta\left(n^{2}\right)$

(but with very small constants)
Great for short lists!

Insertion Sort is Adaptive

Idea: Maintain a sorted list prefix, extend that prefix by "inserting" the next element

Only one comparison needed per element! Runtime: $O(n)$

Insertion Sort

- Idea: Maintain a sorted list prefix, extend that prefix by "inserting" the next element

Run Time? $\Theta\left(n^{2}\right)$

(but with very small constants)
Great for short lists!

Yes!
Yes
Stable? Yes

Insertion Sort is Stable

- Idea: Maintain a sorted list prefix, extend that prefix by "inserting" the next element

The "second" 10 will stay to the right

Insertion Sort

- Idea: Maintain a sorted list prefix, extend that prefix by "inserting" the next element

Run Time? $\Theta\left(n^{2}\right)$
(but with very small constants) Great for short lists!

Parallelizable? No
 In Place? Adaptive? Stable? Yes! Yes Yes

> Can sort a list as it is received, Online? i.e., don't need the entire list to begin sorting

Heap Sort

- Idea: Build a Heap, repeatedly extract max element from the heap to build sorted list Right-to-Left

Heap Sort

- Remove the Max element (i.e. the root) from the Heap: replace with last element, call Heapify(root)

Heapify(node): if node satisfies heap property, done. Else swap with largest child and recurse on that subtree

Heap Sort

- Remove the Max element (i.e. the root) from the Heap: replace with last element, call Heapify(root)

Heapify(node): if node satisfies heap property, done. Else swap with largest child and recurse on that subtree

Heap Sort

- Remove the Max element (i.e. the root) from the Heap: replace with last element, call Heapify(root)

Heapify(node): if node satisfies heap property, done. Else swap with largest child and recurse on that subtree

Heap Sort

- Remove the Max element (i.e. the root) from the Heap: replace with last element, call Heapify(root)

	9	8	6	4	7	5	2	3	1	

Max Heap Property: Each node is larger than its children

Heapify(node): if node satisfies heap property, done. Else swap with largest child and recurse on that subtree

Heap Sort

- Idea: Build a Heap, repeatedly extract max element from the heap to build sorted list Right-to-Left

Run Time?

$\Theta(n \log n)$
Constants worse than Quick Sort

In Place? When removing an element from the heap, move it to the (now unoccupied) end of the list

In Place Heap Sort

- Idea: When removing an element from the heap, move it to the (now unoccupied) end of the list

In Place Heap Sort

- Idea: When removing an element from the heap, move it to the (now unoccupied) end of the list

In Place Heap Sort

- Idea: When removing an element from the heap, move it to the (now unoccupied) end of the list

Max Heap

	9	8	6	4	7	5	2	3	1	10
0	1	2	3	4	5	6	7	8	9	10

Property: Each node is larger than its children

In Place Heap Sort

- Idea: When removing an element from the heap, move it to the (now unoccupied) end of the list

Max Heap

	8	7	6	4	1	5	2	3	9	10
0	1	2	3	4	5	6	7	8	9	10

Property: Each node is larger than its children

1

In Place Heap Sort

- Idea: When removing an element from the heap, move it to the (now unoccupied) end of the list

Heap Sort

- Idea: Build a Heap, repeatedly extract max element from the heap to build sorted list Right-to-Left

Run Time?
$\Theta(n \log n)$
Constants worse than Quick Sort Parallelizable? No

Sorting in Linear Time

- Cannot be comparison-based
- Need to make some sort of assumption about the contents of the list
- Small number of unique values
- Small range of values
- Etc.

Counting Sort

- Idea: Count how many things are less than each element

$L=$| 3 | 6 | 6 | 1 | 3 | 4 | 1 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |

1.Range is $[1, k]$ (here $[1,6]$) make an array C of size k populate with counts of each value
For i in L :

$$
++C[L[i]]
$$

$C=$| 2 | 0 | 2 | 1 | 0 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 2 | 3 | 4 | 5 | 6 |

running sum

$C=$| 2 | 2 | 4 | 5 | 5 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 2 | 3 | 4 | 5 | 6 |

To sort: last item of value 3 goes at index 4

Counting Sort

- Idea: Count how many things are less than each element

$$
\begin{aligned}
& L=\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 3 & 6 & 6 & 1 & 3 & 4 & 1 & 6 \\
\hline
\end{array} \begin{array}{llll}
\hline & 3 & 4 & 5 \\
\hline
\end{array} \\
& \text { Last item of value } 6 \\
& \text { goes at index } 8 \\
& \text { For each element of } L \text { (last to first): } \\
& \text { Use } C \text { to find its proper place in } B \\
& \text { Decrement that position of } C \\
& \text { For } i=\operatorname{len}(L) \text { downto 1: } \\
& B[C[L[i]]]=L[i] \\
& C[L[i]]=C[L[i]]-1
\end{aligned}
$$

Counting Sort

- Idea: Count how many things are less than each element

$$
\begin{aligned}
& L=\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 3 & 6 & 6 & 1 & 3 & 4 & 1 & 6 \\
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array} \\
& \text { goes at index } 2 \\
& \text { For each element of } L \text { (last to first): } \\
& \text { Use } C \text { to find its proper place in } B \\
& \text { Decrement that position of } C \\
& \text { For } i=\operatorname{len}(L) \text { downto 1: } \\
& B[C[L[i]]]=L[i] \\
& C[L[i]]=C[L[i]]-1
\end{aligned}
$$

Run Time: $O(n+k)$
Memory: $O(n+k)$

Counting Sort

- Why not always use counting sort?
- For 64-bit numbers, requires an array of length $2^{64}>10^{19}$
-5 GHz CPU will require >116 years to initialize the array
- 18 Exabytes of data
- Total amount of data that Google has (?)

One Exabyte $=10^{18}$ bytes
1 million terabytes (TB)
1 billion gigabytes(GB)
100,000 x Library of Congress (print)

12 Exabytes

Radix Sort

- Idea: Stable sort on each digit, from least significant to most significant

103	801	401	323	255	823	999	101	113	901	555	512	245	800	018	121

Place each element into
a "bucket" according to its 1's place

	801		103						
800	401		355						
101	512	323		555			018	999	
901		113		245					
	121								

Radix Sort

- Idea: Stable sort on each digit, from least significant to most significant

Radix Sort

- Idea: Stable sort on each digit, from least significant to most significant

Place each element into a "bucket" according to its 100 's place

Run Time: $O(d(n+b))$
$d=$ digits in largest value
$b=$ base of representation

$\begin{aligned} & \hline 800 \\ & 801 \\ & 401 \\ & 101 \\ & 901 \\ & 103 \end{aligned}$	$\begin{aligned} & 512 \\ & 113 \\ & 018 \end{aligned}$	$\begin{aligned} & 121 \\ & 323 \\ & 823 \end{aligned}$		245	$\begin{aligned} & 255 \\ & 555 \end{aligned}$				999
0	1	2	3	4	5	6	7	8	9

	101								
018	103	245	323	401	512			800	901
	113	255	355			801	823	99	
	121								

Maximum Sum Continuous Subarray

The maximum-sum subarray of a given array of integers A is the interval $[a, b]$ such that the sum of all values in the array between a and b inclusive is maximal.

Given an array of n integers (may include both positive and negative values), give a $O(n \log n)$ algorithm for finding the maximum-sum subarray.

Divide and Conquer $\Theta(n \log n)$

Divide and Conquer $\Theta(n \log n)$

				arg	st su ads h	re	$\begin{array}{r} \text { Lh } \\ \text { tha } \end{array}$	rges t sta	ts h				
6	1	-7	-3	-6	-13	2	8	-12	5	13	-37	-42	-20
5	8	-4	3	7	-15	2	8	-20	17	8	-50	-5	22
0	1	2	3	4	5	6	7	8	9	10	11	12	13
Recursively Solve on Left					Divide in half					Recursively			
19						th	rge				25		

Divide and Conquer $\Theta(n \log n)$

Return the Max of

Left, Right, Center

6	1	-7			6	-13	2	8	-12	5	13	-37	-4	-20
5	8	-4			7	-15	2	8	-20	17	8	-50	-5	22
0	1	2			4	5	6	7	8	9	10	11	12	13
Recursively Solve on Left 19						Divide in half					Recursively Solve on Right			
						Find Largest					25			
							d	s						
						the cut				$T(n)=2 T\left(\frac{n}{2}\right)+n$				

Divide and Conquer Summary

Typically multiple subproblems.

- Divide Typically all roughly the same size.
- Break the list in half
- Conquer
- Find the best subarrays on the left and right
- Combine
- Find the best subarray that "spans the divide"
- I.e. the best subarray that ends at the divide concatenated with the best that starts at the divide

Generic Divide and Conquer Solution

def myDCalgo(problem):
if baseCase(problem):
solution = solve(problem) \#brute force if necessary
return solution
subproblems = Divide(problem)
for sub in subproblems:
subsolutions.append(myDCalgo(sub))
solution = Combine(subsolutions)
return solution

MSCS Divide and Conquer $\Theta(n \log n)$

def MSCS(list):

if list.length < 2:
return list[0] \#list of size 1 the sum is maximal
$\{$ listL, listR\} = Divide (list)
for list in \{listL, listR\}:
subSolutions.append(MSCS(list))
solution $=\max ($ solnL, solnR, span(listL, listR))
return solution

Types of "Divide and Conquer"

- Divide and Conquer
- Break the problem up into several subproblems of roughly equal size, recursively solve
- E.g. Karatsuba, Closest Pair of Points, Mergesort...
- Decrease and Conquer
- Break the problem into a single smaller subproblem, recursively solve
- E.g. Impossible Missions Force (Double Agents), Quickselect, Binary Search

Pattern So Far

- Typically looking to divide the problem by some fraction ($1 / 2,1 / 4$ the size)
- Not necessarily always the best!
- Sometimes, we can write faster algorithms by finding unbalanced divides.

Chip and Conquer

- Divide
- Make a subproblem of all but the last element
- Conquer
- Find best subarray on the left $(B S L(n-1))$
- Find the best subarray ending at the divide $(B E D(n-1))$
- Combine
- New Best Ending at the Divide:
- $\operatorname{BED}(n)=\max (B E D(n-1)+\operatorname{arr}[n], 0)$
- New best on the left:
- $B S L(n)=\max (B S L(n-1), B E D(n))$

5	8	-4	3	7	-15	2	8	-20	17	8	-50	-5
0	1	2	3	4	5	6	7	8	9	10	11	12

Recursively
Divide
Solve on Left
Find Largest
sum ending at
the cut

5	8	-4	3	7	-15	2	8	-20	17	8	-50	-5
0	1	2	4	5	6	7	8	9	10	11	12	13

Recursively
Divide
Solve on Left
Find Largest
sum ending at
the cut

Recursively Divide
Solve on Left
13
Find Largest
sum ending at
the cut
12

Chip and Conquer

- Divide
- Make a subproblem of all but the last element
- Conquer
- Find best subarray on the left $(B S L(n-1))$
- Find the best subarray ending at the divide $(B E D(n-1))$
- Combine
- New Best Ending at the Divide:
- $\operatorname{BED}(n)=\max (B E D(n-1)+\operatorname{arr}[n], 0)$
- New best on the left:
- $B S L(n)=\max (B S L(n-1), B E D(n))$

Was unbalanced better?YES

- Old:

$$
T(n)=2 T\left(\frac{n}{2}\right)+n
$$

- We divided in Half
- We solved 2 different problems:

$$
T(n)=\Theta(n \log n)
$$

- Find the best overall on BOTH the left/right
- Find the best which end/start on BOTH the left/right respectively
- Linear time combine
- New:

$$
T(n)=1 T(n-1)+1
$$

- We divide by 1, n-1
- We solve 2 different problems:
- Find the best overall on the left ONLY
- Find the best which ends on the left ONLY
- Constant time combine

MSCS Problem - Redux

- Solve in $O(n)$ by increasing the problem size by 1 each time.
- Idea: Only include negative values if the positives on both sides of it are "worth it"

$\theta(n)$ Solution

Remember two values:

Best So Far
5

Best ending here
5

$\theta(n)$ Solution

Remember two values:

Best So Far 13

Best ending here
13

$\theta(n)$ Solution

Remember two values:

Best So Far 13

Best ending here
9

$\theta(n)$ Solution

Remember two values:

Best So Far 13

Best ending here
12

$\Theta(n)$ Solution

Remember two values:
Best So Far 19

Best ending here
19

$\theta(n)$ Solution

Remember two values:
Best So Far 19

Best ending here 4

$\theta(n)$ Solution

Remember two values:
Best So Far 19

Best ending here
14

$\theta(n)$ Solution

Remember two values:
Best So Far 19

Best ending here
0

$\theta(n)$ Solution

5	8	-4	3	7	-15	2	8	-20	17	8	-50	-5	22
0	1	2	3	4	5	6	7	8	9	10	11	12	13

Remember two values:
Best So Far 19

Best ending here
17

$\theta(n)$ Solution

5	8	-4	3	7	-15	2	8	-20	17	8	-50	-5	22
0	1	2	3	4	5	6	7	8	9	10	11	12	13

Remember two values:

Best So Far
25

Best ending here
25

