CS4102 Algorithms
Spring 2022

Warm up
Compare f(n + m) with f(n) + f(m)
When f(n) = 0(n)
When f(n) = Q(n)

| f(m)
ool || [111 119 |
_ %
‘ fm f(n)

fn+m) < f(n) + f(m)

f(n) € Q(n)

[+m) = f(n) + f(m)

Arm

| ro

n m T n4+m

f(n) =6(n)

- fldm) =f@)+fm)

Announcements

* Homework schedule posted on course website
— Unit A Basic HW2 now available

— Unit A Advanced and Programming HW coming soon

 TA Office Hours
— 7-10pm Sun-Thurs in Ols 011
— Online hours also available

e Unit A Exam: Tuesday, February 22, in class

Today’s Keywords

* Divide and Conquer
e Strassen’s Algorithm
* Sorting

* Quicksort

CLRS Ch 4,7

Divide and Conquer, so far

What do they have in common?
Divide: Very easy (i.e. 0(1))
Mergesort Combine: Hard work (2(n))

Naive Multiplication

Karatsuba

Closest Pair of Points

Naive Matrix-Matrix Multiplication
Strassen’s

* Like Mergesort:

— Divide and conquer

— O(nlogn) run time (kind of...)
* Unlike Mergesort:

— Divide step is the hard part
— Typically faster than Mergesort

ldea: pick a pivot element, recursively sort two sublists around
that element

* Divide: select pivot element p, Partition(p)
* Conquer: recursively sort left and right sublists

* Combine: Nothing!

Partition (Divide step)

Given: a list, a pivot p

Start: unordered list

7 3 112110 1 2 4 9 6 | 11

Goal: All elements on left, all > p on right

10

Partition, Procedure

If value < p, move right
Else swap value with End value, move End Left
Done when = End

2

7 3 112|110 1 2 4 9 6 | 11

7 3 112110 1 2 4 9 6 | 11

1 2 4 9 6 | 11

7 3 |11 |10 1 2 4 9 Gl.

11

Partition, Procedure

If value < p, move right
Else swap value with End value, move End Left
Done when = End

5 7 3ﬁlO 1 2 4

)

5 7 3 6 | 10 | 1 2 4

J

5 7 3 6 | 10 | 1 2 4

5 7 3 Gﬁl 2 4

12

Partition, Procedure

If value < p, move right
Else swap value with End value, move End Left
Done when = End

Case 1: meet at element

Swap p with (2 in this case)

noonn

2 5 7 3 6 4 1

13

Partition, Procedure

If value < p, move right
Else swap value with End value, move End Left
Done when = End

Case 2: meet at element > p

Swap p with (2 in this case)

nooonn

2 5 7 3 6 4 1

14

Partition Summary

1. Put p at beginning of list

2. Put a pointer () just after p, and a pointer (End) at the
end of the list

3. While < End:
1. |If value < p, move right
2. Else swap value with End value, move End Left

4. If pointers meet at element : Swap p with

5. Else If pointers meet at element > p: Swap p with

Runtime? 0(n)

15

Conquer
|

All elements < p All'elements > p

Exactly where it belongs!

Recursively sort and Right sublists

16

Quicksort Run Time (Best)

If the pivot is always the median:

T

Then we divide in half each time

T(n) = 2T (%) +n

T(n) = 0(nlogn)

17

Quicksort Run Time (Worst)

If the pivot is always at the extreme:

_

Then we shorten by 1 each time
Tn)=Tn—1)+n

T(n) = 0(n?)

18

Quicksort Run Time (Worst)

Tm)=Tn—1)+n

| . Tm)=1+4+2+3+4+-+n

n—2
. () = n(n2+ 1)

_ T(n) = 0(n?)

Quicksort on a (nearly) Sorted List

First element always yields unbalanced pivot

_

So we shorten by 1 each time

Tm)=Tn—1)+n

T(n) = 0(n?)

20

HOW TO PICK THE PIVOT?

Good Pivot

 What makes a good Pivot?
— Roughly even split between left and right

— Ideally: median

e Can we find median in linear time?
— Yes!
— Quickselect

22

Quickselect

* Finds it" order statistic
— ith smallest element in the list
— 1St order statistic: minimum
— nth order statistic: maximum

n . L. .
— ;th order statistic: median

* CLRS, Section 9.1

— Selection problem: Given a list of distinct numbers and value i, find
value x in list that is larger than exactly i-1 list elements

23

Quickselect

e Finds it" order statistic

* |dea: pick a pivot element, partition, then recurse on sublist
containing index i

* Divide: select an element p, Partition(p)

* Conquer: if i = index of p, done!
— if i < index of p recurse left. Else recurse right

* Combine: Nothing!

24

Partition (Divide step)

Given: a list, a pivot value p

Start: unordered list

. 5 7 3 112110 1 2 4 9 6 | 11

Goal: All elements on left, all > p on right

25

Conquer
|

All elements < p All'elements > p

Exactly where it belongs!

Recurse on sublist that contains index i
(adjust i accordingly if recursing right)

26

CLRS Pseudocode for Quickselect

A —the list

RANDOMIZED-SELECT (A, p,r,i) p — index of first item

. r —index of last item
1 if p == i — find ith smallest item
2 return A[p] q — pivot location
3 g = RANDOMIZED-PARTITION (A4, p,) k= number on left + 1
4 k =qg—p+1 [/ numberof elements in left sub-list + 1
5 ifi== // the pivot value is the answer
6 return A[g]
7 elseifi <k
8 return RANDOMIZED-SELECT (A4, p,q — 1,i) note adjustment
9 else return RANDOMIZED-SELECT(A,q + 1,r,i — k) to i parameter

when recursing

Note: In CLRS, they’re using a partition that randomly chooses the pivot element. on right side

That’s why you see “Randomized” in the names here. Ignore that for the moment.

27

Work These Examples!

* For each of the following calls, show

— The value of g after each partition,

— Which recursive calls made

1. Se
2. Se
3. Se

ect(
ect(

ect(

:31 2) 9) OI 7) 5) 6) 1:
:31 2) 9) OI 7) 5) 6) 1:

:31 2) 9) OI 7) 5) 6) 1:

, p=0, r=7, i=2)
, p=0, r=7, i=5)
, p=0, r=7, i=7)

28

Quickselect Run Time

If the pivot is always the median:

T[]

Then we divide in half each time

S(n) =S(§)+n

S(n) =0(n)

29

Quickselect Run Time

If the partition is always unbalanced:

_

Then we shorten by 1 each time

Sn)=Sn—1)+n

S(n) = 0(n?)

30

Good Pivot for Quickselect

* What makes a good Pivot for Quickselect? S
— Roughly even split between left and right J \,b

— ldeally: median Oe

* Here’s what’s next:
— First, median of medians algorithm
* Finds something close to the median in ©®(n) time

— Second, we can prove that when its result used with Quickselect’s partition, then
Quickselect is guaranteed 0(n)
* Because we now have a ©(n) way to find the median, this guarantees Quicksort will be ©(nlgn)
— Notes:
* We have to do all this for every call to Partition in Quicksort
* We could just use the value returned by median of medians for Quicksort’s Partition

31

Pretty Good Pivot

 What makes a “pretty good” Pivot?
— Both sides of Pivot >30%

>30%

O Select Pivot from
r this range

T
T

>30%

33

Median of Medians

e Fast way to select a “pretty good” pivot

* Guarantees pivot is greater than 30% of elements and less than
30% of the elements

— |.e. it’s in the middle 40% (£20% of the true median)

* |dea: break list into chunks, find the median of each chunk, use the
median of those medians

* CLRS, pp. 220-221
* https://en.wikipedia.org/wiki/Median of medians

34

https://en.wikipedia.org/wiki/Median_of_medians

Median of Medians

* Fast way to select a “good” pivot

* Guarantees pivot is greater than 30% of elements and less than
30% of the elements

* |dea: break list into chunks, find the median of each chunk, use
the median of those medians

35

Median of Medians

1. Break list into chunks of size 5

List could be long, many
more than 5 chunks!

2. Find the median of each chunk
(using insertion sort: n=5, max 20 comparisons per chunk)

3. Return median of medians (using Quickselect, this
algorithm, called recursively, on list of medians)

\

List could be long, many
more than 5 medians!

36

Why is this good"?

Each chunk sorted, chunks ordered by their medians

MedianofMedians l
is Greater than all NN TN A
of these x A x X n

List could be long, so not

[Yg} / a small number!

37

Why is this good?

MedianofMedians
is larger than all
of these A A X ~ n

Larger than 3 T Worried about the details of
. . ny . 3
things in each E this math? See CLRS p. 221

(but one) list to 1 i
TR -2) =2 -
the left 3 (2 E) — — 6 elements < []
Imi . 1 In] _ 5\ 30 _
Similarly: 3 (2 - 2) ~— 6 elements > [])

Run-time of Quickselect with Median of Medians

* Divide: select an element p using Median of Medians,
Partition(p) M(n) + ©(n)

* Conquer: ifi = index of p, done, if i < index of p recurse left.

Else recurse right 7
<3S (—n)
10

* Combine: Nothing!

S(h) < S (1—7071) + M(n) + 0(n) 39

Median of Medians, Run Time

1. Break list into chunks of 5 ©(1)

2. Find the median of each chunk ©(n)

3. Return median of medians (using Quickselect)
[S (E)
5

Mn) =S (g) + 0(n)

40

Quickselect

n (M
S(n)<S (1—0) + M(n) + 0(n) M) =S (g) +0(n)
—5(7n) +5(2) +6m)
~°\10 5) " N
—S(7n) +5(2") +0
1 T
<9 % O _ CLRS gives a more rigorous proof!
o 1 +0(n) Because S(n) = (n) See p. 222 for more details

Master theorem Case 3!

=0 S(n) = 0(n)

Compare to ‘Obvious’ Approach

* An “obvious” approach to Selection Problem:
— Given list and value i: Sort list, then choose i-th item
— We've only seen sorting algorithms that are (A(nlogn)
— Later we’ll show this really is a lower-bound
— So this approach is ®(nlogn)

* Therefore Quickselect is asymptotically better than this
sorting-based solution for Selection Problem!

42

Phew! Back to Quicksort

Using Quickselect, with a median-of-medians partition:

e[[rof]]

2 5 1 3 6 4

2 1.5 6 4

Then we divide in half each time

T(n) = 2T (g) + o)

T(n) = O(nlogn)

43

s it worth [t7?

* Using Quickselect to pick median guarantees ®(nlogn) run
time

* But, this approach has very large constants
— If you really want ©(n logn), better off using MergeSort
e Better approach: Choose random pivot for Quicksort

— Very small constant (random() is a fast algorithm)

— Can prove the expected runtime is @(nlogn)
 Why? Unbalanced partitions are very unlikely

44

Quicksort Run Time

If the pivot is always 1%”‘ order statistic:

. 0
.
T(n) =T(1n—0)+T((i—g)+n

45

n
T(n) =T(E)+T(1_O)+n
n n
n
‘4\ 9n/10
n/10 + 9n/10 n
m_%/mo —T7/100~ 817/100

n/100| + 9n/100| + 9n/100 + 81n/100 n

1

1

|

On

>10g(

10

)Tl

Quicksort Run Time

If the pivot is always 1%”‘ order statistic:

. 0
.
T(n) =T(1n—0)+T((i—g)+n

T(n) = O(nlogn)

47

Quicksort Run Time

If the pivot is always d™" order statistic:

_

Then we shorten by d each time
Tn)=T(n—d)+n
T(n) = 0(n?)
What'’s the probability of this occurring?

48

Probability of n# run time

We must consistently select pivot from within the first d terms

Probability first pivot is among d smallest: %

Probability second pivot is among d smallest: n;fd
Probability all pivots are among d smallest:
d d d d 1
nn—-dn-2d " 2d ()|

49

Sorting, so far

e Sorting algorithms we have discussed:
— Mergesort O(nlogn)
— Quicksort O(nlogn)

e Other sorting algorithms (will discuss):
— Bubblesort 0(n?)
— Insertionsort 0(n?)

— Heapsort O(nlogn)

Can we do better than O(nlogn)? _

Mental Stretch
Show log(n!) = O(nlogn)

Hint: show n! < n"
n
2

Hint 2: show n! > (g)

logn! = 0O(nlogn)

nNn=n-n-1))-n—-2)-..-2-1

| N\ N\ N N
n=n- n . n -.omn-n

n! <n"

= log(n!) < log(n™)
= log(n!) < nlogn

= log(n!) = O(nlogn)

logn! = Q(nlogn)

n n
| — . _ . _ v e e o — —) . .
n=n-(n—1) 2)...2(2 1)..21
V V V | \/ VAN
n
n\ 2 n n n n
V==. = _ L. 1 .11
(2) 2 2 2 2
n

= log(n!) > log ((—)

n! > (g)z
n ’;)
2

n. n
= log(n!) = Elogi
= log(n!) = Q(nlogn)

Worst Case |Lower Bounds

* Prove that there is no algorithm which can sort faster than
O(nlogn)

* Non-existence proof!
— Very hard to do

54

Strategy: Decision Tree

e Sorting algorithms use comparisons to figure out the
order of input elements

* Draw tree to illustrate all possible execution paths

Possible Result of

execution path comparison

>or<?

[>or<?][>or<?][>or<?] : [>or<?] >or<?][>or<? [>or<?

Permutation

[5,2,4,1,3]] [54,3211] of sorted list

[[1,2,3,4,5]] [[2,1,3,4,5]]

55

Strategy: Decision Tree

* Worst case run time is the longest execution path

* j.e., “height” of the decision tree

log(n!) =
O(nlogn)

Possible
execution path

>or<?

Result of

comparison

[>or<?][>or<?][>or<?] : [>or<?] >or<?][>or<? [>or<?

[[1,2,3,4,5]] [[2,1,3,4,5]]

| 524131 | -

—

\

| 154321 |

J

|
n! Possible permutations

Permutation
of sorted list

56

Strategy: Decision Tree

* Conclusion: Worst Case Optimal run time of sorting is

O(nlogn)
— There is no (comparison-based) sorting algorithm with run time
o(nlogn)
Possible Result of

— execution path comparison

>or<?

log(n!) =
O(nlogn)

[>or<?][>or<?][>or<?] : [>or<?] >or<?][>or<? [>or<?

l 12345 | [20%45 | | 524131 | - | 54321 | z‘]fzr:r‘:te?j“ﬁ;

\)
|

n! Possible permutations

57

Sorting, so far

e Sorting algorithms we have discussed:
— Mergesort O(nlogn) Optimal!
— Quicksort O(nlogn) Optimal!

e Other sorting algorithms (will discuss):
— Bubblesort 0(n?)
— Insertionsort 0(n?)

— Heapsort O(nlogn) Optimal!

58

Speed Isn't Everything

* Important properties of sorting algorithms:

* Run Time
— Asymptotic Complexity
— Constants
* In Place (or In-Situ)
— Done with only constant additional space
* Adaptive
— Faster if list is nearly sorted
* Stable
— Equal elements remain in original order

 Parallelizable
— Runs faster with many computers %

Mergesort

e Divide: Run Time?

— Break n-element list into two lists of */, elements
* Conquer: @ (Tl lOg n)

— If n > 1: Sort each sublist recursively Opt| mal |
— Ifn = 1: List is already sorted (base case)

e Combine:

— Merge together sorted sublists into one sorted list

In Place? Adaptive? Stable?

No No Yes!
(usually)

* Combine: Merge sorted sublists into one sorted list

e We have:
— 2 sorted lists (L1, L)
— 1 output list (Lyy¢)

While (L1 and L, not empty): Adaptive:
If L[0] < L,[0]: If elements are

L,,:.append(L;.pop()) |€dual leftmost
Else: comes first

Lyyt-append(L;.pop())
Loye-append(L,)
Loye-append(Ly)

61

Mergesort

Divide:

— Break n-element list into two lists of */, elements
Conquer:

— Ifn > 1: Sort each sublist recursively

— Ifn = 1: List is already sorted (base case)
Combine:

— Merge together sorted sublists into one sorted list

In Place? Adaptive? Stable?

No No Yes!
(usually)

Run Time?

O(nlogn)
Optimall

Parallelizable?

Yes!

62

Mergesort

Parallelizable:
e Divide: AIIow.dlfferent
o , machines to work
— Break n-element list into two lists of */, elements| . c.ch <ublist
* Conquer:

—Ifn > 1:
e Sort each sublist recursively

—Ifn=1:
* Listis already sorted (base case)
* Combine:
— Merge together sorted sublists into one sorted list

63

Mergesort (Sequential)

n total / level

n/2 |2 n/?2
—7 N " e I
n/4 4| n/4 |* n/4 ' n/4 0g, n levels
AW /. AN 7/ of recursion
1 1 1 . ; 1 . 1
1 1 1 /|1 1)

Run Time: O(n logn)

Mergesort (Parallel)

T(n) :T(E)+n

2
Doneianarallel/n\ n
n n (2
n/2 |2 n/2 |2)
L/—ﬁé\ m /?\ "l
n/4 4| n/4 * n/4 n/4 |*
7 AN AN AN
E e F e E <N K e N
e L] e 1
1 1 1 1 1 1

1 1 1 1 1 1

Run Time: ©(logn)

Quicksort

. — . Run Time?
* Idea: pick a partition element, recursively sort
two sublists around that element @ (Tl lOg Tl)

* Divide: select an element p, Partition(p) .
| | . | Optimal!
* Conquer: recursively sort left and right sublists

+ Combine: Nothing! (almost always)

In Place? Adaptive? Stable? Parallelizable?
No... No! No Yes!

