CS4102 Algorithms Spring 2022

Warm up

Compare f(n + m) with f(n) + f(m)When f(n) = O(n)When $f(n) = \Omega(n)$

$f(n) \in O(n)$

 $f(n+m) \le f(n) + f(m)$

$f(n) \in \Omega(n)$

$f(n) = \Theta(n)$

Announcements

- Homework schedule posted on course website
 - Unit A Basic HW2 now available
 - Unit A Advanced and Programming HW coming soon
- TA Office Hours
 - 7-10pm Sun-Thurs in Ols 011
 - Online hours also available
- Unit A Exam: Tuesday, February 22, in class

Today's Keywords

- Divide and Conquer
- Strassen's Algorithm
- Sorting
- Quicksort

6

Divide and Conquer, so far

- Mergesort
- Naïve Multiplication
- Karatsuba
- Closest Pair of Points
- Naïve Matrix-Matrix Multiplication
- Strassen's

What do they have in common? Divide: Very easy (i.e. O(1)) Combine: Hard work ($\Omega(n)$)

Quicksort

- Like Mergesort:
 - Divide and conquer
 - $-O(n \log n)$ run time (kind of...)
- Unlike Mergesort:
 - Divide step is the hard part
 - *Typically* faster than Mergesort

Quicksort

Idea: pick a pivot element, recursively sort two sublists around that element

- Divide: select pivot element p, Partition(p)
- Conquer: recursively sort left and right sublists
- Combine: Nothing!

Partition (Divide step)

Given: a list, a pivot p

Start: unordered list

8	5	7	3	12	10	1	2	4	9	6	11	
---	---	---	---	----	----	---	---	---	---	---	----	--

Goal: All elements < p on left, all > p on right

If Begin value < p, move Begin right

Else swap Begin value with End value, move End Left

Done when Begin = End

If Begin value < p, move Begin right

Else swap Begin value with End value, move End Left

If Begin value < p, move Begin right

Else swap Begin value with End value, move End Left

Done when Begin = End

Case 1: meet at element < p

Swap p with pointer position (2 in this case)

If Begin value < p, move Begin right

Else swap Begin value with End value, move End Left

Done when Begin = End

Case 2: meet at element > p

Swap p with value to the left (2 in this case)

Partition Summary

- 1. Put *p* at beginning of list
- 2. Put a pointer (Begin) just after *p*, and a pointer (End) at the end of the list
- 3. While Begin < End:
 - 1. If Begin value < p, move Begin right
 - 2. Else swap Begin value with End value, move End Left
- 4. If pointers meet at element : Swap <math>p with pointer position
- 5. Else If pointers meet at element > p: Swap p with value to the left

Recursively sort Left and Right sublists

Quicksort Run Time (Best)

If the pivot is always the median:

2	5	1	3	6	4	7	8	10	9	11	12
---	---	---	---	---	---	---	---	----	---	----	----

Then we divide in half each time

$$T(n) = 2T\left(\frac{n}{2}\right) + n$$
$$T(n) = O(n\log n)$$

Quicksort Run Time (Worst)

If the pivot is always at the extreme:

1	5	2	3	6	4	7	8	10	9	11	12
---	---	---	---	---	---	---	---	----	---	----	----

Then we shorten by 1 each time

T(n) = T(n-1) + n

 $T(n) = O(n^2)$

Quicksort Run Time (Worst)

$$T(n) = T(n-1) + n$$

Quicksort on a (nearly) Sorted List

First element always yields unbalanced pivot

So we shorten by 1 each time

T(n) = T(n-1) + n

 $T(n) = O(n^2)$

HOW TO PICK THE PIVOT?

- What makes a good Pivot?
 - Roughly even split between left and right
 - Ideally: median
- Can we find median in linear time?
 - Yes!
 - Quickselect

Quickselect

- Finds *i*th order statistic
 - $-i^{\text{th}}$ smallest element in the list
 - 1st order statistic: minimum
 - $-n^{\text{th}}$ order statistic: maximum
 - $-\frac{n_{\rm th}}{2}$ order statistic: median
- CLRS, Section 9.1
 - Selection problem: Given a list of distinct numbers and value *i*, find value *x* in list that is larger than exactly *i*-1 list elements

Quickselect

- Finds *i*th order statistic
- Idea: pick a pivot element, partition, then recurse on sublist containing index i
- Divide: select an element p, Partition(p)
- Conquer: if i = index of p, done!
 - if i < index of p recurse left. Else recurse right
- Combine: Nothing!

Partition (Divide step)

Given: a list, a pivot value p

Start: unordered list

8	5	7	3	12	10	1	2	4	9	6	11
---	---	---	---	----	----	---	---	---	---	---	----

Goal: All elements < p on left, all > p on right

5	7	3	1	2	4	6	8	12	10	9	11

Recurse on sublist that contains index *i* (adjust *i* accordingly if recursing right)

CLRS Pseudocode for Quickselect

RANDOMIZED-SELECT(A, p, r, i)

- 1 **if** *p* == *r*
- 2 return A[p]

3 q = RANDOMIZED-PARTITION(A, p, r)

- 4 $\bar{k} = q p + 1$ // number of elements in left sub-list + 1
- 5 if i = k // the pivot value is the answer
- 6 return A[q]
- 7 elseif i < k
- 8 return RANDOMIZED-SELECT(A, p, q 1, i)
- 9 else return RANDOMIZED-SELECT $(A, q + 1, r, \frac{i k}{k})$

Note: In CLRS, they're using a partition that randomly chooses the pivot element. That's why you see "Randomized" in the names here. Ignore that for the moment. note adjustment to *i* parameter when recursing on right side

A – the list

p – index of first item

r – index of last item

q – pivot location

i – find *i*th smallest item

k – number on left + 1

Work These Examples!

- For each of the following calls, show
 - The value of q after each partition,
 - Which recursive calls made
 - 1. Select([3, 2, 9, 0, 7, 5, 6, 1], p=0, r=7, i=2)
 - 2. Select([3, 2, 9, 0, 7, 5, 6, 1], p=0, r=7, i=5)
 - 3. Select([3, 2, 9, 0, 7, 5, 6, 1], p=0, r=7, i=7)

Quickselect Run Time

If the pivot is always the median:

Then we divide in half each time

$$S(n) = S\left(\frac{n}{2}\right) + n$$
$$S(n) = O(n)$$

Quickselect Run Time

If the partition is always unbalanced:

1	5	2	3	6	4	7	8	10	9	11	12
---	---	---	---	---	---	---	---	----	---	----	----

Then we shorten by 1 each time

S(n) = S(n-1) + n

 $S(n) = O(n^2)$

Good Pivot for Quickselect

- What makes a good Pivot for Quickselect?
 - Roughly even split between left and right
 - Ideally: median

zéjavú:

- Here's what's next:
 - First, median of medians algorithm
 - Finds something close to the median in $\Theta(n)$ time
 - Second, we can prove that when its result used with Quickselect's partition, then Quickselect is guaranteed $\Theta(n)$
 - Because we now have a $\Theta(n)$ way to find the median, this guarantees Quicksort will be $\Theta(n \lg n)$
 - Notes:
 - We have to do all this for every call to Partition in Quicksort
 - We could just use the value returned by median of medians for Quicksort's Partition

Pretty Good Pivot

- What makes a "pretty good" Pivot?
 - Both sides of Pivot >30%

Median of Medians

- Fast way to select a "pretty good" pivot
- Guarantees pivot is greater than 30% of elements and less than 30% of the elements

- I.e. it's in the middle 40% (±20% of the true median)

- Idea: break list into chunks, find the median of each chunk, use the median of those medians
- CLRS, pp. 220-221
- <u>https://en.wikipedia.org/wiki/Median_of_medians</u>

Median of Medians

- Fast way to select a "good" pivot
- Guarantees pivot is greater than 30% of elements and less than 30% of the elements
- Idea: break list into chunks, find the median of each chunk, use the median of those medians

Median of Medians

 Find the median of each chunk (using insertion sort: n=5, max 20 comparisons per chunk)

3. Return median of medians (using Quickselect, this algorithm, called recursively, on list of medians)

Why is this good?

Why is this good?

Run-time of Quickselect with Median of Medians

• Divide: select an element p using Median of Medians, Partition(p) $M(n) + \Theta(n)$

• Conquer: if i = index of p, done, if i < index of p recurse left. Else recurse right

$$\leq S\left(\frac{1}{10}n\right)$$

• Combine: Nothing! $S(n) \le S\left(\frac{7}{10}n\right) + M(n) + \Theta(n)$

Median of Medians, Run Time

1. Break list into chunks of 5 $\Theta(n)$

2. Find the median of each chunk $\Theta(n)$

3. Return median of medians (using Quickselect) $S\left(\frac{n}{5}\right)$ $M(n) = S\left(\frac{n}{5}\right) + \Theta(n)$

Quickselect

$$(n) \leq S\left(\frac{7n}{10}\right) + M(n) + \Theta(n)$$
$$= S\left(\frac{7n}{10}\right) + S\left(\frac{n}{5}\right) + \Theta(n)$$
$$= S\left(\frac{7n}{10}\right) + S\left(\frac{2n}{10}\right) + \Theta(n)$$

S

$$M(n) = S\left(\frac{n}{5}\right) + \Theta(n)$$

$$\leq S\left(\frac{9n}{10}\right) + \Theta(n)$$
 Because $S(n) = \Omega(n)$

CLRS gives a more rigorous proof! See p. 222 for more details

Master theorem Case 3!

S(n) = O(n)

Compare to 'Obvious' Approach

- An "obvious" approach to Selection Problem:
 - Given list and value *i*: Sort list, then choose *i*-th item
 - We've only seen sorting algorithms that are $\Omega(n \log n)$
 - Later we'll show this really is a lower-bound
 - So this approach is $\Theta(n \log n)$
- Therefore Quickselect is asymptotically better than this sorting-based solution for Selection Problem!

Phew! Back to Quicksort

Using Quickselect, with a median-of-medians partition:

Then we divide in half each time

$$T(n) = 2T\left(\frac{n}{2}\right) + \Theta(n)$$
$$T(n) = \Theta(n\log n)$$

Is it worth it?

- Using Quickselect to pick median guarantees Θ(n log n) run time
- But, this approach has very large constants
 If you really want Θ(n log n), better off using MergeSort
- Better approach: Choose random pivot for Quicksort
 - Very small constant (random() is a fast algorithm)
 - Can prove the *expected runtime* is $\Theta(n \log n)$
 - Why? Unbalanced partitions are very unlikely

Quicksort Run Time

$$T(n) = T\left(\frac{n}{10}\right) + T\left(\frac{9n}{10}\right) + n$$

Quicksort Run Time

 $T(n) = \Theta(n \log n)$

Quicksort Run Time

If the pivot is always d^{th} order statistic:

1	5	2	3	6	4	7	8	10	9	11	12
---	---	---	---	---	---	---	---	----	---	----	----

Then we shorten by d each time T(n) = T(n - d) + n $T(n) = O(n^2)$ What's the probability of this occurring?

Probability of n^2 run time

We must consistently select pivot from within the first d terms

Probability first pivot is among d smallest:
$$\frac{d}{n}$$

Probability second pivot is among d smallest: $\frac{d}{n-d}$

Probability all pivots are among d smallest:

$$\frac{d}{n} \cdot \frac{d}{n-d} \cdot \frac{d}{n-2d} \cdot \dots \cdot \frac{d}{2d} \cdot 1 = \frac{1}{\left(\frac{n}{d}\right)!}$$

Sorting, so far

- Sorting algorithms we have discussed:
 - Mergesort $O(n \log n)$
 - Quicksort $O(n \log n)$
- Other sorting algorithms (will discuss):
 - Bubblesort $O(n^2)$
 - Insertionsort $O(n^2)$
 - Heapsort $O(n \log n)$

Can we do better than $O(n \log n)$?

Mental Stretch

Show
$$\log(n!) = \Theta(n \log n)$$

Hint: show
$$n! \le n^n$$

Hint 2: show $n! \ge \left(\frac{n}{2}\right)^{\frac{n}{2}}$

$$\log n! = O(n \log n)$$

$$n! \le n^{n}$$

$$\Rightarrow \log(n!) \le \log(n^{n})$$

$$\Rightarrow \log(n!) \le n \log n$$

$$\Rightarrow \log(n!) = O(n \log n)$$

$$\log n! = \Omega(n \log n)$$

$$n! = n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot \frac{n}{2} \cdot \left(\frac{n}{2}-1\right) \cdot \dots \cdot 2 \cdot 1$$

$$\vee \quad \vee \quad \vee \quad || \quad \vee \quad \vee \quad ||$$

$$\frac{\left(\frac{n}{2}\right)^{\frac{n}{2}} = \frac{n}{2} \cdot \frac{n}{2} \cdot \frac{n}{2} \cdot \frac{n}{2} \cdot \dots \cdot \frac{n}{2} \cdot 1 \quad \cdots \cdot 1 \cdot 1$$

$$n! \ge \left(\frac{n}{2}\right)^{\frac{n}{2}}$$

$$\Rightarrow \log(n!) \ge \log\left(\left(\frac{n}{2}\right)^{\frac{n}{2}}\right)$$

$$\Rightarrow \log(n!) \ge \frac{n}{2}\log\frac{n}{2}$$

$$\Rightarrow \log(n!) \ge \Omega(n \log n)$$

Worst Case Lower Bounds

- Prove that there is no algorithm which can sort faster than
 O(n log n)
- Non-existence proof!
 - Very hard to do

Strategy: Decision Tree

- Sorting algorithms use comparisons to figure out the order of input elements
- Draw tree to illustrate all possible execution paths

Strategy: Decision Tree

- Worst case run time is the longest execution path
- i.e., "height" of the decision tree

Strategy: Decision Tree

- Conclusion: Worst Case Optimal run time of sorting is Θ(n log n)
 - There is no (comparison-based) sorting algorithm with run time $o(n \log n)$

Sorting, so far

- Sorting algorithms we have discussed:
 - Mergesort $O(n \log n)$ Optimal!
 - Quicksort $O(n \log n)$ Optimal!
- Other sorting algorithms (will discuss):
 - Bubblesort $O(n^2)$
 - Insertionsort $O(n^2)$
 - Heapsort $O(n \log n)$ Optimal!

Speed Isn't Everything

- Important properties of sorting algorithms:
- Run Time
 - Asymptotic Complexity
 - Constants
- In Place (or In-Situ)
 - Done with only constant additional space
- Adaptive
 - Faster if list is nearly sorted
- Stable
 - Equal elements remain in original order
- Parallelizable
 - Runs faster with many computers

• Divide:

- Break *n*-element list into two lists of n/2 elements
- Conquer:
 - If n > 1: Sort each sublist recursively
 - If n = 1: List is already sorted (base case)

• Combine:

- Merge together sorted sublists into one sorted list

Run Time?

$\Theta(n \log n)$ Optimal!

Merge

- **Combine:** Merge sorted sublists into one sorted list
- We have:
 - 2 sorted lists (L_1 , L_2)
 - 1 output list (L_{out})

```
 \begin{array}{ll} \mbox{While } (L_1 \mbox{ and } L_2 \mbox{ not empty}): & \mbox{Adaptive:} \\ & \mbox{If } L_1[0] \leq L_2[0]: & \mbox{If elements are} \\ & \mbox{ } L_{out}. \mbox{append}(L_1. \mbox{pop}()) & \mbox{ } L_{out}. \mbox{append}(L_2. \mbox{pop}()) \\ & \mbox{L}_{out}. \mbox{append}(L_2) & \mbox{Adaptive:} & \mbox{If elements are} \\ & \mbox{ } L_{adat} \mbox{append}(L_2) & \mbox{Adaptive:} & \mbox{If elements are} \\ & \mbox{ } L_{adat} \mbox{append}(L_2) & \mbox{Adaptive:} & \mbox{If elements are} \\ & \mbox{ } L_{adat} \mbox{append}(L_2) & \mbox{Adaptive:} & \mbox{If elements are} \\ & \mbox{ } L_{adat} \mbox{append}(L_2) & \mbox{Adaptive:} & \mbox{If elements are} \\ & \mbox{Adaptive:} & \mbox{If elements are} \\ & \mbox{ } L_{adat} \mbox{Adaptive:} & \mbox{If elements are} \\ & & \mbox{If elements are} \\
```


• Divide:

- Break *n*-element list into two lists of n/2 elements
- Conquer:
 - If n > 1: Sort each sublist recursively
 - If n = 1: List is already sorted (base case)

• Combine:

- Merge together sorted sublists into one sorted list

Run Time?

$\Theta(n \log n)$ Optimal!

In Place?	Adaptive?	Stable?	Parallelizable?
No	No	Yes!	Yes!
		(usually)	

• Divide:

– Break *n*-element list into two lists of n/2 elements

Parallelizable: Allow different machines to work on each sublist

• Conquer:

- If n > 1:
 - Sort each sublist recursively
- If n = 1:
 - List is already sorted (base case)
- Combine:
 - Merge together sorted sublists into one sorted list

Mergesort (Sequential)

Run Time: $\Theta(n \log n)$

Mergesort (Parallel)

Run Time: $\Theta(\log n)$

Quicksort

- Idea: pick a partition element, recursively sort two sublists around that element
- Divide: select an element *p*, Partition(*p*)
- Conquer: recursively sort left and right sublists
- Combine: Nothing!

Run Time?

Θ(n log n) Optimal! (almost always)

In Place?	Adaptive?	Stable?	Parallelizable?
No	No!	No	Yes!