CS4102 Algorithms

Spring 2022

Warm up

Compare $f(n+m)$ with $f(n)+f(m)$
When $f(n)=O(n)$
When $f(n)=\Omega(n)$

$f(n) \in O(n)$

$f(n) \in \Omega(n)$

$f(n)=\Theta(n)$

Announcements

- Homework schedule posted on course website
- Unit A Basic HW2 now available
- Unit A Advanced and Programming HW coming soon
- TA Office Hours
- 7-10pm Sun-Thurs in Ols 011
- Online hours also available
- Unit A Exam: Tuesday, February 22, in class

Today's Keywords

- Divide and Conquer
- Strassen's Algorithm
- Sorting
- Quicksort

Divide and Conquer, so far

- Mergesort

What do they have in common?
Divide: Very easy (i.e. $O(1)$)
Combine: Hard work ($\Omega(n)$)

- Naïve Multiplication
- Karatsuba
- Closest Pair of Points
- Naïve Matrix-Matrix Multiplication
- Strassen's

Quicksort

- Like Mergesort:
- Divide and conquer
$-O(n \log n)$ run time (kind of...)
- Unlike Mergesort:
- Divide step is the hard part
- Typically faster than Mergesort

Quicksort

Idea: pick a pivot element, recursively sort two sublists around that element

- Divide: select pivot element $p, \operatorname{Partition}(p)$
- Conquer: recursively sort left and right sublists
- Combine: Nothing!

Partition (Divide step)

Given: a list, a pivot p
Start: unordered list

8	5	7	3	12	10	1	2	4	9	6	11

Goal: All elements $<p$ on left, all $>p$ on right

5	7	3	1	2	4	6	8	12	10	9	11

Partition, Procedure

If Begin value $<p$, move Begin right
Else swap Begin value with End value, move End Left Done when Begin = End

Partition, Procedure

If Begin value $<p$, move Begin right
Else swap Begin value with End value, move End Left Done when Begin = End

Partition, Procedure

If Begin value $<p$, move Begin right
Else swap Begin value with End value, move End Left Done when Begin = End

8	5	7	3	6	4	1	2	10	9	11	12

Case 1: meet at element $<p$
Swap p with pointer position (2 in this case)

2	5	7	3	6	4	1	8	10	9	11	12

Partition, Procedure

If Begin value $<p$, move Begin right
Else swap Begin value with End value, move End Left Done when Begin = End

Case 2: meet at element $>p$ Swap p with value to the left (2 in this case)

Partition Summary

1. Put p at beginning of list
2. Put a pointer (Begin) just after p, and a pointer (End) at the end of the list
3. While Begin < End:
4. If Begin value $<p$, move Begin right
5. Else swap Begin value with End value, move End Left
6. If pointers meet at element $<p$: Swap p with pointer position
7. Else If pointers meet at element $>p$: Swap p with value to the left

Conquer

Exactly where it belongs!

Recursively sort Left and Right sublists

Quicksort Run Time (Best)

If the pivot is always the median:

2	5	1	3	6	4	7	8	10	9	11	12

2	1	3	5	6	4	7	8	9	10	11	12

Then we divide in half each time

$$
\begin{aligned}
& T(n)=2 T\left(\frac{n}{2}\right)+n \\
& T(n)=O(n \log n)
\end{aligned}
$$

Quicksort Run Time (Worst)

If the pivot is always at the extreme:

1	5	2	3	6	4	7	8	10	9	11	12

1	2	3	5	6	4	7	8	10	9	11	12

Then we shorten by 1 each time

$$
\begin{gathered}
T(n)=T(n-1)+n \\
T(n)=O\left(n^{2}\right)
\end{gathered}
$$

Quicksort Run Time (Worst)

$$
T(n)=T(n-1)+n
$$

$$
\begin{aligned}
& T(n)=1+2+3+\cdots+n \\
& T(n)=\frac{n(n+1)}{2} \\
& T(n)=O\left(n^{2}\right)
\end{aligned}
$$

Quicksort on a (nearly) Sorted List

First element always yields unbalanced pivot

1	2	3	4	5	6	7	8	9	10	11	12

1	2	3	4	5	6	7	8	9	10	11	12

So we shorten by 1 each time

$$
\begin{gathered}
T(n)=T(n-1)+n \\
T(n)=O\left(n^{2}\right)
\end{gathered}
$$

HOW TO PICK THE PIVOT?

Good Pivot

- What makes a good Pivot?
- Roughly even split between left and right
- Ideally: median
- Can we find median in linear time?
- Yes!
- Quickselect

Quickselect

- Finds $i^{\text {th }}$ order statistic
$-i^{\text {th }}$ smallest element in the list
$-1^{\text {st }}$ order statistic: minimum
$-n^{\text {th }}$ order statistic: maximum
$-\frac{n}{2}$ th order statistic: median
- CLRS, Section 9.1
- Selection problem: Given a list of distinct numbers and value i, find value x in list that is larger than exactly $i-1$ list elements

Quickselect

- Finds $i^{\text {th }}$ order statistic
- Idea: pick a pivot element, partition, then recurse on sublist containing index i
- Divide: select an element p, Partition(p)
- Conquer: if $i=$ index of p, done!
- if $i<$ index of p recurse left. Else recurse right
- Combine: Nothing!

Partition (Divide step)

Given: a list, a pivot value p

Start: unordered list

8	5	7	3	12	10	1	2	4	9	6	11

Goal: All elements $<p$ on left, all $>p$ on right

5	7	3	1	2	4	6	8	12	10	9	11

Conquer

Recurse on sublist that contains index i (adjust i accordingly if recursing right)

CLRS Pseudocode for Quickselect

```
RANDOMIZED-SELECT ( }A,p,r,i
1 if }p==
2 return }A[p
    3 q = RANDOMIZED-PARTITION ( }A,p,r
    k=q-p+1 // number of elements in left sub-list +1
    if i== k // the pivot value is the answer
        return }A[q
    elseif i<k
            return RaNDOMIZED-SELECT ( }A,p,q-1,i
        else return RANDOMIZED-SELECT ( }A,q+1,r,i-k
p - index of first item
r - index of last item
i - find ith smallest item
q-pivot location
k - number on left + 1
```

A - the list

A - the list
p - index of first item
r - index of last item
i - find ith smallest item
q - pivot location
k - number on left + 1

```
\(4 k=q-p+1 \quad / /\) number of elements in left sub-list +1
5 if \(i==k \quad / /\) the pivot value is the answer
6 return \(A[q]\)
7 elseif \(i<k\)
8 return RANDOMIZED-SELECT \((A, p, q-1, i)\)
9 else return RANDOMIZED-SELECT \((A, q+1, r, i-k)\)
Note: In CLRS, they're using a partition that randomly chooses the pivot element.
```

note adjustment
to i parameter when recursing on right side

That's why you see "Randomized" in the names here. Ignore that for the moment.

Work These Examples!

- For each of the following calls, show
- The value of q after each partition,
- Which recursive calls made

1. Select($[3,2,9,0,7,5,6,1], p=0, r=7, i=2)$
2. Select($[3,2,9,0,7,5,6,1], p=0, r=7, i=5)$
3. Select($[3,2,9,0,7,5,6,1], p=0, r=7, i=7)$

Quickselect Run Time

If the pivot is always the median:

2	5	1	3	6	4	7	8	10	9	11	12

2	1	3	5	6	4	7	8	9	10	11	12

Then we divide in half each time

$$
\begin{gathered}
S(n)=S\left(\frac{n}{2}\right)+n \\
S(n)=O(n)
\end{gathered}
$$

Quickselect Run Time

If the partition is always unbalanced:

1	5	2	3	6	4	7	8	10	9	11	12

1	2	3	5	6	4	7	8	10	9	11	12

Then we shorten by 1 each time

$$
\begin{gathered}
S(n)=S(n-1)+n \\
S(n)=O\left(n^{2}\right)
\end{gathered}
$$

Good Pivot for Quickselect

- What makes a good Pivot for Quickselect?
- Roughly even split between left and right
- Ideally: median

- Here's what's next:
- First, median of medians algorithm
- Finds something close to the median in $\Theta(n)$ time
- Second, we can prove that when its result used with Quickselect's partition, then Quickselect is guaranteed $\Theta(n)$
- Because we now have a $\Theta(n)$ way to find the median, this guarantees Quicksort will be $\Theta(n \lg n)$
- Notes:
- We have to do all this for every call to Partition in Quicksort
- We could just use the value returned by median of medians for Quicksort's Partition

Pretty Good Pivot

- What makes a "pretty good" Pivot?
- Both sides of Pivot >30\%

Median of Medians

- Fast way to select a "pretty good" pivot
- Guarantees pivot is greater than 30% of elements and less than 30% of the elements
- l.e. it's in the middle 40% ($\pm 20 \%$ of the true median)
- Idea: break list into chunks, find the median of each chunk, use the median of those medians
- CLRS, pp. 220-221
- https://en.wikipedia.org/wiki/Median of medians

Median of Medians

- Fast way to select a "good" pivot
- Guarantees pivot is greater than 30% of elements and less than 30% of the elements
- Idea: break list into chunks, find the median of each chunk, use the median of those medians

Median of Medians

1. Break list into chunks of size 5

2. Find the median of each chunk (using insertion sort: $\mathrm{n}=5$, max 20 comparisons per chunk)

3. Return median of medians (using Quickselect, this algorithm, called recursively, on list of medians)

Why is this good?

Each chunk sorted, chunks ordered by their medians MedianofMedians is Greater than all of these $\stackrel{\square}{\wedge}$

List could be long, so not a small number!

Why is this good?

MedianofMedians

 is larger than all of these

Worried about the details of this math? See CLRS p. 221
things in each

$$
3\left(\frac{1}{2} \cdot\left[\frac{n}{5}\right]-2\right) \approx \frac{3 n}{10}-6 \text { elements }<\square
$$

Similarly:

$$
3\left(\frac{1}{2} \cdot\left[\frac{n}{5}\right\rceil-2\right) \approx \frac{3 n}{10}-6 \text { elements }>\square
$$

Run-time of Quickselect with Median of Medians

- Divide: select an element p using Median of Medians, Partition(p)

$$
M(n)+\Theta(n)
$$

- Conquer: if $i=$ index of p, done, if $i<$ index of p recurse left. Else recurse right

$$
\leq S\left(\frac{7}{10} n\right)
$$

- Combine: Nothing!

$$
S(n) \leq S\left(\frac{7}{10} n\right)+M(n)+\Theta(n)
$$

Median of Medians, Run Time

1. Break list into chunks of $5 \Theta(n)$

2. Find the median of each chunk $\Theta(n)$
\square
3. Return median of medians (using Quickselect)

$$
\begin{gathered}
\square \cap \square \square \\
M(n)=S\left(\frac{n}{5}\right)+\Theta(n)
\end{gathered}
$$

Quickselect

$$
\begin{aligned}
S(n) & \leq S\left(\frac{7 n}{10}\right)+M(n)+\Theta(n) \quad M(n)=S\left(\frac{n}{5}\right)+\Theta(n) \\
& =S\left(\frac{7 n}{10}\right)+S\left(\frac{n}{5}\right)+\Theta(n) \\
& =S\left(\frac{7 n}{10}\right)+S\left(\frac{2 n}{10}\right)+\Theta(n) \\
& \leq S\left(\frac{9 n}{10}\right)+\Theta(n) \quad \text { Because } S(n)=\Omega(n) \quad \begin{array}{c}
\text { CLRS gives a more rigorous proof! } \\
\text { See p. 222 for more details }
\end{array}
\end{aligned}
$$

$$
S(n)=0(n) \quad S(n)=\Theta(n)
$$

Compare to 'Obvious' Approach

- An "obvious" approach to Selection Problem:
- Given list and value i : Sort list, then choose i-th item
- We've only seen sorting algorithms that are $\Omega(n \log n)$
- Later we'll show this really is a lower-bound
- So this approach is $\Theta(n \log n)$
- Therefore Quickselect is asymptotically better than this sorting-based solution for Selection Problem!

Phew! Back to Quicksort

Using Quickselect, with a median-of-medians partition:

2	5	1	3	6	4	7	8	10	9	11	12

2	1	3	5	6	4	7	8	9	10	11	12

Then we divide in half each time

$$
\begin{gathered}
T(n)=2 T\left(\frac{n}{2}\right)+\Theta(n) \\
T(n)=\Theta(n \log n)
\end{gathered}
$$

Is it worth it?

- Using Quickselect to pick median guarantees $\Theta(n \log n)$ run time
- But, this approach has very large constants
- If you really want $\Theta(n \log n)$, better off using MergeSort
- Better approach: Choose random pivot for Quicksort
- Very small constant (random() is a fast algorithm)
- Can prove the expected runtime is $\Theta(n \log n)$
- Why? Unbalanced partitions are very unlikely

Quicksort Run Time

If the pivot is always $\frac{n}{10}$ th order statistic:

$$
T(n)=T\left(\frac{n}{10}\right)+T\left(\frac{9 n}{10}\right)+n
$$

Quicksort Run Time

If the pivot is always $\frac{n}{10}$ th order statistic:

$$
T(n)=\Theta(n \log n)
$$

Quicksort Run Time

If the pivot is always $d^{\text {th }}$ order statistic:

1	5	2	3	6	4	7	8	10	9	11	12

1	2	3	5	6	4	7	8	10	9	11	12

Then we shorten by d each time

$$
\begin{gathered}
T(n)=T(n-d)+n \\
T(n)=O\left(n^{2}\right)
\end{gathered}
$$

What's the probability of this occurring?

Probability of n^{2} run time

We must consistently select pivot from within the first d terms

Probability first pivot is among d smallest: $\frac{d}{n}$
Probability second pivot is among d smallest: $\frac{d}{n-d}$

Probability all pivots are among d smallest:

$$
\frac{d}{n} \cdot \frac{d}{n-d} \cdot \frac{d}{n-2 d} \cdot \ldots \cdot \frac{d}{2 d} \cdot 1=\frac{1}{\left(\frac{n}{d}\right)!}
$$

Sorting, so far

- Sorting algorithms we have discussed:
- Mergesort $O(n \log n)$
- Quicksort $\quad O(n \log n)$
- Other sorting algorithms (will discuss):
- Bubblesort $O\left(n^{2}\right)$
- Insertionsort $O\left(n^{2}\right)$
- Heapsort $O(n \log n)$

Mental Stretch

Show $\log (n!)=\Theta(n \log n)$

Hint: show $n!\leq n^{n}$
Hint 2: show $n!\geq\left(\frac{n}{2}\right)^{\frac{n}{2}}$

$\log n!=O(n \log n)$

$$
\begin{aligned}
& n!=n \cdot(n-1) \cdot(n-2) \cdot \ldots \cdot 2 \cdot 1 \\
& n^{n}=n \cdot \quad n \quad \cdot \quad n \quad \ldots \cdot n \cdot n
\end{aligned}
$$

$$
\begin{aligned}
& n!\leq n^{n} \\
& \Rightarrow \log (n!) \leq \log \left(n^{n}\right) \\
& \Rightarrow \log (n!) \leq n \log n \\
& \Rightarrow \log (n!)=O(n \log n)
\end{aligned}
$$

$\log n!=\Omega(n \log n)$

$$
\begin{aligned}
n! & =n \cdot(n-1) \cdot(n-2) \cdot \ldots \cdot \frac{n}{2} \cdot\left(\frac{n}{2}-1\right) \cdot \ldots \cdot 2 \cdot 1 \\
& \vee \vee \vee \\
\left(\frac{n}{2}\right)^{\frac{n}{2}} & =\frac{n}{2} \cdot \frac{n}{2} \cdot \frac{n}{2} \cdot \ldots \cdot \frac{n}{2} \cdot 1 \\
\hline n! & \geq\left(\frac{n}{2}\right)^{\frac{n}{2}} \\
\Rightarrow & \log (n!) \geq \log \left(\left(\frac{n}{2}\right)^{\frac{n}{2}}\right) \\
\Rightarrow \log (n!) & \geq \frac{n}{2} \log \frac{n}{2} \\
\Rightarrow \log (n!) & =\Omega(n \log n)
\end{aligned}
$$

Worst Case Lower Bounds

- Prove that there is no algorithm which can sort faster than $O(n \log n)$
- Non-existence proof!
- Very hard to do

Strategy: Decision Tree

- Sorting algorithms use comparisons to figure out the order of input elements
- Draw tree to illustrate all possible execution paths

Strategy: Decision Tree

- Worst case run time is the longest execution path
- i.e., "height" of the decision tree

Strategy: Decision Tree

- Conclusion: Worst Case Optimal run time of sorting is $\Theta(n \log n)$
- There is no (comparison-based) sorting algorithm with run time $o(n \log n)$

Sorting, so far

- Sorting algorithms we have discussed:
- Mergesort $O(n \log n) \quad$ Optimal!
- Quicksort $O(n \log n) \quad$ Optimal!
- Other sorting algorithms (will discuss):
- Bubblesort $O\left(n^{2}\right)$
- Insertionsort $O\left(n^{2}\right)$
- Heapsort $O(n \log n) \quad$ Optimal!

Speed Isn't Everything

- Important properties of sorting algorithms:
- Run Time
- Asymptotic Complexity
- Constants
- In Place (or In-Situ)
- Done with only constant additional space
- Adaptive
- Faster if list is nearly sorted
- Stable
- Equal elements remain in original order
- Parallelizable
- Runs faster with many computers

Mergesort

- Divide:
- Break n-element list into two lists of $n / 2$ elements
- Conquer:
- If $n>1$: Sort each sublist recursively
- If $n=1$: List is already sorted (base case)
- Combine:
- Merge together sorted sublists into one sorted list

In Place? Adaptive? Stable?
 No
 Yes!
 (usually)

Run Time?

$\Theta(n \log n)$ Optimal!

Merge

- Combine: Merge sorted sublists into one sorted list
- We have:
- 2 sorted lists $\left(L_{1}, L_{2}\right)$
- 1 output list ($L_{\text {out }}$)

While (L_{1} and L_{2} not empty): Adaptive:
If $L_{1}[0] \leq L_{2}[0]$:
$L_{\text {out }}$.append(L_{1}.pop())
Else:

$$
L_{\text {out }} \cdot \operatorname{append}\left(L_{2} \cdot \operatorname{pop}()\right)
$$

$L_{\text {out }}$.append $\left(L_{1}\right)$
$L_{\text {out }}$.append $\left(L_{2}\right)$

Mergesort

- Divide:
- Break n-element list into two lists of $n / 2$ elements
- Conquer:
- If $n>1$: Sort each sublist recursively
- If $n=1$: List is already sorted (base case)
- Combine:
- Merge together sorted sublists into one sorted list

In Place? Adaptive? Stable?
 No
 No
 Yes! usually)

Run Time?

$\Theta(n \log n)$
Optimal!

Parallelizable?
 Yes!

Mergesort

- Divide:

- Break n-element list into two lists of $n / 2$ elements

Parallelizable:

Allow different machines to work on each sublist

- Conquer:
- If $n>1$:
- Sort each sublist recursively
- If $n=1$:
- List is already sorted (base case)
- Combine:
- Merge together sorted sublists into one sorted list

Mergesort (Sequential)

$$
T(n)=2 T\left(\frac{n}{2}\right)+n
$$

Run Time: $\Theta(n \log n)$

Mergesort (Parallel)

$$
T(n)=T\left(\frac{n}{2}\right)+n
$$

Run Time: $\Theta(\log n)$

Quicksort

- Idea: pick a partition element, recursively sort two sublists around that element
- Divide: select an element p, Partition(p)
- Conquer: recursively sort left and right sublists
- Combine: Nothing!

Run Time?

$\Theta(n \log n)$
Optimal!
(almost always)

In Place? Adaptive? Stable?
 No!
 No
 Parallelizable?
 Yes!

