
CS4102 Algorithms
Spring 2022

Warm up
Compare 𝑓 𝑛 +𝑚 with 𝑓 𝑛 + 𝑓(𝑚)

When 𝑓 𝑛 = 𝑂(𝑛)
When 𝑓 𝑛 = Ω(𝑛)

1

𝑓 𝑛 ∈ O(𝑛)

2

𝑛 𝑚 𝑛 +𝑚

𝑓(𝑛) 𝑓(𝑚) 𝑓(𝑛)

𝑓(𝑚)

𝑓 𝑥
= 𝑥

&.()

𝑓 𝑛 +𝑚 ≤ 𝑓 𝑛 + 𝑓(𝑚)

𝑓 𝑛 ∈ Ω(𝑛)

3

𝑓 𝑥
= 𝑥

!.#
$

𝑛 𝑚 𝑛 +𝑚

𝑓(𝑛)
𝑓(𝑛)

𝑓(𝑚)

𝑓 𝑛 +𝑚 ≥ 𝑓 𝑛 + 𝑓(𝑚)

𝑓(𝑚)

𝑓 𝑛 = Θ(𝑛)

4

𝑓 𝑥
= 𝑥

𝑛 𝑚 𝑛 +𝑚

𝑓(𝑛) 𝑓(𝑚) 𝑓(𝑛)

𝑓(𝑚)

𝑓 𝑛 +𝑚 = 𝑓 𝑛 + 𝑓(𝑚)

Announcements

• Homework schedule posted on course website
– Unit A Basic HW2 now available
– Unit A Advanced and Programming HW coming soon

• TA Office Hours
– 7-10pm Sun-Thurs in Ols 011
– Online hours also available

• Unit A Exam: Tuesday, February 22, in class

5

Today’s Keywords

• Divide and Conquer
• Strassen’s Algorithm
• Sorting
• Quicksort

6
CLRS Ch 4, 7

Divide and Conquer, so far

• Mergesort
• Naïve Multiplication
• Karatsuba
• Closest Pair of Points
• Naïve Matrix-Matrix Multiplication
• Strassen’s

7

What do they have in common?
Divide: Very easy (i.e. 𝑂(1))
Combine: Hard work (Ω(𝑛))

Quicksort

• Like Mergesort:
– Divide and conquer
– 𝑂(𝑛 log 𝑛) run time (kind of…)

• Unlike Mergesort:
– Divide step is the hard part
– Typically faster than Mergesort

8

Quicksort

Idea: pick a pivot element, recursively sort two sublists around
that element
• Divide: select pivot element 𝑝, Partition(𝑝)
• Conquer: recursively sort left and right sublists
• Combine: Nothing!

9

Partition (Divide step)

Given: a list, a pivot 𝑝

10

8 5 7 3 12 10 1 2 4 9 6 11

Goal: All elements < 𝑝 on left, all > 𝑝 on right

Start: unordered list

5 7 3 1 2 4 6 8 12 10 9 11

Partition, Procedure

11

8 5 7 3 12 10 1 2 4 9 6 11

If Begin value < 𝑝, move Begin right
Else swap Begin value with End value, move End Left
Done when Begin = End

8 5 7 3 12 10 1 2 4 9 6 11

8 5 7 3 12 10 1 2 4 9 6 11

8 5 7 3 11 10 1 2 4 9 6 12

Partition, Procedure

12

8 5 7 3 11 10 1 2 4 9 6 12

8 5 7 3 6 10 1 2 4 9 11 12

8 5 7 3 6 10 1 2 4 9 11 12

8 5 7 3 6 10 1 2 4 9 11 12

If Begin value < 𝑝, move Begin right
Else swap Begin value with End value, move End Left
Done when Begin = End

Partition, Procedure

13

8 5 7 3 6 4 1 2 10 9 11 12

Case 1: meet at element < 𝑝
Swap 𝑝 with pointer position (2 in this case)

2 5 7 3 6 4 1 8 10 9 11 12

If Begin value < 𝑝, move Begin right
Else swap Begin value with End value, move End Left
Done when Begin = End

Partition, Procedure

14

8 5 7 3 6 4 1 2 10 9 11 12

Case 2: meet at element > 𝑝
Swap 𝑝 with value to the left (2 in this case)

2 5 7 3 6 4 1 8 10 9 11 12

If Begin value < 𝑝, move Begin right
Else swap Begin value with End value, move End Left
Done when Begin = End

Partition Summary

1. Put 𝑝 at beginning of list
2. Put a pointer (Begin) just after 𝑝, and a pointer (End) at the

end of the list
3. While Begin < End:

1. If Begin value < 𝑝, move Begin right
2. Else swap Begin value with End value, move End Left

4. If pointers meet at element < 𝑝: Swap 𝑝 with pointer position
5. Else If pointers meet at element > 𝑝: Swap 𝑝 with value to

the left
15

Run time? 𝑂(𝑛)

Conquer

Recursively sort Left and Right sublists

16

2 5 7 3 6 4 1 8 10 9 11 12

All elements < 𝑝 All elements > 𝑝

Exactly where it belongs!

Quicksort Run Time (Best)

Then we divide in half each time

17

2 5 1 3 6 4 7 8 10 9 11 12

2 1 3 5 6 4 7 8 9 10 11 12

𝑇 𝑛 = 2𝑇
𝑛
2
+ 𝑛

If the pivot is always the median:

𝑇 𝑛 = 𝑂(𝑛 log 𝑛)

Quicksort Run Time (Worst)

Then we shorten by 1 each time

18

1 5 2 3 6 4 7 8 10 9 11 12

1 2 3 5 6 4 7 8 10 9 11 12

𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑛

If the pivot is always at the extreme:

𝑇 𝑛 = 𝑂(𝑛#)

Quicksort Run Time (Worst)

19

𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑛

𝑇 𝑛 = 𝑂(𝑛#)

𝑛

𝑛 − 1

…

1

𝑛 − 2

𝑛

𝑛 − 1

𝑛 − 2

1

𝑇 𝑛 = 1 + 2 + 3 +⋯+ 𝑛

𝑇 𝑛 =
𝑛 𝑛 + 1

2

Quicksort on a (nearly) Sorted List

So we shorten by 1 each time

20

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑛

First element always yields unbalanced pivot

𝑇 𝑛 = 𝑂(𝑛#)

HOW TO PICK THE PIVOT?

21

Good Pivot

• What makes a good Pivot?
– Roughly even split between left and right
– Ideally: median

• Can we find median in linear time?
– Yes!
– Quickselect

22

Quickselect

• Finds 𝑖th order statistic
– 𝑖th smallest element in the list
– 1st order statistic: minimum
– 𝑛th order statistic: maximum

– %
#

th order statistic: median

• CLRS, Section 9.1
– Selection problem: Given a list of distinct numbers and value i, find

value x in list that is larger than exactly i-1 list elements

23

Quickselect

• Finds 𝑖th order statistic
• Idea: pick a pivot element, partition, then recurse on sublist

containing index 𝑖
• Divide: select an element 𝑝, Partition(𝑝)
• Conquer: if 𝑖 = index of 𝑝, done!
– if 𝑖 < index of 𝑝 recurse left. Else recurse right

• Combine: Nothing!

24

Partition (Divide step)

Given: a list, a pivot value 𝑝

25

8 5 7 3 12 10 1 2 4 9 6 11

Goal: All elements < 𝑝 on left, all > 𝑝 on right

Start: unordered list

5 7 3 1 2 4 6 8 12 10 9 11

Conquer

Recurse on sublist that contains index 𝑖
(adjust 𝑖 accordingly if recursing right)

26

2 5 7 3 6 4 1 8 10 9 11 12

All elements < 𝑝 All elements > 𝑝

Exactly where it belongs!

CLRS Pseudocode for Quickselect

27

// number of elements in left sub-list + 1

Note: In CLRS, they’re using a partition that randomly chooses the pivot element.
That’s why you see “Randomized” in the names here. Ignore that for the moment.

A – the list
p – index of first item
r – index of last item
i – find ith smallest item
q – pivot location
k – number on left + 1

note adjustment
to i parameter

when recursing
on right side

Work These Examples!

• For each of the following calls, show
– The value of q after each partition,
– Which recursive calls made
1. Select([3, 2, 9, 0, 7, 5, 6, 1], p=0, r=7, i=2)
2. Select([3, 2, 9, 0, 7, 5, 6, 1], p=0, r=7, i=5)
3. Select([3, 2, 9, 0, 7, 5, 6, 1], p=0, r=7, i=7)

28

Quickselect Run Time

Then we divide in half each time

29

2 5 1 3 6 4 7 8 10 9 11 12

2 1 3 5 6 4 7 8 9 10 11 12

𝑆 𝑛 = 𝑆
𝑛
2
+ 𝑛

If the pivot is always the median:

𝑆 𝑛 = 𝑂(𝑛)

Quickselect Run Time

Then we shorten by 1 each time

30

1 5 2 3 6 4 7 8 10 9 11 12

1 2 3 5 6 4 7 8 10 9 11 12

𝑆 𝑛 = 𝑆 𝑛 − 1 + 𝑛

If the partition is always unbalanced:

𝑆 𝑛 = 𝑂(𝑛#)

Good Pivot for Quickselect

• What makes a good Pivot for Quickselect?
– Roughly even split between left and right
– Ideally: median

• Here’s what’s next:
– First, median of medians algorithm

• Finds something close to the median in Θ(𝑛) time
– Second, we can prove that when its result used with Quickselect’s partition, then

Quickselect is guaranteed Θ(𝑛)
• Because we now have a Θ(𝑛) way to find the median, this guarantees Quicksort will be Θ(𝑛 lg 𝑛)

– Notes:
• We have to do all this for every call to Partition in Quicksort
• We could just use the value returned by median of medians for Quicksort’s Partition

31

Déjà vu?

Pretty Good Pivot

• What makes a “pretty good” Pivot?
– Both sides of Pivot >30%

33

Or

>30%

>30%

Select Pivot from
this range

Median of Medians

• Fast way to select a “pretty good” pivot
• Guarantees pivot is greater than 30% of elements and less than

30% of the elements
– I.e. it’s in the middle 40% (±20% of the true median)

• Idea: break list into chunks, find the median of each chunk, use the
median of those medians

• CLRS, pp. 220-221
• https://en.wikipedia.org/wiki/Median_of_medians

34

https://en.wikipedia.org/wiki/Median_of_medians

Median of Medians

• Fast way to select a “good” pivot
• Guarantees pivot is greater than 30% of elements and less than

30% of the elements
• Idea: break list into chunks, find the median of each chunk, use

the median of those medians

35

Median of Medians

1. Break list into chunks of size 5

36

2. Find the median of each chunk
(using insertion sort: n=5, max 20 comparisons per chunk)

3. Return median of medians (using Quickselect, this
algorithm, called recursively, on list of medians)

List could be long, many
more than 5 chunks!

List could be long, many
more than 5 medians!

Why is this good?

Each chunk sorted, chunks ordered by their medians

37

<
<

<
<

<
<

<
<

<
<

<
<

< <

<
<

<
<

<

<
<

< <

MedianofMedians
is Greater than all

of these

𝑛
5

5

List could be long, so not
a small number!

Why is this good?

38

MedianofMedians
is larger than all

of these

Larger than 3
things in each
(but one) list to
the left <3 -

.
⋅ /
)
− 2 ≈ 0/

-&
− 6 elements

Similarly: >3 -
.
⋅ /
)
− 2 ≈ 0/

-&
− 6 elements

𝑛
5

<
<

<
<

<
<

<
<

<
<

<
<

< <

<
<

<
<

<

<
<

< <

Worried about the details of
this math? See CLRS p. 221

Run-time of Quickselect with Median of Medians

• Divide: select an element 𝑝 using Median of Medians,
Partition(𝑝)

• Conquer: if 𝑖 = index of 𝑝, done, if 𝑖 < index of 𝑝 recurse left.
Else recurse right

• Combine: Nothing!

39

𝑀 𝑛 + Θ(𝑛)

≤ 𝑆
7

10
𝑛

𝑆 𝑛 ≤ 𝑆
7

10
𝑛 +𝑀 𝑛 + Θ(𝑛)

Median of Medians, Run Time
1. Break list into chunks of 5

40

2. Find the median of each chunk

3. Return median of medians (using Quickselect)

Θ(𝑛)

Θ(𝑛)

𝑆
𝑛
5

𝑀 𝑛 = 𝑆
𝑛
5
+ Θ(𝑛)

Quickselect

41

𝑀 𝑛 = 𝑆
𝑛
5
+ Θ(𝑛)𝑆 𝑛 ≤ 𝑆

7𝑛
10

+𝑀 𝑛 + Θ(𝑛)

= 𝑆
7𝑛
10

+ 𝑆
𝑛
5
+ Θ(𝑛)

𝑆 𝑛 = O(𝑛)

= 𝑆
7𝑛
10

+ 𝑆
2𝑛
10

+ Θ(𝑛)

≤ 𝑆
9𝑛
10 + Θ(𝑛)

Master theorem Case 3!

Because 𝑆 𝑛 = Ω(𝑛)

𝑆 𝑛 = Θ(𝑛)

CLRS gives a more rigorous proof!
See p. 222 for more details

Compare to ‘Obvious’ Approach

• An “obvious” approach to Selection Problem:
– Given list and value i: Sort list, then choose i-th item
– We’ve only seen sorting algorithms that are Ω(𝑛 log 𝑛)
– Later we’ll show this really is a lower-bound
– So this approach is Θ(𝑛 log 𝑛)

• Therefore Quickselect is asymptotically better than this
sorting-based solution for Selection Problem!

42

Phew! Back to Quicksort

Then we divide in half each time

43

2 5 1 3 6 4 7 8 10 9 11 12

2 1 3 5 6 4 7 8 9 10 11 12

𝑇 𝑛 = 2𝑇
𝑛
2
+ Θ(𝑛)

Using Quickselect, with a median-of-medians partition:

𝑇 𝑛 = Θ(𝑛 log 𝑛)

Is it worth it?

• Using Quickselect to pick median guarantees Θ(𝑛 log 𝑛) run
time

• But, this approach has very large constants
– If you really want Θ(𝑛 log 𝑛), better off using MergeSort

• Better approach: Choose random pivot for Quicksort
– Very small constant (random() is a fast algorithm)
– Can prove the expected runtime is Θ(𝑛 log 𝑛)
• Why? Unbalanced partitions are very unlikely

44

Quicksort Run Time

45

𝑇 𝑛 = 𝑇
𝑛
10

+ 𝑇
9𝑛
10

+ 𝑛

If the pivot is always !
"#

th order statistic:

𝑛

𝑇 𝑛 = 𝑇
𝑛
10

+ 𝑇
9𝑛
10

+ 𝑛

⁄𝑛 10 ⁄9𝑛 10

⁄𝑛 100 ⁄9𝑛 100 ⁄9𝑛 100 ⁄81𝑛 100

… … … …

1
1

1
1

𝑛

𝑛/10 9𝑛/10

𝑛/100 9𝑛/100 9𝑛/100 81𝑛/100

1

1
1

1

𝑛

𝑛

𝑛

+

+ + +

+

+
+

log !,
-
𝑛

Quicksort Run Time

47

𝑇 𝑛 = 𝑇
𝑛
10

+ 𝑇
9𝑛
10

+ 𝑛

If the pivot is always !
"#

th order statistic:

𝑇 𝑛 = Θ(𝑛 log 𝑛)

Quicksort Run Time

Then we shorten by 𝑑 each time

48

1 5 2 3 6 4 7 8 10 9 11 12

1 2 3 5 6 4 7 8 10 9 11 12

𝑇 𝑛 = 𝑇 𝑛 − 𝑑 + 𝑛

If the pivot is always 𝑑th order statistic:

𝑇 𝑛 = 𝑂(𝑛#)
What’s the probability of this occurring?

Probability of 𝑛5 run time

We must consistently select pivot from within the first 𝑑 terms

49

Probability first pivot is among 𝑑 smallest: .
%

Probability second pivot is among 𝑑 smallest: .
%/.

Probability all pivots are among 𝑑 smallest:
𝑑
𝑛
⋅

𝑑
𝑛 − 𝑑

⋅
𝑑

𝑛 − 2𝑑
⋅ … ⋅

𝑑
2𝑑

⋅ 1 =
1
𝑛
𝑑 !

Sorting, so far

• Sorting algorithms we have discussed:
– Mergesort
– Quicksort

• Other sorting algorithms (will discuss):
– Bubblesort
– Insertionsort
– Heapsort

50

𝑂(𝑛 log 𝑛)

𝑂(𝑛 log 𝑛)

𝑂(𝑛 log 𝑛)

𝑂(𝑛.)

𝑂(𝑛.)

Can we do better than 𝑂(𝑛 log 𝑛)?

Mental Stretch
Show log 𝑛! = Θ(𝑛 log 𝑛)

Hint: show 𝑛! ≤ 𝑛!

Hint 2: show 𝑛! ≥ !
"

%
&

51

52

log 𝑛! = 𝑂 𝑛 log 𝑛

𝑛! = 𝑛 ⋅ 𝑛 − 1 ⋅ 𝑛 − 2 ⋅ … ⋅ 2 ⋅ 1

𝑛% = 𝑛 ⋅ 𝑛 ⋅ 𝑛 ⋅ … ⋅ 𝑛 ⋅ 𝑛

= < < < <

𝑛! ≤ 𝑛%
⇒ log 𝑛! ≤ log 𝑛%

⇒ log 𝑛! ≤ 𝑛 log 𝑛
⇒ log 𝑛! = 𝑂(𝑛 log 𝑛)

53

log 𝑛! = Ω 𝑛 log 𝑛
𝑛! = 𝑛 ⋅ 𝑛 − 1 ⋅ 𝑛 − 2 ⋅ … ⋅

𝑛
2
⋅
𝑛
2
− 1 ⋅ … ⋅ 2 ⋅ 1

𝑛
2

%
=

𝑛
2
⋅

𝑛
2

⋅
𝑛
2

⋅ … ⋅
𝑛
2
⋅ 1 ⋅ … ⋅ 1 ⋅ 1

> > > >=

𝑛! ≥
𝑛
2

%
#

⇒ log 𝑛! ≥ log
𝑛
2

%
#

⇒ log 𝑛! ≥
𝑛
2
log

𝑛
2

⇒ log 𝑛! = Ω(𝑛 log 𝑛)

> =

Worst Case Lower Bounds

• Prove that there is no algorithm which can sort faster than
𝑂(𝑛 log 𝑛)

• Non-existence proof!
– Very hard to do

54

Strategy: Decision Tree
• Sorting algorithms use comparisons to figure out the

order of input elements
• Draw tree to illustrate all possible execution paths

55

>or<?

>or<? >or<?

>or<? >or<? >or<? >or<?

>or<?>or<?>or<?>or<?>or<?>or<?>or<?>or<?

[1,2,3,4,5] [2,1,3,4,5] [5,2,4,1,3] [5,4,3,2,1]… …

… … … …

><

< >

< > >> >

<

< <<

>

One
comparison Result of

comparison

Permutation
of sorted list

Possible
execution path

Strategy: Decision Tree
• Worst case run time is the longest execution path
• i.e., “height” of the decision tree

56

>or<?

>or<? >or<?

>or<? >or<? >or<? >or<?

>or<?>or<?>or<?>or<?>or<?>or<?>or<?>or<?

[1,2,3,4,5] [2,1,3,4,5] [5,2,4,1,3] [5,4,3,2,1]… …

… … … …

><

< >

< > >> >

<

< <<

>

One
comparison Result of

comparison

Permutation
of sorted list

Possible
execution path

𝑛! Possible permutations

log 𝑛!

Θ(𝑛 log 𝑛)

Strategy: Decision Tree
• Conclusion: Worst Case Optimal run time of sorting is
Θ(𝑛 log 𝑛)
– There is no (comparison-based) sorting algorithm with run time
𝑜(𝑛 log 𝑛)

57

>or<?

>or<? >or<?

>or<? >or<? >or<? >or<?

>or<?>or<?>or<?>or<?>or<?>or<?>or<?>or<?

[1,2,3,4,5] [2,1,3,4,5] [5,2,4,1,3] [5,4,3,2,1]… …

… … … …

><

< >

< > >> >

<

< <<

>

One
comparison Result of

comparison

Permutation
of sorted list

Possible
execution path

𝑛! Possible permutations

log 𝑛!

Θ(𝑛 log 𝑛)

Sorting, so far

• Sorting algorithms we have discussed:
– Mergesort
– Quicksort

• Other sorting algorithms (will discuss):
– Bubblesort
– Insertionsort
– Heapsort

58

𝑂(𝑛 log 𝑛)

𝑂(𝑛 log 𝑛)

𝑂(𝑛 log 𝑛)

𝑂(𝑛.)

𝑂(𝑛.)

Optimal!

Optimal!

Optimal!

Speed Isn’t Everything
• Important properties of sorting algorithms:
• Run Time
– Asymptotic Complexity
– Constants

• In Place (or In-Situ)
– Done with only constant additional space

• Adaptive
– Faster if list is nearly sorted

• Stable
– Equal elements remain in original order

• Parallelizable
– Runs faster with many computers 59

Mergesort
• Divide:

– Break 𝑛-element list into two lists of ⁄! " elements
• Conquer:

– If 𝑛 > 1: Sort each sublist recursively
– If 𝑛 = 1: List is already sorted (base case)

• Combine:
– Merge together sorted sublists into one sorted list

Run Time?
Θ(𝑛 log 𝑛)
Optimal!

In Place? Adaptive? Stable?
No No Yes!

(usually)

Merge
• Combine: Merge sorted sublists into one sorted list
• We have:
– 2 sorted lists (𝐿-, 𝐿.)
– 1 output list (𝐿9:;)

While (𝐿! and 𝐿# not empty):
If 𝐿! 0 ≤ 𝐿#[0]:

𝐿567.append(𝐿!.pop())
Else:

𝐿567.append(𝐿#.pop())
𝐿567.append(𝐿!)
𝐿567.append(𝐿#)

61

Adaptive:
If elements are
equal, leftmost
comes first

Mergesort
• Divide:

– Break 𝑛-element list into two lists of ⁄! " elements
• Conquer:

– If 𝑛 > 1: Sort each sublist recursively
– If 𝑛 = 1: List is already sorted (base case)

• Combine:
– Merge together sorted sublists into one sorted list

62

Run Time?
Θ(𝑛 log 𝑛)
Optimal!

In Place? Adaptive? Stable? Parallelizable?
No No Yes!

(usually)
Yes!

Mergesort

• Divide:
– Break 𝑛-element list into two lists of ⁄% # elements

• Conquer:
– If 𝑛 > 1:
• Sort each sublist recursively

– If 𝑛 = 1:
• List is already sorted (base case)

• Combine:
– Merge together sorted sublists into one sorted list

63

Parallelizable:
Allow different
machines to work
on each sublist

Mergesort (Sequential)

𝑛 total / level

log# 𝑛 levels
of recursion

𝑛

𝑇 𝑛 = 2𝑇
𝑛
2
+ 𝑛

⁄𝑛 2 ⁄𝑛 2

⁄𝑛 4 ⁄𝑛 4 ⁄𝑛 4 ⁄𝑛 4

… … … …

1 1 1 … 1 1 1

𝑛

𝑛
2

𝑛
2

𝑛
4

𝑛
4

𝑛
4

𝑛
4

1 1 1 1 1 1

Run Time: Θ(𝑛 log 𝑛)

Mergesort (Parallel)

𝑛

𝑇 𝑛 = 𝑇
𝑛
2

+ 𝑛

⁄𝑛 2 ⁄𝑛 2

⁄𝑛 4 ⁄𝑛 4 ⁄𝑛 4 ⁄𝑛 4

… … … …

1 1 1 … 1 1 1

𝑛

𝑛
2

𝑛
2

𝑛
4

𝑛
4

𝑛
4

𝑛
4

1 1 1 1 1 1

Run Time: Θ(log 𝑛)

Done in Parallel 𝑛
2

𝑛
4

1

Quicksort
Run Time?
Θ(𝑛 log 𝑛)
Optimal!

(almost always)

In Place? Adaptive? Stable?
No… No! No

Parallelizable?
Yes!

• Idea: pick a partition element, recursively sort
two sublists around that element

• Divide: select an element 𝑝, Partition(𝑝)
• Conquer: recursively sort left and right sublists
• Combine: Nothing!

