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Warm up
Given any 5 points on the unit 

square, show there’s always a pair 

distance ≤ !
!

apart

1
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If points 𝑝#, 𝑝$ in same quadrant, then 𝛿 𝑝#, 𝑝$ ≤ $

$

Given 5 points, two must share the same quadrant

Pigeonhole Principle!

CS4102 Algorithms
Spring 2022
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• At a local grocery store,
early in the Covid-19 pandemic

• The pigeonhole principle 
enforcing social distancing?!
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Announcements

• This slide set:
– Closest-pair of points, Strassen’s Matrix Multiplication

• Homework questions, updates

• Other questions?
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Robbie’s Yard
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Robbie’s Yard
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There has to be an easier way!
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Constraints: Trees and Plants

Need to find:
Closest Pair of Trees - how 
wide can the robot be?

1
2

3

4
5

6

7

8

ROBO

mulcher

3000
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Closest Pair of Points
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Given: 
A list of points

Return: 
Pair of points with 
smallest distance apart



Closest Pair of Points: Naïve
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Given: 
A list of points

Return: 
Pair of points with 
smallest distance apart

𝑂(𝑛!)Algorithm:
Test every pair of points, 
return the closest.

We can do better!
Θ(𝑛 log 𝑛)



Closest Pair of Points: D&C

1
2

3

4
5

6

7

8

Divide: How?
At median x coordinate
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Conquer: 

Combine: 



Closest Pair of Points: D&C
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Divide: 
At median x coordinate

Conquer: 

LeftPoints RightPoints

Recursively find closest 
pairs from Left and Right

Combine: 
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Closest Pair of Points: D&C
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Divide: 
At median x coordinate

Conquer: 

LeftPoints RightPoints

Recursively find closest 
pairs from Left and Right

Combine: 
Return min of Left and 
Right pairs Problem? ?
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Closest Pair of Points: D&C
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LeftPoints RightPoints

Combine: 
2 Cases:

?

1. Closest Pair is 
completely in Left or 
Right

2. Closest Pair Spans our 
“Cut”

Need to test points 
across the cut

14



Spanning the Cut
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LeftPoints RightPoints

Combine: 
2. Closest Pair Spanned 
our “Cut”
Need to test points 
across the cut

𝛿"

𝛿#
Compare all points 
within 𝛿 = min{𝛿" , 𝛿#}
of the cut.

(In the “runway”)

2𝛿How many are there?
15



Spanning the Cut
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LeftPoints RightPoints

Combine: 
2. Closest Pair Spanned 
our “Cut”
Need to test points across 
the cut

𝛿"

𝛿#

2𝛿

Slow approach Compare 
all points within 𝛿 =
min{𝛿!, 𝛿"} of the cut.

How many are there?

𝑇 𝑛 = 2𝑇
𝑛
2
+

𝑛
2

$

16
= Θ 𝑛$



Spanning the Cut
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LeftPoints RightPoints

Combine: 
2. Closest Pair Spanned 
our “Cut”
Need to test points 
across the cut

𝛿"

𝛿#

2𝛿

We don’t need to test all 
pairs!

Don’t need to test points 
that are > 𝛿 from one 
another

17



Our Strategy for Combine Step

• Before we go into details, let’s explain our strategy
– Our goal: find the pair crossing the cut that has distance < 𝛿

and whose distance is the minimum of such pairs
• We want to avoid the following Θ 𝑛! approach:
– For each point in the runway, compare to all others in the runway to see if 

they cross the cut and are closer than 𝛿
• We’re going to find an approach that’s Θ 𝑛 :
– For each point in the runway, compare to 𝒌 near-by points in the runway 

to see if they cross the cut and are closer than 𝛿
– Doesn’t matter what 𝑘 is. As long as it’s a constant!
– Here are 2 ways to find a valid 𝑘, both based on geometry

18



#1: Showing k=15 is Valid
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Reducing Search Space
Combine: 
2. Closest Pair Spanned our 
“Cut”
Need to test points across the 
cut

2 ⋅ 𝛿

𝛿
2

𝛿
2

Divide the “runway” into 
square cubbies of size $

!

Each cubby will have at most 1 
point!
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Reducing Search Space
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2 ⋅ 𝛿

7

How many cubbies could 
contain a point < 𝜹 away?

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

Each point compared to 
≤ 15 other points

Combine: 
2. Closest Pair Spanned our 
“Cut”
Need to test points across the 
cut

Divide the “runway” into 
square cubbies of size $

!



#2: Showing k=7 is Valid
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Reducing Search Space

Combine: 
Need to test points across 
the cut
Claim #1:  if two points are 
the closest pair that cross 
the cut, then you can 
surround them in a box 
that’s 2 ⋅ 𝛿 wide by 𝛿 tall.

2 ⋅ 𝛿

Let’s draw some examples.

23
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Reducing Search Space

Claim #1:  if two points are the 
closest pair that cross the cut, then 
you can surround them in a box 
that’s 2 ⋅ 𝛿 wide by 𝛿 tall.

2 ⋅ 𝛿
Assume you’re checking in increasing 
y-order, and you’ve reached the first 
point of the closest pair.
Do you have to look at all points 
above it to be guaranteed to find the 
other point and the minimum 
distance?

24

No!
• Imagine you drew a box with its 

bottom at point’s y-coordinate.
• See Claim #1.
• Claim #2: only 8 points can be in the 

box.

𝛿



Spanning the Cut
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LeftPoints RightPoints

Combine: 
2. Closest Pair Spanned our “Cut”

𝛿!

𝛿"

2𝛿

Consider points in runway in 
increasing y-order.

For a given point p, we can prove the 
8th point and beyond is more than 𝛿
from p.

(pp. 1041-2 in CLRS)

So for each point in runway, check 
next 7 points in y-order.

25 𝚯 𝒏

Only 
check 
next 7



Closest Pair of Points: Divide and Conquer
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LeftPoints RightPoints

?

Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points 
based on 𝑥-coordinate (split at the median 𝑥)

Conquer: Recursively compute the closest pair 
of points in each list

Base case?

Combine: 
• Construct list of points in the runway

(𝑥-coordinate within distance 𝛿 of median)
• Sort runway points by 𝑦-coordinate
• Compare each point in runway to 7 or 15 

points above it and save the closest pair
• Output closest pair among left, right, and 

runway points



Closest Pair of Points: Divide and Conquer
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LeftPoints RightPoints

?

Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points 
based on 𝑥-coordinate (split at the median 𝑥)

Conquer: Recursively compute the closest pair 
of points in each list

Base case?

Combine: 
• Construct list of points in the runway

(𝑥-coordinate within distance 𝛿 of median)
• Sort runway points by 𝑦-coordinate
• Compare each point in runway to 7 or 15 

points above it and save the closest pair
• Output closest pair among left, right, and 

runway points

But sorting is an 𝑂 𝑛 log 𝑛
algorithm – combine step is still 
too expensive! We need 𝑂(𝑛)



Closest Pair of Points: Divide and Conquer

Solution: Maintain additional 
information in the recursion
• Minimum distance among pairs of 

points in the list
• List of points sorted according to 
𝑦-coordinate

Sorting runway points by 
𝑦-coordinate now becomes a merge

Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points 
based on 𝑥-coordinate (split at the median 𝑥)

Conquer: Recursively compute the closest pair 
of points in each list

Base case?

Combine: 
• Construct list of points in the runway 

(𝑥-coordinate within distance 𝛿 of median)
• Sort runway points by 𝑦-coordinate
• Compare each point in runway to 7 or 15 

points above it and save the closest pair
• Output closest pair among left, right, and 

runway points



Listing Points in the Runway
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Output on Left:

LeftPoints RightPoints

Closest Pair: (1, 5), 𝛿#,(
Sorted Points: [3,7,5,1]

Output on Right:
Closest Pair: (4,6), 𝛿),*
Sorted Points: [8,6,4,2]

Merged Points: 8,3,7,6,4,5,1,2

Runway Points: 8,7,6,5,2

Both of these lists can be computed 
by a single pass over the lists



Closest Pair of Points: Divide and Conquer
Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points 
based on 𝑥-coordinate (split at the median 𝑥)

Conquer: Recursively compute the closest pair 
of points in each list

Combine: 
• Merge sorted list of points by 𝑦-coordinate 

and construct list of points in the runway 
(sorted by 𝑦-coordinate)

• Compare each point in runway to 7 or 15 
points above it and save the closest pair

• Output closest pair among left, right, and 
runway points

Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points 
based on 𝑥-coordinate (split at the median 𝑥)

Conquer: Recursively compute the closest pair 
of points in each list

Base case?

Combine: 
• Construct list of points in the runway 

(𝑥-coordinate within distance 𝛿 of median)
• Sort runway points by 𝑦-coordinate
• Compare each point in runway to 7 or 15 

points above it and save the closest pair
• Output closest pair among left, right, and 

runway points



Closest Pair of Points: Divide and Conquer

Θ 𝑛 log 𝑛

Θ 1

2𝑇(𝑛/2)

Θ 𝑛

Θ 𝑛

Θ 1

𝑇(𝑛) = 2𝑇(𝑛/2) + Θ(𝑛)

Case 2 of Master’s Theorem
𝑇 𝑛 = Θ 𝑛 log 𝑛

What is the running time?

𝑇(𝑛)

Θ(𝑛 log 𝑛)
Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points 
based on 𝑥-coordinate (split at the median 𝑥)

Conquer: Recursively compute the closest pair 
of points in each list

Combine: 
• Merge sorted list of points by 𝑦-coordinate 

and construct list of points in the runway 
(sorted by 𝑦-coordinate)

• Compare each point in runway to 7 or 15 
points above it and save the closest pair

• Output closest pair among left, right, and 
runway points



Matrix Multiplication

35



Matrix Multiplication
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1 2 3
4 5 6
7 8 9

×
2 4 6
8 10 12
14 16 18

=
60 72 84
132 162 192
204 252 300

=
2 + 16 + 42 4 + 20 + 48 6 + 24 + 54

⋅ ⋅ ⋅
⋅ ⋅ ⋅

Run time? 𝑂(𝑛!)

𝑛

𝑛



Matrix Multiplication D&C
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Multiply 𝑛×𝑛 matrices (𝐴 and 𝐵) 

𝐴 =

𝑎# 𝑎$ 𝑎+ 𝑎)
𝑎( 𝑎* 𝑎, 𝑎-
𝑎. 𝑎#/ 𝑎## 𝑎#$
𝑎#+ 𝑎#) 𝑎#( 𝑎#*

𝐵 =

𝑏# 𝑏$ 𝑏+ 𝑏)
𝑏( 𝑏* 𝑏, 𝑏-
𝑏. 𝑏#/ 𝑏## 𝑏#$
𝑏#+ 𝑏#) 𝑏#( 𝑏#*

Divide:



Matrix Multiplication D&C

38

Multiply 𝑛×𝑛 matrices (𝐴 and 𝐵) 

𝐴 =

𝑎# 𝑎$ 𝑎+ 𝑎)
𝑎( 𝑎* 𝑎, 𝑎-
𝑎. 𝑎#/ 𝑎## 𝑎#$
𝑎#+ 𝑎#) 𝑎#( 𝑎#*

𝐴"," 𝐴",$

𝐴$," 𝐴$,$

𝐴𝐵 =
𝐴#,#𝐵#,# + 𝐴#,$𝐵$,# 𝐴#,#𝐵#,$ + 𝐴#,$𝐵$,$
𝐴$,#𝐵#,# + 𝐴$,$𝐵$,# 𝐴$,#𝐵#,$ + 𝐴$,$𝐵$,$

𝐵 =

𝑏# 𝑏$ 𝑏+ 𝑏)
𝑏( 𝑏* 𝑏, 𝑏-
𝑏. 𝑏#/ 𝑏## 𝑏#$
𝑏#+ 𝑏#) 𝑏#( 𝑏#*

𝐵"," 𝐵",$

𝐵$," 𝐵$,$

Run time? 𝑇 𝑛 = 8𝑇
𝑛
2
+ 4

𝑛
2

$ Cost of 
additions

Combine:



Matrix Multiplication D&C
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𝑇 𝑛 = 8𝑇
𝑛
2
+ 4

𝑛
2

$

𝑇 𝑛 = 8𝑇
𝑛
2
+ Θ(𝑛$)

𝑎 = 8, 𝑏 = 2, 𝑓 𝑛 = 𝑛$

𝑛%&'# ( = 𝑛%&'$ ) = 𝑛!
Case 1!

𝑇 𝑛 = Θ(𝑛!)
We can do better…



Matrix Multiplication D&C
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Multiply 𝑛×𝑛 matrices (𝐴 and 𝐵) 

𝐴 =

𝑎# 𝑎$ 𝑎+ 𝑎)
𝑎( 𝑎* 𝑎, 𝑎-
𝑎. 𝑎#/ 𝑎## 𝑎#$
𝑎#+ 𝑎#) 𝑎#( 𝑎#*

𝐴"," 𝐴",$

𝐴$," 𝐴$,$

𝐴𝐵 =
𝐴#,#𝐵#,# + 𝐴#,$𝐵$,# 𝐴#,#𝐵#,$ + 𝐴#,$𝐵$,$
𝐴$,#𝐵#,# + 𝐴$,$𝐵$,# 𝐴$,#𝐵#,$ + 𝐴$,$𝐵$,$

𝐵 =

𝑏# 𝑏$ 𝑏+ 𝑏)
𝑏( 𝑏* 𝑏, 𝑏-
𝑏. 𝑏#/ 𝑏## 𝑏#$
𝑏#+ 𝑏#) 𝑏#( 𝑏#*

𝐵"," 𝐵",$

𝐵$," 𝐵$,$

Idea: Use a Karatsuba-like technique on this



Strassen’s Algorithm
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Multiply 𝑛×𝑛 matrices (𝐴 and 𝐵) 

𝐴 =

𝑎# 𝑎$ 𝑎+ 𝑎)
𝑎( 𝑎* 𝑎, 𝑎-
𝑎. 𝑎#/ 𝑎## 𝑎#$
𝑎#+ 𝑎#) 𝑎#( 𝑎#*

𝐴"," 𝐴",$

𝐴$," 𝐴$,$
𝐵 =

𝑏# 𝑏$ 𝑏+ 𝑏)
𝑏( 𝑏* 𝑏, 𝑏-
𝑏. 𝑏#/ 𝑏## 𝑏#$
𝑏#+ 𝑏#) 𝑏#( 𝑏#*

𝐵"," 𝐵",$

𝐵$," 𝐵$,$
Calculate:

𝑄# = 𝐴#,# + 𝐴%,% (𝐵#,# + 𝐵%,%)
𝑄% = 𝐴%,# + 𝐴%,% 𝐵#,#
𝑄& = 𝐴#,#(𝐵#,% − 𝐵%,%)
𝑄' = 𝐴%,%(𝐵%,# − 𝐵#,#)

𝑄( = 𝐴%,# − 𝐴#,# (𝐵#,# + 𝐵#,%)
𝑄) = 𝐴#,# + 𝐴#,% 𝐵%,%

𝑄* = 𝐴#,% − 𝐴%,% (𝐵%,# + 𝐵%,%)

𝐴#,#𝐵#,# + 𝐴#,$𝐵$,# 𝐴#,#𝐵#,$ + 𝐴#,$𝐵$,$
𝐴$,#𝐵#,# + 𝐴$,$𝐵$,# 𝐴$,#𝐵#,$ + 𝐴$,$𝐵$,$

𝑄# + 𝑄) − 𝑄( + 𝑄, 𝑄+ + 𝑄(
𝑄$ + 𝑄) 𝑄# − 𝑄$ + 𝑄+ + 𝑄*

Find 𝐴𝐵:

Number Mults.: 7 Number Adds.: 18

𝑇 𝑛 = 7𝑇
𝑛
2
+
9
2
𝑛$



Strassen’s Algorithm
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𝑇 𝑛 = 7𝑇
𝑛
2
+
9
2
𝑛$

𝑎 = 7, 𝑏 = 2, 𝑓 𝑛 =
9
2
𝑛$

𝑛%&'# ( = 𝑛%&'$ * ≈ 𝑛$.),*
Case 1!

𝑇 𝑛 = Θ 𝑛%&'$ * ≈ Θ(𝑛$.),*)



Strassen’s Algorithm
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𝑛+

𝑛012! ,



Is this the fastest?

44

Best possible 
is unknown

May not even 
exist!


