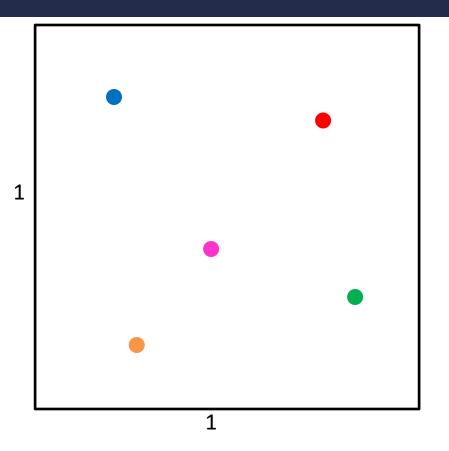
CS4102 Algorithms

Spring 2022

Warm up

Given any 5 points on the unit square, show there's always a pair distance $\leq \frac{\sqrt{2}}{2}$ apart

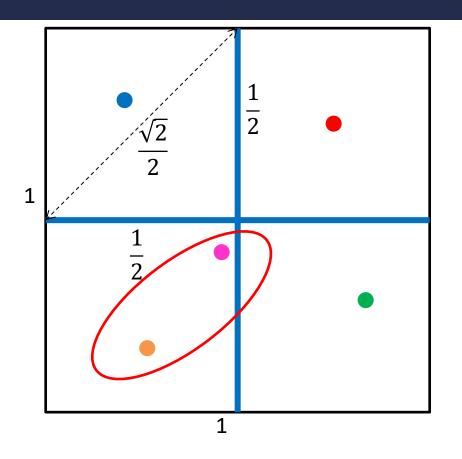


CS4102 Algorithms Spring 2022

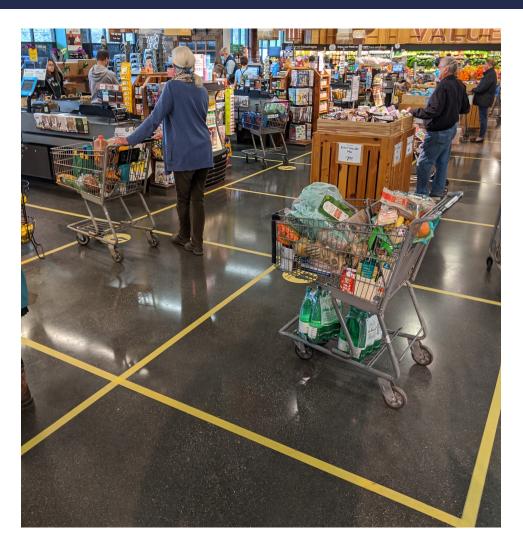
If points p_1, p_2 in same quadrant, then $\delta(p_1, p_2) \le \frac{\sqrt{2}}{2}$

Given 5 points, two must share the same quadrant

Pigeonhole Principle!



- At a local grocery store, early in the Covid-19 pandemic
- The pigeonhole principle enforcing social distancing?!



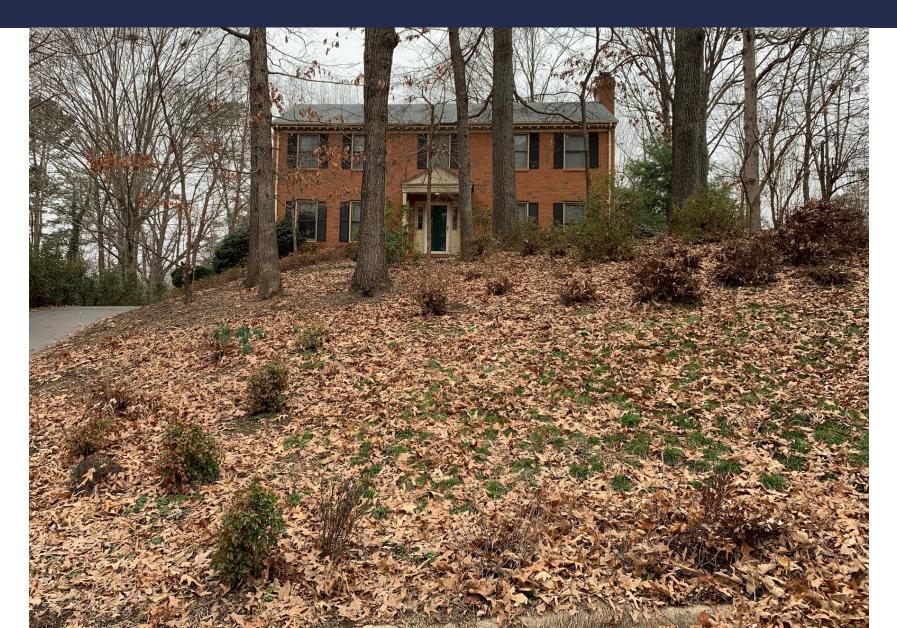
Announcements

- This slide set:
 - Closest-pair of points, Strassen's Matrix Multiplication
- Homework questions, updates

• Other questions?

Robbie's Yard

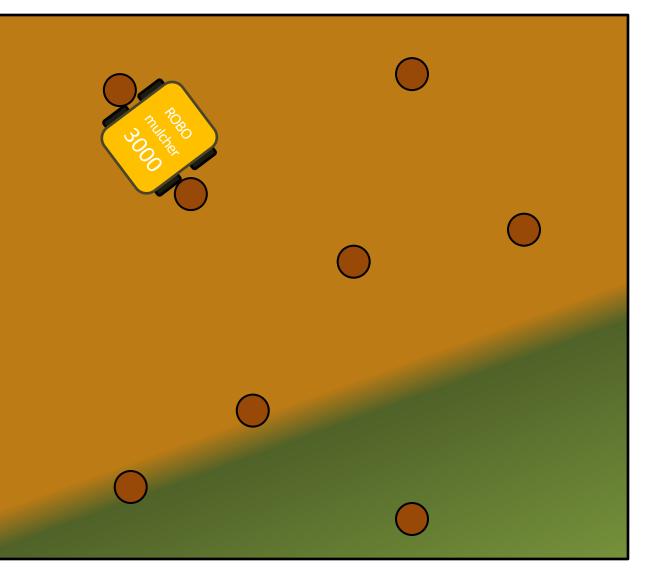
Robbie's Yard



There has to be an easier way!

Constraints: Trees and Plants

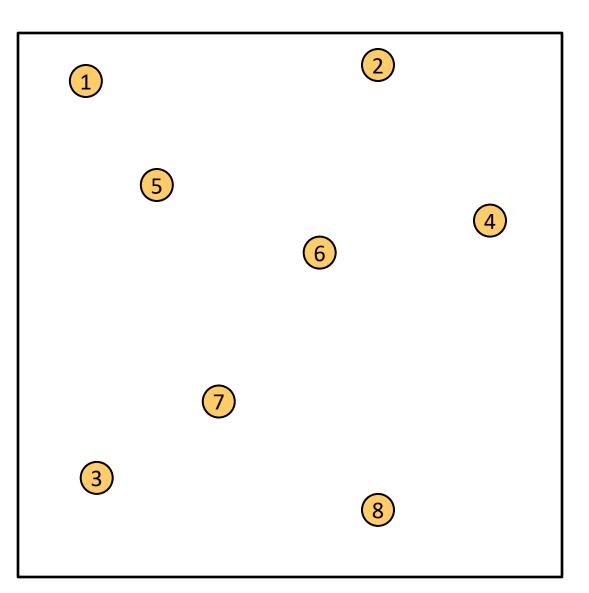
Need to find: Closest Pair of Trees - how wide can the robot be?



Closest Pair of Points

Given: A list of points

Return: Pair of points with smallest distance apart



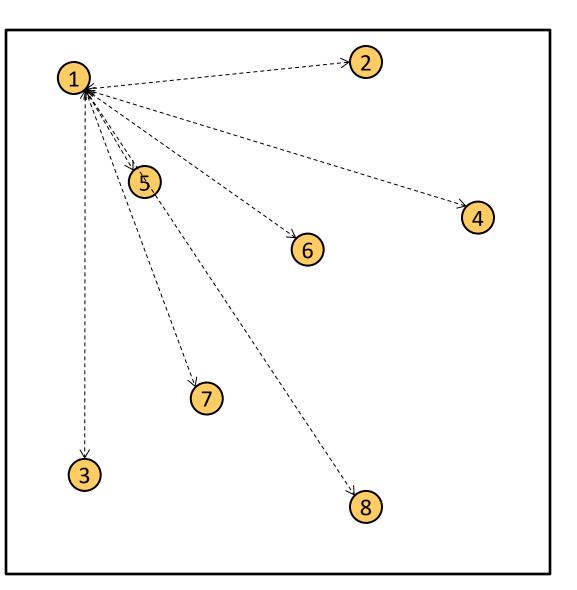
Closest Pair of Points: Naïve

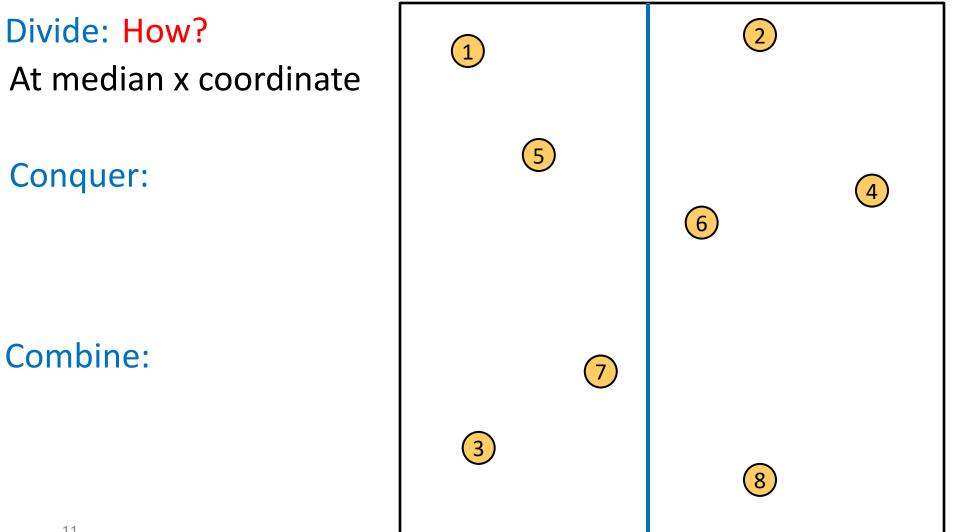
Given: A list of points

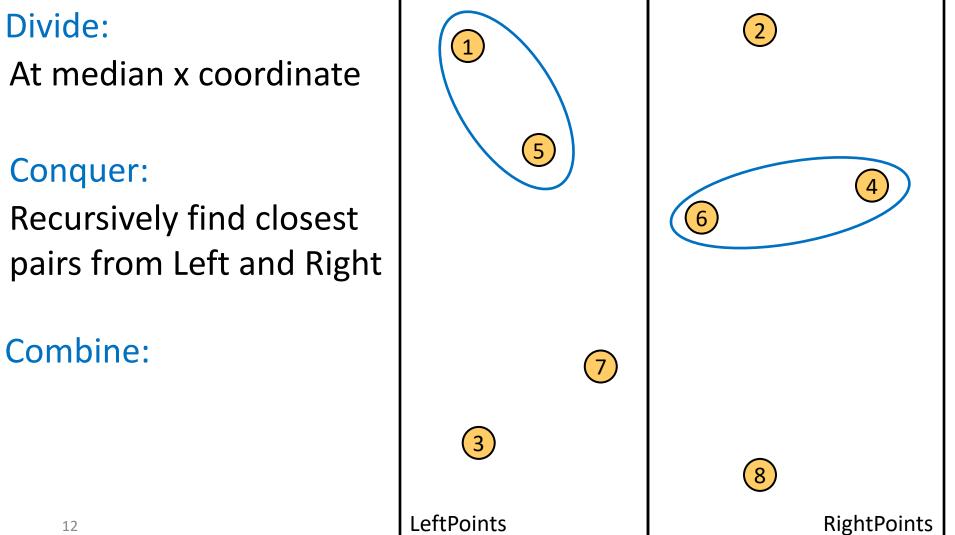
Return: Pair of points with smallest distance apart

Algorithm: $O(n^2)$ Test every pair of points, return the closest.

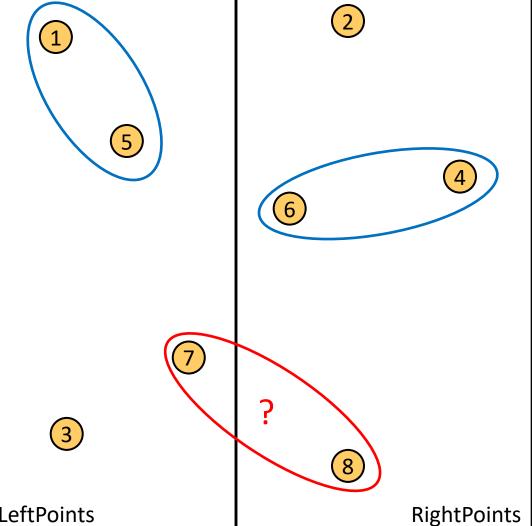
We can do better! 10 $\Theta(n \log n)$







Divide: (1)At median x coordinate 5 Conquer: Recursively find closest 6 pairs from Left and Right Combine: Return min of Left and Right pairs **Problem**? (3)

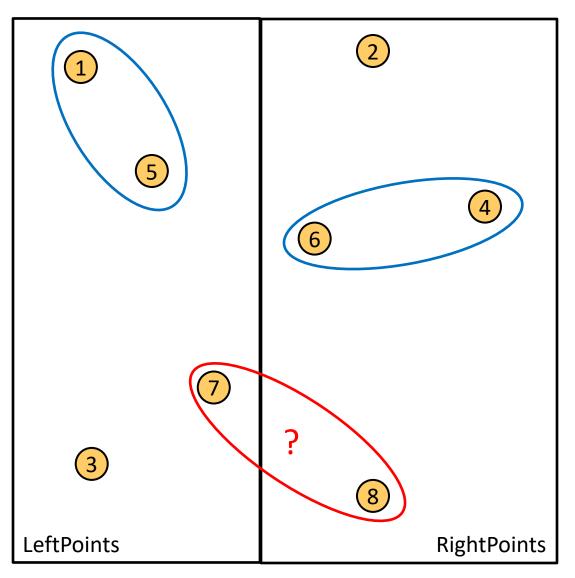


Combine: 2 Cases:

 Closest Pair is completely in Left or Right

2. Closest Pair Spans our "Cut"

Need to test points across the cut

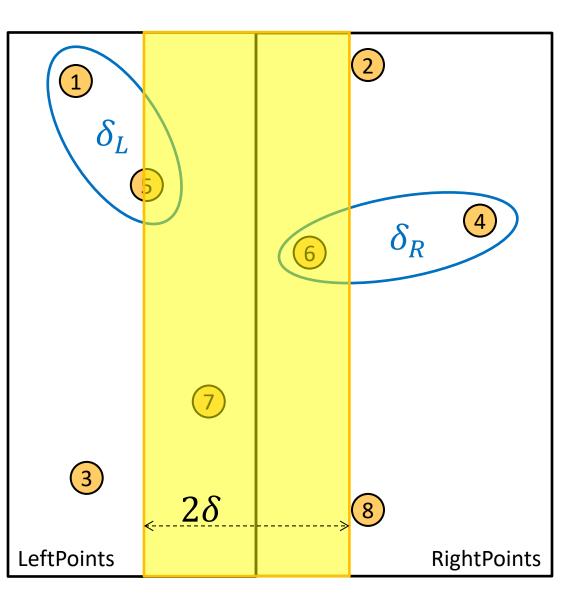


Combine:

2. Closest Pair Spanned our "Cut"Need to test points across the cut

Compare all points within $\delta = \min\{\delta_L, \delta_R\}$ of the cut. (In the "runway")

How many are there?

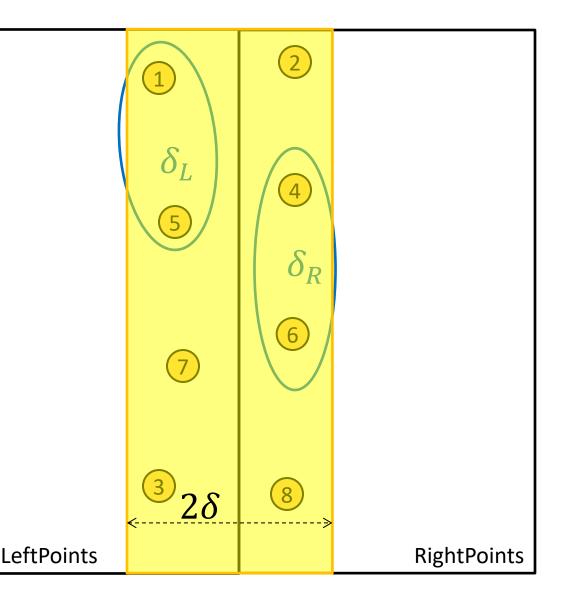


Combine:

- 2. Closest Pair Spanned our "Cut"
- Need to test points across the cut
- Slow approach Compare all points within $\delta = \min{\{\delta_L, \delta_R\}}$ of the cut.

How many are there?

$$T(n) = 2T\left(\frac{n}{2}\right) + \left(\frac{n}{2}\right)^{n}$$
$$= \Theta(n^{2})$$

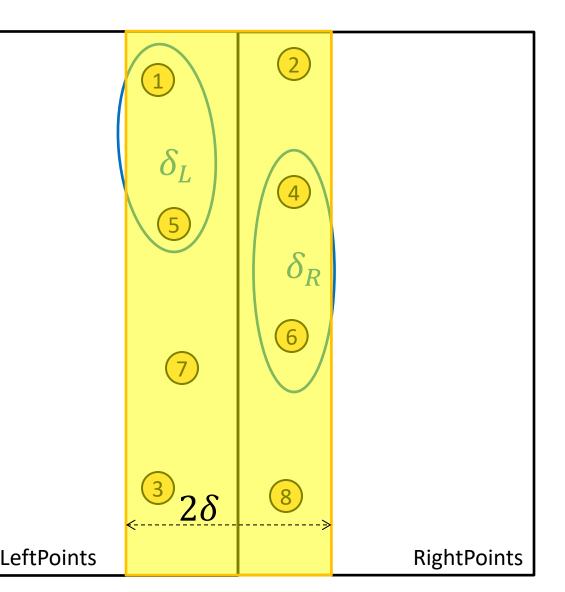


Combine:

2. Closest Pair Spanned our "Cut"Need to test points across the cut

We don't need to test all pairs!

Don't need to test points that are $> \delta$ from one another



17

Our Strategy for Combine Step

- Before we go into details, let's explain our strategy
 - Our goal: find the pair crossing the cut that has distance $<\delta$ and whose distance is the minimum of such pairs
- We want to avoid the following $\Theta(n^2)$ approach:
 - For each point in the runway, compare to all others in the runway to see if they cross the cut and are closer than δ
- We're going to find an approach that's $\Theta(n)$:
 - For each point in the runway, compare to ${\pmb k}$ near-by points in the runway to see if they cross the cut and are closer than δ
 - Doesn't matter what k is. As long as it's a constant!
 - Here are 2 ways to find a valid k, both based on geometry

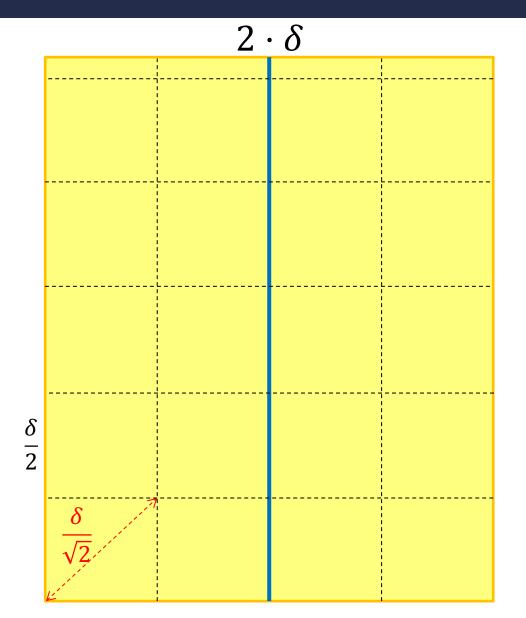
#1: Showing k=15 is Valid

Reducing Search Space

Combine:

- 2. Closest Pair Spanned our "Cut"
- Need to test points across the cut
- Divide the "runway" into square cubbies of size $\frac{\delta}{2}$

Each cubby will have at most 1 point!



Reducing Search Space

Combine:

- 2. Closest Pair Spanned our "Cut"
- Need to test points across the cut
- Divide the "runway" into square cubbies of size $\frac{\delta}{2}$ How many cubbies could contain a point < δ away? Each point compared to ≤ 15 other points
- $2 \cdot \delta$ 13 14 15 11 12 4

#2: Showing k=7 is Valid

Reducing Search Space

Combine:

Need to test points across the cut

Claim #1: if two points are the closest pair that cross the cut, then you can surround them in a box that's $2 \cdot \delta$ wide by δ tall.

Let's draw some examples.

 $2 \cdot \delta$ δ

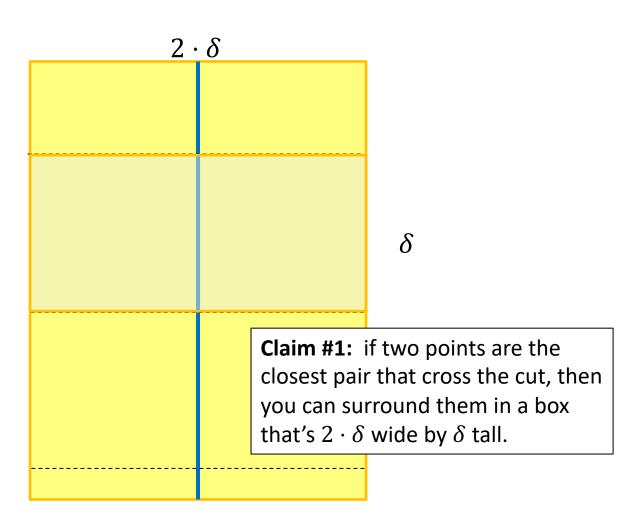
Reducing Search Space

Assume you're checking in increasing y-order, and you've reached the first point of the closest pair. Do you have to look at **all points above it** to be <u>guaranteed</u> to find the other point and the minimum

distance?

No!

- Imagine you drew a box with its bottom at point's y-coordinate.
- See Claim #1.
- Claim #2: only 8 points can be in the box.



Combine:

2. Closest Pair Spanned our "Cut"

Consider points in runway in increasing y-order.

For a given point *p*, we can *prove* the $8^{ ext{th}}$ point and beyond is more than δ from *p*.

(pp. 1041-2 in CLRS)

So for each point in runway, check next 7 points in y-order. $\Theta(n)$

1 δ_L 5 Only δ_R check next 7 (6) $\overline{7}$ 8 2δ LeftPoints RightPoints

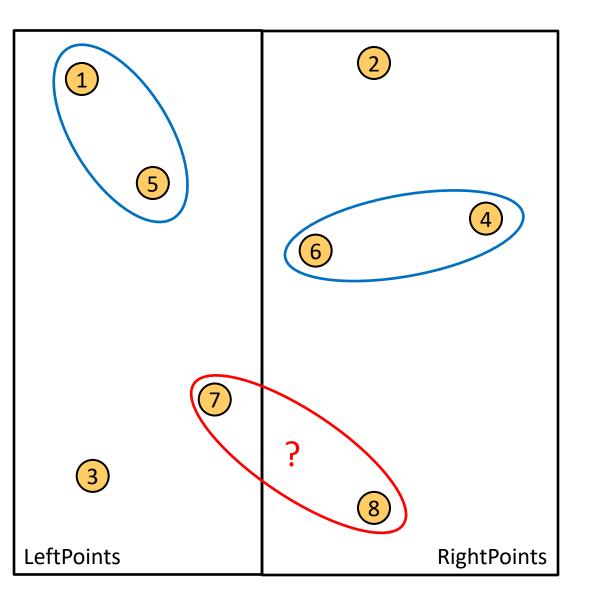
Initialization: Sort points by *x*-coordinate

Divide: Partition points into two lists of points based on *x*-coordinate (split at the median *x*)

Conquer: Recursively compute the closest pair of points in each list Base case?

Combine:

- Construct list of points in the runway (x-coordinate within distance δ of median)
- Sort runway points by *y*-coordinate
- Compare each point in runway to 7 or 15 points above it and save the closest pair
- Output closest pair among left, right, and runway points

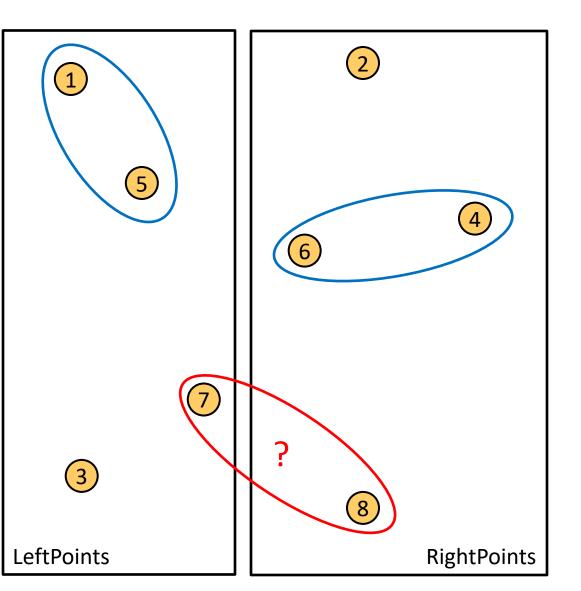


Initialization: Sort points by *x*-coordinate

Divide: Partition points into two lists of points based on x-coordinate (split at the median x)

But sorting is an $O(n \log n)$ algorithm – combine step is still too expensive! We need O(n)

- Construct list of points in way (x-coordinate within distant of median)
- Sort runway points by *y*-coordinate
- Compare each point in runway to 7 or 15 points above it and save the closest pair
- Output closest pair among left, right, and runway points



Initialization: Sort points by *x*-coordinate

Divide: Partition points into two lists of points based on *x*-coordinate (split at the median *x*)

Conquer: Recursively compute the closest pair of points in each list Base case?

Combine:

- Construct list of points in the runway (x-coordinate within distance δ of median)
- Sort runway points by *y*-coordinate
- Compare each point in runway to 7 or 15 points above it and save the closest pair
- Output closest pair among left, right, and runway points

Solution: Maintain additional

information in the recursion

- Minimum distance among pairs of points in the list
- List of points sorted according to y-coordinate

Sorting runway points by y-coordinate now becomes a **merge**

Listing Points in the Runway

Output on Left:

Closest Pair: (1, 5), $\delta_{1,5}$ Sorted Points: [3,7,5,1]

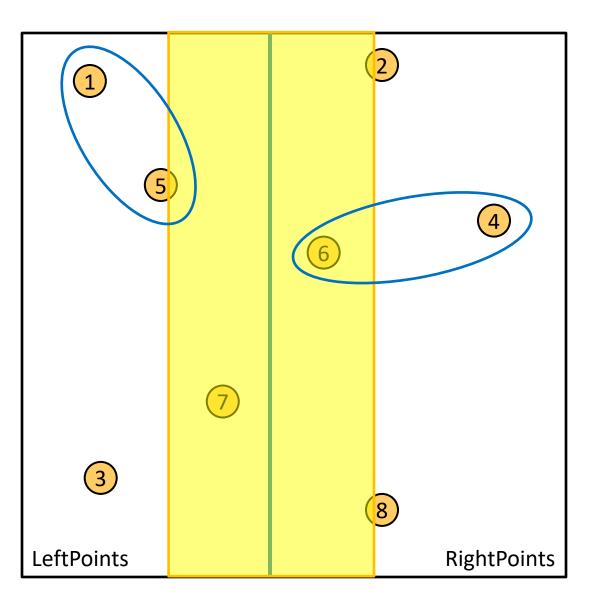
Output on Right:

Closest Pair: (4,6), $\delta_{4,6}$ Sorted Points: [8,6,4,2]

Merged Points: [8,3,7,6,4,5,1,2]

Runway Points: [8,7,6,5,2]

Both of these lists can be computed by a *single* pass over the lists



Initialization: Sort points by *x*-coordinate

Divide: Partition points into two lists of points based on *x*-coordinate (split at the median *x*)

Conquer: Recursively compute the closest pair of points in each list Base case?

Combine:

- Construct list of points in the runway (x-coordinate within distance δ of median)
- Sort runway points by *y*-coordinate
- Compare each point in runway to 7 or 15 points above it and save the closest pair
- Output closest pair among left, right, and runway points

Initialization: Sort points by *x*-coordinate

Divide: Partition points into two lists of points based on *x*-coordinate (split at the median *x*)

Conquer: Recursively compute the closest pair of points in each list

Combine:

- Merge sorted list of points by y-coordinate and construct list of points in the runway (sorted by y-coordinate)
- Compare each point in runway to 7 or 15 points above it and save the closest pair
- Output closest pair among left, right, and runway points

 $\Theta(n \log n)$

 $\Theta(1)$

What is the running time?

 $\Theta(n\log n)$

T(n) \prec 2T(n)

 $T(n) = 2T(n/2) + \Theta(n)$

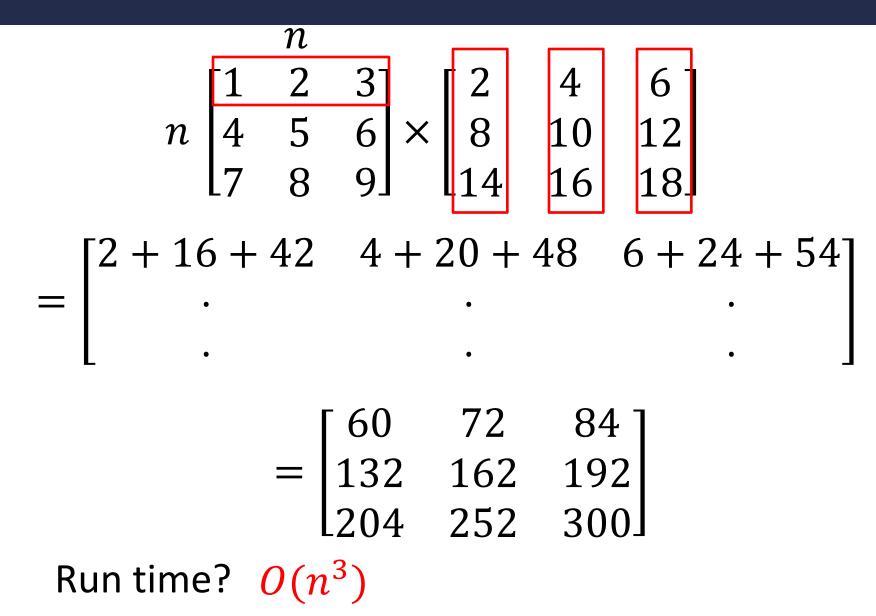
Case 2 of Master's Theorem $T(n) = \Theta(n \log n)$ $\Theta(n)$ $\Theta(n)$ $\Theta(1)$ **Initialization:** Sort points by *x*-coordinate

Divide: Partition points into two lists of points based on *x*-coordinate (split at the median *x*)

Conquer: Recursively compute the closest pair of points in each list

Combine:

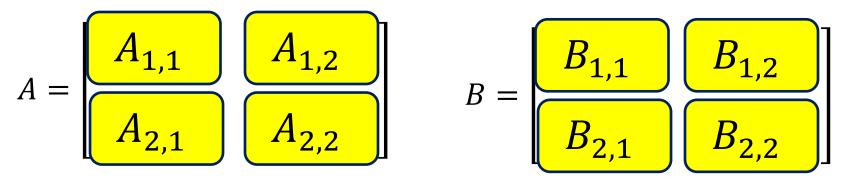
- Merge sorted list of points by y-coordinate and construct list of points in the runway (sorted by y-coordinate)
- Compare each point in runway to 7 or 15 points above it and save the closest pair
- Output closest pair among left, right, and runway points



Multiply
$$n \times n$$
 matrices (A and B)
Divide:

$$A = \begin{bmatrix} a_1 & a_2 & a_3 & a_4 \\ a_5 & a_6 & a_7 & a_8 \\ a_9 & a_{10} & a_{11} & a_{12} \\ a_{13} & a_{14} & a_{15} & a_{16} \end{bmatrix} \qquad B = \begin{bmatrix} b_1 & b_2 & b_3 & b_4 \\ b_5 & b_6 & b_7 & b_8 \\ b_9 & b_{10} & b_{11} & b_{12} \\ b_{13} & b_{14} & b_{15} & b_{16} \end{bmatrix}$$

Multiply $n \times n$ matrices (A and B)



Combine:

$$AB = \begin{bmatrix} A_{1,1}B_{1,1} + A_{1,2}B_{2,1} & A_{1,1}B_{1,2} + A_{1,2}B_{2,2} \\ A_{2,1}B_{1,1} + A_{2,2}B_{2,1} & A_{2,1}B_{1,2} + A_{2,2}B_{2,2} \end{bmatrix}$$

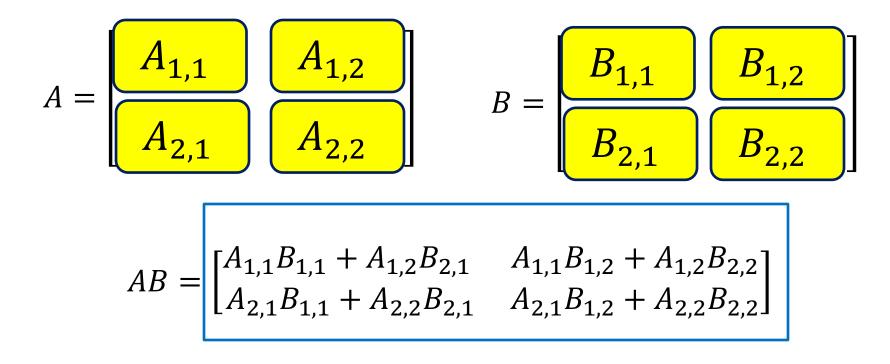
Run time?
$$T(n) = 8T\left(\frac{n}{2}\right) + \left[4\left(\frac{n}{2}\right)^2\right]$$
 Cost of additions

$$T(n) = 8T\left(\frac{n}{2}\right) + 4\left(\frac{n}{2}\right)^2$$
$$T(n) = 8T\left(\frac{n}{2}\right) + \Theta(n^2)$$

$$a = 8, b = 2, f(n) = n^2$$

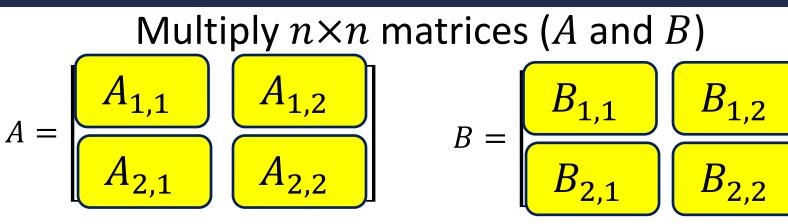
Case 1!
 $n^{\log_b a} = n^{\log_2 8} = n^3$
 $T(n) = \Theta(n^3)$
We can do better...

Multiply $n \times n$ matrices (A and B)



Idea: Use a Karatsuba-like technique on this

Strassen's Algorithm



Calculate:

$$Q_{1} = (A_{1,1} + A_{2,2})(B_{1,1} + B_{2,2})$$

$$Q_{2} = (A_{2,1} + A_{2,2})B_{1,1}$$

$$Q_{3} = A_{1,1}(B_{1,2} - B_{2,2})$$

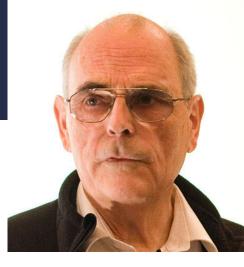
$$Q_{4} = A_{2,2}(B_{2,1} - B_{1,1})$$

$$Q_{5} = (A_{1,1} + A_{1,2})B_{2,2}$$

$$Q_{6} = (A_{2,1} - A_{1,1})(B_{1,1} + B_{1,2})$$

$$Q_{7} = (A_{1,2} - A_{2,2})(B_{2,1} + B_{2,2})$$

Find AB: $\begin{bmatrix} Q_1 + Q_4 - Q_5 + Q_7 & Q_3 + Q_5 \\ Q_2 + Q_4 & Q_1 - Q_2 + Q_3 + Q_6 \end{bmatrix}$ $\begin{bmatrix} A_{1,1}B_{1,1} + A_{1,2}B_{2,1} & A_{1,1}B_{1,2} + A_{1,2}B_{2,2} \\ A_{2,1}B_{1,1} + A_{2,2}B_{2,1} & A_{2,1}B_{1,2} + A_{2,2}B_{2,2} \end{bmatrix}$ Number Mults.: 7 Number Adds.: 18 $T(n) = 7T\left(\frac{n}{2}\right) + \frac{9}{2}n^2$



Strassen's Algorithm

Case 1!

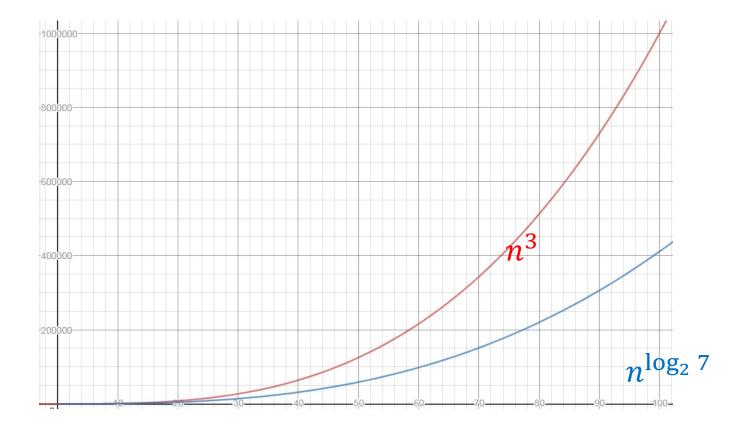
$$T(n) = 7T\left(\frac{n}{2}\right) + \frac{9}{2}n^2$$

$$a = 7, b = 2, f(n) = \frac{9}{2}n^2$$

$$n^{\log_b a} = n^{\log_2 7} \approx n^{2.807}$$

$$T(n) = \Theta\left(n^{\log_2 7}\right) \approx \Theta(n^{2.807})$$

Strassen's Algorithm



Is this the fastest?

44