
CS4102 Algorithms
Spring 2022

1

Warm up
Given any 5 points on the unit

square, show there’s always a pair

distance ≤ !
!

apart

1

1

1

1

1
2

1
22

2
If points 𝑝#, 𝑝$ in same quadrant, then 𝛿 𝑝#, 𝑝$ ≤ $

$

Given 5 points, two must share the same quadrant

Pigeonhole Principle!

CS4102 Algorithms
Spring 2022

2

• At a local grocery store,
early in the Covid-19 pandemic

• The pigeonhole principle
enforcing social distancing?!

3

Announcements

• This slide set:
– Closest-pair of points, Strassen’s Matrix Multiplication

• Homework questions, updates

• Other questions?

4

Robbie’s Yard

5

Robbie’s Yard

6

There has to be an easier way!

7

Constraints: Trees and Plants

Need to find:
Closest Pair of Trees - how
wide can the robot be?

1
2

3

4
5

6

7

8

ROBO

mulcher

3000

8

Closest Pair of Points

9

1
2

3

4
5

6

7

8

Given:
A list of points

Return:
Pair of points with
smallest distance apart

Closest Pair of Points: Naïve

10

1
2

3

4
5

6

7

8

Given:
A list of points

Return:
Pair of points with
smallest distance apart

𝑂(𝑛!)Algorithm:
Test every pair of points,
return the closest.

We can do better!
Θ(𝑛 log 𝑛)

Closest Pair of Points: D&C

1
2

3

4
5

6

7

8

Divide: How?
At median x coordinate

11

Conquer:

Combine:

Closest Pair of Points: D&C

1
2

3

4
5

6

7

8

Divide:
At median x coordinate

Conquer:

LeftPoints RightPoints

Recursively find closest
pairs from Left and Right

Combine:

12

Closest Pair of Points: D&C

1
2

3

4
5

6

7

8

Divide:
At median x coordinate

Conquer:

LeftPoints RightPoints

Recursively find closest
pairs from Left and Right

Combine:
Return min of Left and
Right pairs Problem? ?

13

Closest Pair of Points: D&C

1
2

3

4
5

6

7

8

LeftPoints RightPoints

Combine:
2 Cases:

?

1. Closest Pair is
completely in Left or
Right

2. Closest Pair Spans our
“Cut”

Need to test points
across the cut

14

Spanning the Cut

1
2

3

4
5

6

7

8

LeftPoints RightPoints

Combine:
2. Closest Pair Spanned
our “Cut”
Need to test points
across the cut

𝛿"

𝛿#
Compare all points
within 𝛿 = min{𝛿" , 𝛿#}
of the cut.

(In the “runway”)

2𝛿How many are there?
15

Spanning the Cut

1
2

3

4
5

6
7

8

LeftPoints RightPoints

Combine:
2. Closest Pair Spanned
our “Cut”
Need to test points across
the cut

𝛿"

𝛿#

2𝛿

Slow approach Compare
all points within 𝛿 =
min{𝛿!, 𝛿"} of the cut.

How many are there?

𝑇 𝑛 = 2𝑇
𝑛
2
+

𝑛
2

$

16
= Θ 𝑛$

Spanning the Cut

1
2

3

4
5

6
7

8

LeftPoints RightPoints

Combine:
2. Closest Pair Spanned
our “Cut”
Need to test points
across the cut

𝛿"

𝛿#

2𝛿

We don’t need to test all
pairs!

Don’t need to test points
that are > 𝛿 from one
another

17

Our Strategy for Combine Step

• Before we go into details, let’s explain our strategy
– Our goal: find the pair crossing the cut that has distance < 𝛿

and whose distance is the minimum of such pairs
• We want to avoid the following Θ 𝑛! approach:
– For each point in the runway, compare to all others in the runway to see if

they cross the cut and are closer than 𝛿
• We’re going to find an approach that’s Θ 𝑛 :
– For each point in the runway, compare to 𝒌 near-by points in the runway

to see if they cross the cut and are closer than 𝛿
– Doesn’t matter what 𝑘 is. As long as it’s a constant!
– Here are 2 ways to find a valid 𝑘, both based on geometry

18

#1: Showing k=15 is Valid

19

Reducing Search Space
Combine:
2. Closest Pair Spanned our
“Cut”
Need to test points across the
cut

2 ⋅ 𝛿

𝛿
2

𝛿
2

Divide the “runway” into
square cubbies of size $

!

Each cubby will have at most 1
point!

20

Reducing Search Space

21

2 ⋅ 𝛿

7

How many cubbies could
contain a point < 𝜹 away?

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

Each point compared to
≤ 15 other points

Combine:
2. Closest Pair Spanned our
“Cut”
Need to test points across the
cut

Divide the “runway” into
square cubbies of size $

!

#2: Showing k=7 is Valid

22

Reducing Search Space

Combine:
Need to test points across
the cut
Claim #1: if two points are
the closest pair that cross
the cut, then you can
surround them in a box
that’s 2 ⋅ 𝛿 wide by 𝛿 tall.

2 ⋅ 𝛿

Let’s draw some examples.

23

𝛿

Reducing Search Space

Claim #1: if two points are the
closest pair that cross the cut, then
you can surround them in a box
that’s 2 ⋅ 𝛿 wide by 𝛿 tall.

2 ⋅ 𝛿
Assume you’re checking in increasing
y-order, and you’ve reached the first
point of the closest pair.
Do you have to look at all points
above it to be guaranteed to find the
other point and the minimum
distance?

24

No!
• Imagine you drew a box with its

bottom at point’s y-coordinate.
• See Claim #1.
• Claim #2: only 8 points can be in the

box.

𝛿

Spanning the Cut

1 2

3

4
5

6
7

8

LeftPoints RightPoints

Combine:
2. Closest Pair Spanned our “Cut”

𝛿!

𝛿"

2𝛿

Consider points in runway in
increasing y-order.

For a given point p, we can prove the
8th point and beyond is more than 𝛿
from p.

(pp. 1041-2 in CLRS)

So for each point in runway, check
next 7 points in y-order.

25 𝚯 𝒏

Only
check
next 7

Closest Pair of Points: Divide and Conquer

1
2

3

4
5

6

7

8

LeftPoints RightPoints

?

Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points
based on 𝑥-coordinate (split at the median 𝑥)

Conquer: Recursively compute the closest pair
of points in each list

Base case?

Combine:
• Construct list of points in the runway

(𝑥-coordinate within distance 𝛿 of median)
• Sort runway points by 𝑦-coordinate
• Compare each point in runway to 7 or 15

points above it and save the closest pair
• Output closest pair among left, right, and

runway points

Closest Pair of Points: Divide and Conquer

1
2

3

4
5

6

7

8

LeftPoints RightPoints

?

Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points
based on 𝑥-coordinate (split at the median 𝑥)

Conquer: Recursively compute the closest pair
of points in each list

Base case?

Combine:
• Construct list of points in the runway

(𝑥-coordinate within distance 𝛿 of median)
• Sort runway points by 𝑦-coordinate
• Compare each point in runway to 7 or 15

points above it and save the closest pair
• Output closest pair among left, right, and

runway points

But sorting is an 𝑂 𝑛 log 𝑛
algorithm – combine step is still
too expensive! We need 𝑂(𝑛)

Closest Pair of Points: Divide and Conquer

Solution: Maintain additional
information in the recursion
• Minimum distance among pairs of

points in the list
• List of points sorted according to
𝑦-coordinate

Sorting runway points by
𝑦-coordinate now becomes a merge

Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points
based on 𝑥-coordinate (split at the median 𝑥)

Conquer: Recursively compute the closest pair
of points in each list

Base case?

Combine:
• Construct list of points in the runway

(𝑥-coordinate within distance 𝛿 of median)
• Sort runway points by 𝑦-coordinate
• Compare each point in runway to 7 or 15

points above it and save the closest pair
• Output closest pair among left, right, and

runway points

Listing Points in the Runway

1
2

3

4
5

6

7

8

29

Output on Left:

LeftPoints RightPoints

Closest Pair: (1, 5), 𝛿#,(
Sorted Points: [3,7,5,1]

Output on Right:
Closest Pair: (4,6), 𝛿),*
Sorted Points: [8,6,4,2]

Merged Points: 8,3,7,6,4,5,1,2

Runway Points: 8,7,6,5,2

Both of these lists can be computed
by a single pass over the lists

Closest Pair of Points: Divide and Conquer
Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points
based on 𝑥-coordinate (split at the median 𝑥)

Conquer: Recursively compute the closest pair
of points in each list

Combine:
• Merge sorted list of points by 𝑦-coordinate

and construct list of points in the runway
(sorted by 𝑦-coordinate)

• Compare each point in runway to 7 or 15
points above it and save the closest pair

• Output closest pair among left, right, and
runway points

Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points
based on 𝑥-coordinate (split at the median 𝑥)

Conquer: Recursively compute the closest pair
of points in each list

Base case?

Combine:
• Construct list of points in the runway

(𝑥-coordinate within distance 𝛿 of median)
• Sort runway points by 𝑦-coordinate
• Compare each point in runway to 7 or 15

points above it and save the closest pair
• Output closest pair among left, right, and

runway points

Closest Pair of Points: Divide and Conquer

Θ 𝑛 log 𝑛

Θ 1

2𝑇(𝑛/2)

Θ 𝑛

Θ 𝑛

Θ 1

𝑇(𝑛) = 2𝑇(𝑛/2) + Θ(𝑛)

Case 2 of Master’s Theorem
𝑇 𝑛 = Θ 𝑛 log 𝑛

What is the running time?

𝑇(𝑛)

Θ(𝑛 log 𝑛)
Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points
based on 𝑥-coordinate (split at the median 𝑥)

Conquer: Recursively compute the closest pair
of points in each list

Combine:
• Merge sorted list of points by 𝑦-coordinate

and construct list of points in the runway
(sorted by 𝑦-coordinate)

• Compare each point in runway to 7 or 15
points above it and save the closest pair

• Output closest pair among left, right, and
runway points

Matrix Multiplication

35

Matrix Multiplication

36

1 2 3
4 5 6
7 8 9

×
2 4 6
8 10 12
14 16 18

=
60 72 84
132 162 192
204 252 300

=
2 + 16 + 42 4 + 20 + 48 6 + 24 + 54

⋅ ⋅ ⋅
⋅ ⋅ ⋅

Run time? 𝑂(𝑛!)

𝑛

𝑛

Matrix Multiplication D&C

37

Multiply 𝑛×𝑛 matrices (𝐴 and 𝐵)

𝐴 =

𝑎# 𝑎$ 𝑎+ 𝑎)
𝑎(𝑎* 𝑎, 𝑎-
𝑎. 𝑎#/ 𝑎## 𝑎#$
𝑎#+ 𝑎#) 𝑎#(𝑎#*

𝐵 =

𝑏# 𝑏$ 𝑏+ 𝑏)
𝑏(𝑏* 𝑏, 𝑏-
𝑏. 𝑏#/ 𝑏## 𝑏#$
𝑏#+ 𝑏#) 𝑏#(𝑏#*

Divide:

Matrix Multiplication D&C

38

Multiply 𝑛×𝑛 matrices (𝐴 and 𝐵)

𝐴 =

𝑎# 𝑎$ 𝑎+ 𝑎)
𝑎(𝑎* 𝑎, 𝑎-
𝑎. 𝑎#/ 𝑎## 𝑎#$
𝑎#+ 𝑎#) 𝑎#(𝑎#*

𝐴"," 𝐴",$

𝐴$," 𝐴$,$

𝐴𝐵 =
𝐴#,#𝐵#,# + 𝐴#,$𝐵$,# 𝐴#,#𝐵#,$ + 𝐴#,$𝐵$,$
𝐴$,#𝐵#,# + 𝐴$,$𝐵$,# 𝐴$,#𝐵#,$ + 𝐴$,$𝐵$,$

𝐵 =

𝑏# 𝑏$ 𝑏+ 𝑏)
𝑏(𝑏* 𝑏, 𝑏-
𝑏. 𝑏#/ 𝑏## 𝑏#$
𝑏#+ 𝑏#) 𝑏#(𝑏#*

𝐵"," 𝐵",$

𝐵$," 𝐵$,$

Run time? 𝑇 𝑛 = 8𝑇
𝑛
2
+ 4

𝑛
2

$ Cost of
additions

Combine:

Matrix Multiplication D&C

39

𝑇 𝑛 = 8𝑇
𝑛
2
+ 4

𝑛
2

$

𝑇 𝑛 = 8𝑇
𝑛
2
+ Θ(𝑛$)

𝑎 = 8, 𝑏 = 2, 𝑓 𝑛 = 𝑛$

𝑛%&'# (= 𝑛%&'$) = 𝑛!
Case 1!

𝑇 𝑛 = Θ(𝑛!)
We can do better…

Matrix Multiplication D&C

40

Multiply 𝑛×𝑛 matrices (𝐴 and 𝐵)

𝐴 =

𝑎# 𝑎$ 𝑎+ 𝑎)
𝑎(𝑎* 𝑎, 𝑎-
𝑎. 𝑎#/ 𝑎## 𝑎#$
𝑎#+ 𝑎#) 𝑎#(𝑎#*

𝐴"," 𝐴",$

𝐴$," 𝐴$,$

𝐴𝐵 =
𝐴#,#𝐵#,# + 𝐴#,$𝐵$,# 𝐴#,#𝐵#,$ + 𝐴#,$𝐵$,$
𝐴$,#𝐵#,# + 𝐴$,$𝐵$,# 𝐴$,#𝐵#,$ + 𝐴$,$𝐵$,$

𝐵 =

𝑏# 𝑏$ 𝑏+ 𝑏)
𝑏(𝑏* 𝑏, 𝑏-
𝑏. 𝑏#/ 𝑏## 𝑏#$
𝑏#+ 𝑏#) 𝑏#(𝑏#*

𝐵"," 𝐵",$

𝐵$," 𝐵$,$

Idea: Use a Karatsuba-like technique on this

Strassen’s Algorithm

41

Multiply 𝑛×𝑛 matrices (𝐴 and 𝐵)

𝐴 =

𝑎# 𝑎$ 𝑎+ 𝑎)
𝑎(𝑎* 𝑎, 𝑎-
𝑎. 𝑎#/ 𝑎## 𝑎#$
𝑎#+ 𝑎#) 𝑎#(𝑎#*

𝐴"," 𝐴",$

𝐴$," 𝐴$,$
𝐵 =

𝑏# 𝑏$ 𝑏+ 𝑏)
𝑏(𝑏* 𝑏, 𝑏-
𝑏. 𝑏#/ 𝑏## 𝑏#$
𝑏#+ 𝑏#) 𝑏#(𝑏#*

𝐵"," 𝐵",$

𝐵$," 𝐵$,$
Calculate:

𝑄# = 𝐴#,# + 𝐴%,% (𝐵#,# + 𝐵%,%)
𝑄% = 𝐴%,# + 𝐴%,% 𝐵#,#
𝑄& = 𝐴#,#(𝐵#,% − 𝐵%,%)
𝑄' = 𝐴%,%(𝐵%,# − 𝐵#,#)

𝑄(= 𝐴%,# − 𝐴#,# (𝐵#,# + 𝐵#,%)
𝑄) = 𝐴#,# + 𝐴#,% 𝐵%,%

𝑄* = 𝐴#,% − 𝐴%,% (𝐵%,# + 𝐵%,%)

𝐴#,#𝐵#,# + 𝐴#,$𝐵$,# 𝐴#,#𝐵#,$ + 𝐴#,$𝐵$,$
𝐴$,#𝐵#,# + 𝐴$,$𝐵$,# 𝐴$,#𝐵#,$ + 𝐴$,$𝐵$,$

𝑄# + 𝑄) − 𝑄(+ 𝑄, 𝑄+ + 𝑄(
𝑄$ + 𝑄) 𝑄# − 𝑄$ + 𝑄+ + 𝑄*

Find 𝐴𝐵:

Number Mults.: 7 Number Adds.: 18

𝑇 𝑛 = 7𝑇
𝑛
2
+
9
2
𝑛$

Strassen’s Algorithm

42

𝑇 𝑛 = 7𝑇
𝑛
2
+
9
2
𝑛$

𝑎 = 7, 𝑏 = 2, 𝑓 𝑛 =
9
2
𝑛$

𝑛%&'# (= 𝑛%&'$ * ≈ 𝑛$.),*
Case 1!

𝑇 𝑛 = Θ 𝑛%&'$ * ≈ Θ(𝑛$.),*)

Strassen’s Algorithm

43

𝑛+

𝑛012! ,

Is this the fastest?

44

Best possible
is unknown

May not even
exist!

