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Warm up
What’s the sum? – Gauss

1 + 2 + 3 +⋯+ 98 + 99 + 100

Simplify:
1 + 2 + 3 +⋯+ (𝑛 − 1) + 𝑛 =



2

1 + 2 + 3 +⋯+ (𝑛 − 1) + 𝑛 =

𝑛 + 1

𝑛

𝑛 𝑛 + 1
2



Announcements

• Homework 1A Basic is out!
• Prof. Hott’s Office hours
– Mondays 3-5pm (4-5pm primarily 4102)
– Fridays 12-2pm (1-2pm primarily 4102)

• Horton’s office hours: See course website
• Policy change: max size of collaboration groups is 4 total



Topics in first part of this slide-deck:
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• Some of this material is from CLRS, Chapter 2
• Goals for this lecture:
– Review the sorting problem and some “basic” algorithms,

while using this to review (or introduce) some principles of algorithm analysis
• Topics:
– The sorting problem
– Insertion Sort

• Including a lower-bounds proof
– Mergesort

• Including an overview of Divide and Conquer
– Solving recurrences: tree method and the unrolling method



Sorting a Sequence: Defining the Problem
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• The problem:
– Given a sequence of items 𝒂𝟎 … 𝒂𝒏

reorder it into a permutation 𝒂′𝟎 … 𝒂′𝒏
such that 𝒂′𝒊 <= 𝒂′𝒊"𝟏 for all pairs

• Specifically, this is sorting in non-descending order…

• We’ll mostly focus on a restricted form of this problem:
“Sorting using comparison of keys” 
– The basic operation we’ll count in our analysis will be a comparison of two items’ key-values.  

Why?
• General: can sort anything
• Controls decisions, so total operations often proportional
• Can be an expensive operation (e.g. when keys are large strings)



Some Observations
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• We assume non-descending order for simplicity
– Our analysis results apply for other orderings
– You know a comparison-function can be used in practice (e.g. Java’s Comparable 

interface)
• In analyzing a problem and algorithms that solve it, sometimes it’s important to 

define assumptions like what we’re counting, i.e. the basic operation here
– Example: binary search is an optimal algorithm for searching using key 

comparisons, but hashing can be faster in practice.
• Swapping items is often expensive

• We can apply same techniques to count swapping, as a separate analysis



Sorting: More Terminology
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• Comparison Sorts: only compare keys and move items
• Adjacent Sort:  Algorithms that sort by only swapping adjacent elements
– e.g., bubble sort and insertion sort
– ...these are a subset of comparison sorts.

• Stable Sort:  A sorting algorithm is stable
– when two items x and y occur in the relative order x,y in the original list AND 

x==y, then x and y appear in the same relative order x,y in the final sorted list.
– Why would we want this?

• In-Place Algorithm: the algorithm uses at most Θ(1) extra space
– e.g., allocating another array of size Θ(𝑛) is NOT allowed.



Why Do We Study Sorting?
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• An important problem, often needed
– Often users want items in some order
– Required to make many other algorithms work well. 

• Example: To use binary search, sequence must be sorted first. The search algorithm 
is optimal and requires Θ(log 𝑛) comparisons.

• And, for the study of algorithms…
– A history of solutions
– Illustrates various design strategies and data structures
– Illustrates analysis methods
– Illustrates how we prove something about optimality for this problem



Insertion Sort

Idea: Maintain a sorted list prefix, extend that 
prefix by “inserting” the next element
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3 5 7 8 10 12 9 2 4 6 1 11

Sorted Prefix

3 5 7 8 10 9 12 2 4 6 1 11

3 5 7 8 9 10 12 2 4 6 1 11

3 5 7 8 9 10 12 2 4 6 1 11

Sorted Prefix



Insertion Sort
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• The strategy:
1.First section of list is sorted (say 𝑖 − 1 items)
2. Increase this partial solution by…

1.Shifting down the next item beyond sorted section (i.e. the 𝑖th item) down to its 
proper place in sorted section.  

2.Note: must shift items up to make room – Adjacent Sort!
3.Start at 𝑖 = 2, since one item alone is already sorted.

• Note: Example of general strategy
– Extend a partial solution by increasing its size by one.
– Some call this: decrease and conquer



Insertion Sort: Pseudocode

Note: CLRS pseudocode indexes
lists from 1, not from 0.



Properties of Insertion Sort

• We could have talked about bubble sort, selection sort,…
• Why are we focusing on Insertion Sort?
– Easy to code
– In-place
– What’s it like if the list is sorted?
• Or almost sorted?

– Fine for small inputs.   Why?
– Is it stable?  Why?



Insertion Sort: Analysis

• Worst-Case: 

• Best-case behavior?  One comparison each time

• Average Behavior
– We won’t do the math for that, but it’s about 𝑛2/4

W (n) = ( j −1) = n(n−1) / 2 =Θ(n2
j=2

n

∑ )

B(n) = 1= n−1
j=2

n

∑



Insertion Sort: Best of a breed?

• We know that I.S. is one of many quadratic sort algorithms, 
and that log-linear sorts (i.e., Q(𝑛 lg 𝑛)) do exist

• Can we learn something about I.S. that tells us what it is about 
I.S. that “keeps it” in the slower class?
– Yes, by a lower-bounds argument for adjacent sort algorithms
– This is our first example about how to make lower-bounds arguments

about a problem
• E.g. “it’s impossible for any algorithm to solve this problem in better than….”

– We’ll show that sorting a list by only swapping adjacent elements 
is 𝛀(𝒏𝟐) and can never be 𝒐(𝒏𝟐)



Removing Inversions

• Define an inversion in a sequence: A pair of elements that are 
out of order
– E.g. [ 2, 4, 1, 5, 3 ] not sorted and has 4 inversions:
• Pairs: (2,1)  (4,1)  (4,3)  (5,3)

– Any correct sort must fix each of these inversions
• Ex: they must at some point swap 4 and 1

– What’s the maximum possible number of inversions?
𝑛(𝑛 − 1)/2 all possible pairs

• This really can occur, e.g.  [ 5, 4, 3, 2, 1 ]



Removing Inversions – Lower Bound
• Consider an adjacent sort algorithm
– Reminder: sorts by only swapping adjacent elements

• Each adjacent swap can only remove at most one inversion!
• There are 𝑛(𝑛 − 1)/2 inversions, e.g., [ 5, 4, 3, 2, 1 ]

Theorem: Any algorithm that sorts by comparison of keys and 
removes at most one inversion after each comparison must do at 
least 𝑛(𝑛 − 1)/2 comparisons in the worst case.



Lower Bound and Insertion Sort

• Insertion Sort only swaps adjacent elements
– Each “new” element compared with element to left (”slide in”)
– Insertion sort only removes at most one inversion for each key 

comparison it does

– Insertion sort must do at least ' '()
*

= 𝑂(𝑛*) comparisons

• Therefore:  Insertion Sort is optimal for the set of algorithms 
that only swap adjacent elements.
– I.e. adjacent sorts



Lower Bound is General

• Important: we just proved a time-complexity result about the 
problem that applies to any algorithm of this type that solves 
it!
– Lower bounds proofs are about the problem, and can be used to 

show an algorithm is optimal (or close to optimal)

• Meaning: for any algorithm to be 𝑜(𝑛2), it must swap elements 
that are not adjacent! 



Mergesort Overview
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• General and practical sorting algorithm
• Good example of a divide-and-conquer algorithm
– Recursion leads to a more efficient solution in the worst-case than 

adjacent sorts
– It’s o(n2) or Θ(n lg n) to be more precise



Divide and Conquer

• Divide: 
– Break the problem into multiple 

subproblems, each smaller instances of 
the original

• Conquer:
– If the suproblems are “large”:

• Solve each subproblem recursively
– If the subproblems are “small”:

• Solve them directly (base case)

• Combine:
– Merge solutions to subproblems to 

obtain solution for original problem

When is this an 
effective strategy?

[CLRS Chapter 4]



Generic Divide and Conquer Solution

def myDCalgo(problem):
if baseCase(problem):

solution = solve(problem) #brute force if necessary
return solution

subproblems = Divide(problem)
for sub in subproblems:

subsolutions.append(myDCalgo(sub))
solution = Combine(subsolutions)
return solution
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Merge Sort: Divide and Conquer Sorting

• Divide: 
– Break 𝑛-element list into two lists of ⁄' * elements

• Conquer:
– If 𝑛 > 1:
• Sort each sublist recursively

– If 𝑛 = 1:
• List is already sorted (base case)

• Combine:
– Merge together sorted sublists into one sorted list

23



A Visualization
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• Note: in this visualization, think of the gray regions being 
larger values that should get sorted to the end (the bottom).



Merge
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• Combine: Merge sorted sublists into one sorted list
• We have: 
– 2 sorted lists (𝐿#, 𝐿$)
– 1 output list (𝐿%&')

While (𝐿) and 𝐿* not empty):
If 𝐿) 0 ≤ 𝐿*[0]: 

𝐿+,-.append(𝐿).pop())
Else: 

𝐿+,-.append(𝐿*.pop())
𝐿+,-.append(𝐿))
𝐿+,-.append(𝐿*) 𝑂(𝑛)



Analyzing Divide and Conquer

1. Break into smaller subproblems
– Define smaller subproblems, how to divide and combine their results

2. Use recurrence relation to express recursive running time
– Divide: 𝐷(𝑛) time, 
– Conquer: recurse on small problems, size 𝑠
– Combine: C(𝑛) time
– Recurrence: 

𝑇 𝑛 = 𝐷 𝑛 + ∑𝑇(𝑠) + 𝐶(𝑛)

3. Use asymptotic notation to simplify

26



Analyzing Merge Sort

1. Break into smaller subproblems
2. Use recurrence relation to express recursive running time
3. Use asymptotic notation to simplify
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Divide: 0 comparisons
Conquer: recurse on 2 small subproblems, size '

*
Combine: 𝑛 comparisons
Recurrence: 

𝑇 𝑛 = 2𝑇 '
*
+ 𝑛 Î Θ(n	log	n) Let’s see why!



Recurrence Solving Techniques

Four methods for solving recurrences
• Unrolling: expand the recurrence
• Tree: get a picture of recursion
• Guess/Check: Substitution by guessing the solution and 

using induction to prove
• “Cookbook”: Use magic (a.k.a. Master Theorem)

?



Tree method
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Þ 𝑛 total / level

log* 𝑛 levels
of recursion

𝑛

𝑇 𝑛 = 2𝑇(
𝑛
2
) + 𝑛

𝑇 𝑛 = -
!"#

$%&! '

𝑛 = 𝑛 log( 𝑛

⁄𝑛 2 ⁄𝑛 2

⁄𝑛 4 ⁄𝑛 4 ⁄𝑛 4 ⁄𝑛 4

… … … …

1 1 1 … 1 1 1

𝑛

𝑛
2

𝑛
2

𝑛
4

𝑛
4

𝑛
4

𝑛
4

1 1 1 1 1 1



Unrolling

The strategy:
1. Replace the recursive calculation for the smaller value 

with what you get if you “plug in” the smaller value into 
the original recurrence

2. Repeat and describe the general pattern
3. Use the base case to find how many repetitions
4. Finally plug in base case value and simplify

Let’s do this for Mergesort’s recurrence!



Unrolling, Step 1

1. Replace the recursive calculation for the smaller value with 
what you get if you “plug in” the smaller value into the 
original recurrence

𝑇 𝑛 = 2𝑇 5𝑛 2 + 𝑛

= 2 ? ? ? + 𝑛

𝑇 5𝑛 2 = 2𝑇 5𝑛 4 + 5𝑛 2

= 2 2𝑇 5𝑛 4 + 5𝑛 2 + 𝑛 = 4𝑇( 5𝑛 4) + 2𝑛



Unrolling, Step 2: Repeating

1. Replace the recursive calculation for the smaller value with what you get 
if you “plug in” the smaller value into the original recurrence

2. Repeat and describe the general pattern

𝑇 𝑛 = 2𝑇 5𝑛 2 + 𝑛

= 2 2𝑇 ⁄' 1 + ⁄' * + 𝑛 = 4𝑇( ⁄' 1) + 2𝑛

= 4 2𝑇 ⁄' 2 + ⁄' 1 + 2𝑛 = 8𝑇 ⁄' 2 + 3𝑛

…

𝑇 5𝑛 4 = 2𝑇 5𝑛 8 + 5𝑛 4



Unrolling, Step 2: General Pattern

1. Replace the recursive calculation for the smaller value with what you get 
if you “plug in” the smaller value into the original recurrence

2. Repeat and describe the general pattern

𝑇 𝑛 = 2𝑇 5𝑛 2 + 𝑛

= 2 2𝑇 ⁄' 1 + ⁄' * + 𝑛 = 4𝑇( ⁄' 1) + 2𝑛

= 4 2𝑇 ⁄' 2 + ⁄' 1 + 2𝑛 = 8𝑇 ⁄' 2 + 3𝑛

…

= 2𝑖𝑇 5𝑛 2𝑖 + 𝑖 𝑛

Let 𝑖 count repetitions 
𝑖 = 1

𝑖 = 2

𝑖 = 3



Unrolling, Steps 3 and 4: General Pattern
3. Use the base case to find how many repetitions
4. Finally plug in base case value and simplify

𝑇 𝑛 = 2𝑇 5𝑛 2 + 𝑛

= 2𝑖𝑇 5𝑛 2𝑖 + 𝑖 𝑛 Let 𝑖 count repetitions 
When will we stop repeating this? At the base case: 𝑇 1 = 0
When 𝑇 ⁄! "! is 𝑇 1 then ⁄! "! = 1 or 𝑖 = 𝑙𝑜𝑔2𝑛

2𝑖 𝑇 ⁄! "! + 𝑖 𝑛 = 2𝑙𝑔 𝑛𝑇 ⁄! ")* ' + (lg 𝑛) 𝑛
= 𝑛 𝑇 1 + 𝑛 lg 𝑛 = 𝑛 lg 𝑛 We have the closed form

of the recurrence!



Conclusion

Using the unrolling technique, we’ve found the closed form for:
Mergesort’s Recurrence: 

𝑇 1 = 0, 𝑇 𝑛 = 2𝑇 '
*
+ 𝑛 = 𝑛 𝑙𝑜𝑔 𝑛

Mergesort is a log-linear sort, Θ(n	log	n)

Things to think about:
• Would the Θ	order class change if
– T(1) was a non-zero constant
– The cost to combine was not exactly 𝑛 but still Θ(𝑛)

• Practice unrolling on the cheer-for-pizza recurrence!



Where we are:  We’ve used sorting to…

• See again how to apply ideas of counting operations
– For insertion sort, we’ve discussed: worst, average, best case

• See two different strategies for the same problem
– Insertion sort: “decrease and conquer”
– Mergesort: divide and conquer
– Introduced some new concepts: in-place, stable

• Prove a lower-bound that shows
– One class of algorithms has a lower bound of W(n2)
– To do better, must remove >1 inversion for each comparison

• Methods for solving recurrences
– Seen the tree method
– Learned the unrolling method


