CS4102 Algorithms

Warm up

Can you cover this?

Can you cover an 8×8 grid with 1 square missing using "trominoes?"

With these?

Announcements

Cheer Loudest For Pizza

At UVA games, there's a contest where two adjacent sections cheer. The loudest section gets pizza! Let's give each of the n sections a chance to win

1. Divide the sections into two halves
2. One half cheers, then the other half cheers

What are we
going to count?
3. The louder half continues, the other half is eliminated
4. Repeat until just two sections left.

The louder of the final two wins free pizza!

Let's solve the recurrence!

$T(n)=2+\sum_{i=1}^{\log _{2} n-1} 2=2\left(\log _{2} n-1\right)+2=2 \log _{2} n$

What if $n \neq 2^{k}$?

- More sections to compete \rightarrow more time

$$
\begin{gathered}
-\forall 0<n<m, T(n)<T(m), \text { where } 2^{\mathrm{k}}<n<2^{k+1}=m, \\
\text { i.e., } \mathrm{k}<\log n<k+1 \\
-T(n) \leq T(m)=T\left(2^{k+1}\right)=T\left(2^{\left\lceil\log _{2} n\right\rceil}\right)=2\left\lceil\log _{2} n\right\rceil \\
T(n) \leq 2\left\lceil\log _{2} n\right\rceil=O\left(\log _{2} n\right)
\end{gathered}
$$

Asymptotic Notation*

- $O(g(n))$
- At most within constant of g for large n
- \{functions $f \mid \exists$ constants $c, n_{0}>0$ s.t. $\left.\forall n>n_{0}, f(n) \leq c \cdot g(n)\right\}$
- Set of functions that grow "in the same way" as or more slowly than $\mathrm{g}(\mathrm{n})$
- $\boldsymbol{\Omega}(\boldsymbol{g}(\boldsymbol{n}))$
- At least within constant of g for large n
- \{functions $f \mid \exists$ constants $c, n_{0}>0$ s.t. $\left.\forall n>n_{0}, f(n) \geq c \cdot g(n)\right\}$
- Set of functions that grow "in the same way" as or more quickly than $\mathrm{g}(\mathrm{n})$
- $\boldsymbol{\Theta}(\boldsymbol{g}(\boldsymbol{n}))$
- "Tightly" within constant of g for large n
$-\Omega(g(n)) \cap O(g(n))$
- Set of functions that grow "in the same way" as $g(n)$

$$
\begin{aligned}
& f(n)=O(g(n)) \\
& f(n)=\Theta(g(n)) \\
& f(n)=\Omega(g(n))
\end{aligned}
$$

Asymptotic Bounds

- The Sets "big oh" $O(\mathrm{~g})$, "big theta" $\Theta(\mathrm{g})$, "big omega" $\Omega(\mathrm{g})$ remember these meanings:
$-\mathrm{O}(\mathrm{g})$: functions that grow no faster than g , or g is an asymptotic upper bound
$-\Omega(\mathrm{g})$: functions that grow at least as fast as g , or g is an asymptotic lower bound
$-\Theta(\mathrm{g})$: functions that grow at the same rate as g , or g is an asymptotic tight bound

Asymptotic Notation Example

- Show: $n \log n \in O\left(n^{2}\right)$

Asymptotic Notation Example

- To Show: $n \log n \in O\left(n^{2}\right)$
- Technique: Find $c, n_{0}>0$ s.t. $\forall n>n_{0}, n \log n \leq c \cdot n^{2}$
- Proof: Let $c=1, n_{0}=1$. Then,

$$
\begin{aligned}
& n_{0} \log n_{0}=(1) \log (1)=0, \\
& c n_{0}^{2}=1 \cdot 1^{2}=1 \\
& 0 \leq 1
\end{aligned}
$$

$$
\forall n \geq 1, \log (n)<n \Rightarrow n \log n \leq n^{2}
$$

Asymptotic Notation Example

- Show: $n^{2} \notin O(n)$

Asymptotic Notation Example

- To Show: $n^{2} \notin O(n)$
- Technique: Contradiction

Proof by

- Proof: Assume $n^{2} \in O(n)$. Then $\exists c, n_{0}>0$ s.t. $\forall n>n_{0}, n^{2} \leq c n$ Let us derive constant c. For all $n>n_{0}>0$, we know: $c n \geq n^{2}$, $c \geq n$.

Since c is dependent on n, it is not a constant.
Contradiction. Therefore $n^{2} \notin O(n)$. \square

Proof Techniques

- Direct Proof
- From the assumptions and definitions, directly derive the statement
- Proof by Contradiction
- Assume the statement is true, then find a contradiction
- Proof by Cases
- Induction

More Asymptotic Notation

- $\boldsymbol{o}(\boldsymbol{g}(\boldsymbol{n}))$
- Smaller than any constant factor of g for sufficiently large n
- \{functions $f: \forall$ constants $c>0, \exists n_{0}$ such that $\left.\forall n>n_{0}, f(n)<c \cdot g(n)\right\}$
- Set of functions that always grow more slowly than $\mathrm{g}(\mathrm{n})$

Equivalently, ratio of $\frac{f(n)}{g(n)}$ is decreasing and tends towards 0 :

$$
f(n) \in o(g(n)) \Leftrightarrow \lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0
$$

More Asymptotic Notation

- $\boldsymbol{o}(\boldsymbol{g}(\boldsymbol{n}))$
- Smaller than any constant factor of g for sufficiently large n
- \{functions $f: \forall$ constants $c>0, \exists n_{0}$ such that $\left.\forall n>n_{0}, f(n)<c \cdot g(n)\right\}$
- Set of functions that always grow more slowly than $\mathrm{g}(\mathrm{n})$
- $\omega(\boldsymbol{g}(\boldsymbol{n}))$
- Greater than any constant factor of g for large n
- \{functions $f: \forall$ constants $c>0, \exists n_{0}$ such that $\left.\forall n>n_{0}, f(n)>c \cdot g(n)\right\}$
- Set of functions that always grow more quickly than $\mathrm{g}(\mathrm{n})$

$$
\text { Equivalently, } f(n) \in \omega(g(n)) \Leftrightarrow \lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\infty
$$

Another Asymptotic Notation Example

- Show: $n \log n \in o\left(n^{2}\right)$

Direct Proof

- Proof Technique: Show the statement directly, using either definition
- For every constant $c>0$, we can find an n_{0} such that $\frac{\log n_{0}}{n_{0}}=c$. Then for all $n>n_{0}, n \log n<c n^{2}$ since $\frac{\log n}{n}$ is a decreasing function
\forall constants $c>0, \exists n_{0}$ such that $\forall n>n_{0}, f(n)<c \cdot g(n)$
- Equivalently, $\lim _{n \rightarrow \infty} \frac{n \log n}{n^{2}}=\lim _{n \rightarrow \infty} \frac{\log n}{n}=0 \quad$ (why is this true?)

Summary: Using Limit Definition

Comparing $\mathrm{f}(\mathrm{n})$ and $\mathrm{g}(\mathrm{n})$ as n approaches infinity, calculate this:

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}
$$

If the result....

- $<\infty$, including the case in which the limit is 0 , then $\mathrm{f} \in \mathrm{O}(\mathrm{g})$
- >0, including the case in which the limit is ∞, then $f \in \Omega(g)$
- $=c$ and $0<c<\infty$ then $f \in \Theta$ (g)
- $=0$ then $f \in o(g)$
- $=\infty$ then $f \in \omega(g)$

Back to Trominoes

A solution!

Can you cover an 8×8 grid with 1 square missing using "trominoes?" What about a 4×4 grid? 2×2 ? ()

Tromino

Trominoes Puzzle Solution

What about larger boards?

Trominoes Puzzle Solution

Divide the board into quadrants

Trominoes Puzzle Solution

Place a tromino to occupy the three quadrants without the missing piece

Trominoes Puzzle Solution

Each quadrant is now a smaller subproblem

Trominoes Puzzle Solution

Solve Recursively

Divide and Conquer

Our first algorithmic technique!

Trominoes Puzzle Solution

Divide and Conquer

- Divide:
- Break the problem into multiple subproblems, each smaller instances of the original
- Conquer:
- If the suproblems are "large":
- Solve each subproblem recursively
- If the subproblems are "small":
- Solve them directly (base case)
- Combine:
- Merge solutions to subproblems to obtain solution for original problem

Generic Divide and Conquer Solution

def myDCalgo(problem):
if baseCase(problem):
solution = solve(problem) \#brute force if necessary return solution
subproblems = Divide(problem)
for sub in subproblems:
subsolutions.append(myDCalgo(sub))
solution = Combine(subsolutions)
return solution

Merge Sort: Divide and Conquer Sorting

- Divide:
- Break n-element list into two lists of $n / 2$ elements
- Conquer:
- If $n>1$:
- Sort each sublist recursively
- If $n=1$:
- List is already sorted (base case)
- Combine:
- Merge together sorted sublists into one sorted list

Merge

- Combine: Merge sorted sublists into one sorted list
- We have:
-2 sorted lists $\left(L_{1}, L_{2}\right)$
- 1 output list ($L_{\text {out }}$)

While (L_{1} and L_{2} not empty):

$$
\begin{aligned}
& \text { If } L_{1}[0] \leq L_{2}[0]: \\
& \quad L_{\text {out }} \text {.append }\left(L_{1} \cdot \operatorname{pop}()\right)
\end{aligned}
$$

Else:
$L_{\text {out }}$.append $\left(L_{2} . \operatorname{pop}()\right)$
$L_{\text {out }}$.append $\left(L_{1}\right)$
$L_{\text {out }}$.append $\left(L_{2}\right)$

Analyzing Divide and Conquer

1. Break into smaller subproblems

- Define smaller subproblems, how to divide and combine their results

2. Use recurrence relation to express recursive running time

- Divide: $D(n)$ time,
- Conquer: recurse on small problems, size s
- Combine: C(n) time
- Recurrence:

$$
T(n)=D(n)+\sum T(s)+C(n)
$$

3. Use asymptotic notation to simplify

Analyzing Merge Sort

1. Break into smaller subproblems
2. Use recurrence relation to express recursive running time
3. Use asymptotic notation to simplify

Divide: 0 comparisons
Conquer: recurse on 2 small subproblems, size $\frac{n}{2}$
Combine: n comparisons

Recurrence:

$$
T(n)=2 T\left(\frac{n}{2}\right)+n
$$

Recurrence Solving Techniques

Four methods for solving recurrences

- - Unrolling: expand the recurrence
- Tree: get a picture of recursion
? \cdot Guess/Check: Substitution by guessing the solution and using induction to prove
- "Cookbook": Use magic (a.k.a. Master Theorem)

Tree method

$$
T(n)=2 T\left(\frac{n}{2}\right)+n
$$

