
Warm up
Can you cover an 8×8 grid with 1

square missing using “trominoes?”
Can you cover this?

With these?

CS4102 Algorithms
Spring 2022

https://nstarr.people.amherst.edu/trom/puzzle-8by8/

Announcements

Cheer Loudest For Pizza

At UVA games, there’s a contest where two adjacent sections cheer.
The loudest section gets pizza! Let’s give each of the n sections a
chance to win

1. Divide the sections into two halves
2. One half cheers, then the other half cheers
3. The louder half continues, the other half is eliminated
4. Repeat until just two sections left.
The louder of the final two wins free pizza!

What are we
going to count?

Let’s solve the recurrence!

𝑇 𝑛 = 2 + 𝑇()𝑛 2)
𝑇 2 = 2 Special case: 𝑛 = 2!

2 + 𝑇()𝑛 4)
2 + 𝑇()𝑛 8)…

2

𝑘 − 1

𝑇 𝑛 = 2 + ∑!"#
$%&!'(# 2 = 2 (log) 𝑛 − 1) + 2 = 2 log)𝑛

What if 𝑛 ≠ 2/?

• More sections to compete → more time

– ∀ 0 < 𝑛 < 𝑚, 𝑇 𝑛 < 𝑇 𝑚 , where 2! < 𝑛 < 2"#$ = 𝑚,
i.e., k < log 𝑛 < 𝑘 + 1

– 𝑇 𝑛 ≤ 𝑇 𝑚 = 𝑇 2"#$ = 𝑇 2 %&'! (= 2 log) 𝑛

𝑇 𝑛 ≤ 2 log) 𝑛 = 𝑂(log) 𝑛)

Why?

Asymptotic Notation*

• 𝑶(𝒈 𝒏)
– At most within constant of 𝑔 for large 𝑛
– {functions 𝑓|∃ constants 𝑐, 𝑛! > 0 s.t. ∀𝑛 > 𝑛!, 𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔(𝑛)}
– Set of functions that grow “in the same way” as or more slowly than g(n)

• 𝛀(𝒈 𝒏)
– At least within constant of 𝑔 for large 𝑛
– {functions 𝑓|∃ constants 𝑐, 𝑛! > 0 s.t. ∀𝑛 > 𝑛!, 𝑓 𝑛 ≥ 𝑐 ⋅ 𝑔(𝑛)}
– Set of functions that grow “in the same way” as or more quickly than g(n)

• 𝚯 𝒈 𝒏
– “Tightly” within constant of 𝑔 for large 𝑛
– Ω 𝑔 𝑛 ∩ 𝑂(𝑔 𝑛)
– Set of functions that grow “in the same way” as g(n)

*CLRS Chapter 3

𝑓(𝑛) = 𝑂(𝑔 𝑛)

𝑓(𝑛) = Θ(𝑔 𝑛)

𝑓(𝑛) = Ω(𝑔 𝑛)

Asymptotic Bounds

• The Sets “big oh” O(g), “big theta” Q(g), “big omega” W(g) –
remember these meanings:

– O(g): functions that grow no faster than g,
or g is an asymptotic upper bound

– W(g): functions that grow at least as fast as g,
or g is an asymptotic lower bound

– Q(g): functions that grow at the same rate as g,
or g is an asymptotic tight bound

Asymptotic Notation Example

• Show: 𝑛 log 𝑛 ∈ 𝑂 𝑛)

Asymptotic Notation Example

• To Show: 𝑛 log 𝑛 ∈ 𝑂 𝑛)

– Technique: Find 𝑐, 𝑛* > 0 s.t. ∀𝑛 > 𝑛*, 𝑛 log 𝑛 ≤ 𝑐 ⋅ 𝑛)

– Proof: Let 𝑐 = 1, 𝑛* = 1. Then,
𝑛* log 𝑛* = 1 log 1 = 0,
𝑐 𝑛*) = 1 ⋅ 1) = 1,
0 ≤ 1.

∀𝑛 ≥ 1, log 𝑛 < 𝑛 ⇒ 𝑛 log 𝑛 ≤ 𝑛) □

Direct Proof!

Asymptotic Notation Example

• Show: 𝑛) ∉ 𝑂 𝑛

Asymptotic Notation Example

• To Show: 𝑛) ∉ 𝑂 𝑛
– Technique: Contradiction
– Proof: Assume 𝑛) ∈ 𝑂 𝑛 . Then ∃𝑐, 𝑛* > 0 s. t. ∀𝑛 > 𝑛*, 𝑛) ≤ 𝑐𝑛

Let us derive constant 𝑐. For all 𝑛 > 𝑛* > 0, we know:
𝑐𝑛 ≥ 𝑛),
𝑐 ≥ 𝑛.

Since 𝑐 is dependent on 𝑛, it is not a constant.
Contradiction. Therefore 𝑛) ∉ 𝑂 𝑛 . □

Proof by
Contradiction!

Proof Techniques

• Direct Proof
– From the assumptions and definitions, directly derive the statement

• Proof by Contradiction
– Assume the statement is true, then find a contradiction

• Proof by Cases
• Induction

More Asymptotic Notation

• 𝒐(𝒈 𝒏)
– Smaller than any constant factor of 𝑔 for sufficiently large 𝑛
– {functions 𝑓 ∶ ∀ constants 𝑐 > 0, ∃𝑛! such that ∀𝑛 > 𝑛!, 𝑓 𝑛 < 𝑐 ⋅ 𝑔(𝑛)}
– Set of functions that always grow more slowly than g(n)

Equivalently, ratio of *(')
-(')

is decreasing and tends towards 0:

𝑓 𝑛 ∈ 𝑜 𝑔 𝑛 ⇔ lim
'→/

𝑓 𝑛
𝑔 𝑛

= 0

More Asymptotic Notation

• 𝒐(𝒈 𝒏)
– Smaller than any constant factor of 𝑔 for sufficiently large 𝑛
– {functions 𝑓 ∶ ∀ constants 𝑐 > 0, ∃𝑛! such that ∀𝑛 > 𝑛!, 𝑓 𝑛 < 𝑐 ⋅ 𝑔(𝑛)}
– Set of functions that always grow more slowly than g(n)

• 𝝎(𝒈 𝒏)
– Greater than any constant factor of 𝑔 for large 𝑛
– {functions 𝑓 ∶ ∀ constants 𝑐 > 0, ∃𝑛! such that ∀𝑛 > 𝑛!, 𝑓 𝑛 > 𝑐 ⋅ 𝑔(𝑛)}
– Set of functions that always grow more quickly than g(n)

Equivalently, 𝑓 𝑛 ∈ 𝜔 𝑔 𝑛 ⇔ lim
'→/

* '
- '

= ¥

Another Asymptotic Notation Example

• Show: 𝑛 log 𝑛 ∈ 𝑜 𝑛5
• Proof Technique: Show the statement directly, using either

definition

• For every constant 𝑐 > 0, we can find an 𝑛6 such that 789 :"
:"

= 𝑐.
Then for all 𝑛 > 𝑛6, 𝑛 log 𝑛 < 𝑐 𝑛5 since 789 :

:
is a decreasing

function

• Equivalently, lim
"→$

" %&' "
""

= lim
"→$

%&' "
"

=0 (why is this true?)

∀ constants 𝑐 > 0, ∃𝑛0 such that ∀𝑛 > 𝑛0, 𝑓 𝑛 < 𝑐 ⋅ 𝑔(𝑛)

Direct Proof

Summary: Using Limit Definition

Comparing f(n) and g(n) as n approaches infinity, calculate this:

If the result….
• < ¥, including the case in which the limit is 0, then f Î O(g)
• > 0, including the case in which the limit is ¥, then f Î W(g)
• = c and 0 < c < ¥ then f Î Q(g)
• = 0 then f Î o(g)
• = ¥ then f Î w(g)

)(
)(lim ng
nf

n ¥®

Can you cover an 8×8 grid with 1
square missing using “trominoes?”

What about a 4x4 grid? 2x2? J

Tromino

Back to Trominoes

A solution!

Trominoes Puzzle Solution

What about larger boards?

2'

2'

Trominoes Puzzle Solution

Divide the board into quadrants

Trominoes Puzzle Solution

Place a tromino to occupy the three
quadrants without the missing piece

Trominoes Puzzle Solution

Each quadrant is now a smaller subproblem

Trominoes Puzzle Solution

Solve Recursively

Divide and Conquer

Our first algorithmic technique!

Trominoes Puzzle Solution

Divide and Conquer

• Divide:
– Break the problem into multiple

subproblems, each smaller instances of
the original

• Conquer:
– If the suproblems are “large”:

• Solve each subproblem recursively
– If the subproblems are “small”:

• Solve them directly (base case)

• Combine:
– Merge solutions to subproblems to

obtain solution for original problem

When is this an
effective strategy?

[CLRS Chapter 4]

Generic Divide and Conquer Solution

def myDCalgo(problem):
if baseCase(problem):

solution = solve(problem) #brute force if necessary
return solution

subproblems = Divide(problem)
for sub in subproblems:

subsolutions.append(myDCalgo(sub))
solution = Combine(subsolutions)
return solution

27

Merge Sort: Divide and Conquer Sorting

• Divide:
– Break 𝑛-element list into two lists of ⁄() elements

• Conquer:
– If 𝑛 > 1:
• Sort each sublist recursively

– If 𝑛 = 1:
• List is already sorted (base case)

• Combine:
– Merge together sorted sublists into one sorted list

28

Merge

29

• Combine: Merge sorted sublists into one sorted list
• We have:
– 2 sorted lists (𝐿(, 𝐿))
– 1 output list (𝐿*+,)

While (𝐿; and 𝐿5 not empty):
If 𝐿; 0 ≤ 𝐿5[0]:

𝐿<=>.append(𝐿;.pop())
Else:

𝐿<=>.append(𝐿5.pop())
𝐿<=>.append(𝐿;)
𝐿<=>.append(𝐿5) 𝑂(𝑛)

Analyzing Divide and Conquer

1. Break into smaller subproblems
– Define smaller subproblems, how to divide and combine their results

2. Use recurrence relation to express recursive running time
– Divide: 𝐷(𝑛) time,
– Conquer: recurse on small problems, size 𝑠
– Combine: C(𝑛) time
– Recurrence:

𝑇 𝑛 = 𝐷 𝑛 + ∑𝑇(𝑠) + 𝐶(𝑛)

3. Use asymptotic notation to simplify

30

Analyzing Merge Sort

1. Break into smaller subproblems
2. Use recurrence relation to express recursive running time
3. Use asymptotic notation to simplify

31

Divide: 0 comparisons
Conquer: recurse on 2 small subproblems, size (

)
Combine: 𝑛 comparisons
Recurrence:

𝑇 𝑛 = 2𝑇 (
)
+ 𝑛

Recurrence Solving Techniques

Four methods for solving recurrences
• Unrolling: expand the recurrence
• Tree: get a picture of recursion
• Guess/Check: Substitution by guessing the solution and

using induction to prove
• “Cookbook”: Use magic (a.k.a. Master Theorem)

?

Tree method

33

Þ 𝑛 total / level

log) 𝑛 levels
of recursion

𝑛

𝑇 𝑛 = 2𝑇(
𝑛
2
) + 𝑛

𝑇 𝑛 = .
!"#

$%&! '

𝑛 = 𝑛 log(𝑛

⁄𝑛 2 ⁄𝑛 2

⁄𝑛 4 ⁄𝑛 4 ⁄𝑛 4 ⁄𝑛 4

… … … …

1 1 1 … 1 1 1

𝑛

𝑛
2

𝑛
2

𝑛
4

𝑛
4

𝑛
4

𝑛
4

1 1 1 1 1 1

