
Graphs – Dijkstra’s, Prim’s, Indirect 
Heaps

CS4102, Spring 2022

Readings: CLRS 23.2, 24.2, 24.3

1



Topics

2

} Dijkstra’s algorithm + naïve runtime
} Review!!

} Prim’s algorithm + naïve runtime
} Also Review!!!

} Why these two algorithms? Turns out they are VERY
similar

} Indirect Heaps
} A new data structure that makes both algorithms above more
efficient



Dijkstra’s Algorithm

3



Weighted Shortest Path

4

} no negative weight edges.
} Dijkstra’s algorithm: uses similar ideas as the
unweighted case.
Greedy algorithms:
do what seems to be best at every decision point.

S
“known”

s V - S
“unknown”

v



Dijkstra’s algorithm

5

} Initialize each vertex’s distance as infinity
} Start at a given vertex s

} Update s’s distance to be 0

} Repeat
} Pick the next unknown vertex with the shortest distance to be
the next v
} If no more vertices are unknown, terminate loop

} Mark v as known
} For each edge from v to adjacent unknown vertices w

} If the total distance to w is less than the current distance to w
¨ Update w’s distance and the path to w



V Known Dist path

v0

v1

v2

v3

v4

v5

v6

v3

v6

v1

v2 v4

v5

v0

1

2

2

2
1

1 1

5 3

5

6

10



7

void Graph::dijkstra(Vertex s){
Vertex v,w;
s.dist = 0;

while (there exist unknown vertices, find the
unknown v with the smallest distance)

v.known = true;

for each w adjacent to v
if (!w.known)
if (v.dist + Cost_VW < w.dist){

w.dist = v.dist + Cost_VW;
w.path = v;

}
}

}



Naïve Analysis

8

} How long does it take to find the smallest unknown
distance?
} simple scan using an array: O(V)

} Total running time:
} Using a simple scan: O(V2+E) = O(V2)



Dijkstra' Algorithm

9

dijkstra(G, wt, s)
init PQ to be empty;
PQ.Insert(s, dist=0);
parent[s] = NULL; dist[s] = 0;
while (PQ not empty)
v = PQ.ExtractMin();
for each w adj to v
if (w is unseen) {

dist[w] = dist[v] + wt(v,w)
PQ.Insert(w, dist[w] );
parent[w] = v;

}
else if (w is fringe &&

dist[v] + wt(v,w) < dist[w] ) {
dist[w] = dist[v] + wt(v,w)
PQ.decreaseKey(w, dist[w]);
parent[w] = v;

}



Analysis of Priority Queue implementation?

10

} How long does it take to find the smallest unknown
distance?
} extract min from PQ: O(log(V))
} But calledV times total, so O(V*log(V))

} Inner loop:
} runs E times like before but….
} Each edge could force a PQ.decreaseKey() call, runtime??
} Naïve decreaseKey() is linear time:O(V), total of O(E*V)

} So, total is O(V*log(V) + E*V). Is this better??
} Earlier, using a simple scan: O(V2+E) = O(V2)



Prim’s Algorithm

11



Prim’s algorithm

12

Idea: Grow a tree by adding an edge from the “known”
vertices to the “unknown” vertices. Pick the edge with
the smallest weight.

G

v

known



Prim’s Algorithm for MST

13

} Pick one node as the root,
} Incrementally add edges that connect a “new” vertex to
the tree.

} Pick the edge (u,v) where:
} u is in the tree, v is not AND
} where the edge weight is the smallest of all edges (where u is
in the tree and v is not).



14

MST

v4

v7

v2

v3 v5

v6

v1

2

2

5

4
7

1 10

4
6

3

8

1



15

MST

v4

v7

v2

v3 v5

v6

v1

2

2

5

4
7

1 10

4
6

3

8

1

v1
{v1, v4}
{v1, v2}
{v4, v3}
{v4, v7}
{v7, v6}
{v7, v5}

v1

v4

v2

v3

v7v6

v5



Prim’s MST Algorithm

16

} Greedy strategy:
} Choose some start vertex as current-tree
} Greedy rule:Add edge from graph to current-tree that

} has the lowest weight of edges that…
} have one vertex in the tree and one not in the tree.

} Thus builds-up one tree by adding a new edge to it
} Can this lead to an infeasible solution?

(Tell me why not.)
} Is it optimal? (Yes. Need a proof.)



Tracking Edges for Prim’s MST

17

} Candidate edges: edge from a tree-node to a non-
tree node
} Since we’ll choose smallest, keep only one candidate edge
for each non-tree node

} But, may need to make sure we always have the smallest
edge for each non-tree node

} Fringe-nodes: non-trees nodes adjacent to the tree
} Need data structure to hold fringe-nodes

} Priority queue, ordered by min-edge weight
} May need to update priorities!



Prim’s Algorithm

18

MST-Prim(G, wt)
init PQ to be empty;
PQ.Insert(s, wt=0);
parent[s] = NULL;
while (PQ not empty)
v = PQ.ExtractMin();
for each w adj to v
if (w is unseen) {

PQ.Insert(w, wt(v,w));
parent[w] = v;

}
else if (w is fringe && wt[v,w] < fringeWt(w)){

PQ.decreaseKey(w, wt[v,w]);
parent[w] = v;

}



Cost of Prim’s Algorithm

19

} LooksVERY similar to Dijkstra’s doesn’t it!!

} Outer loop extracts from PQ total ofV times
} O(V*log(V))

} Inner loop runs E times total, but calls decreaseKey()
} If decreaseKey() is naïve and linear (V), then
} O(E*V)

} Total: O(V*log(V) + E*V)



Indirect Heaps

20



Compare

21

} Both Dijkstra and Prim have same structure, and suffer
from a naïve, slow implementation of decreaseKey()

} Let’s compare the code real fast, and then introduce the
Indirect Heap



Dijkstra' Algorithm

22

dijkstra(G, wt, s)
init PQ to be empty;
PQ.Insert(s, dist=0);
parent[s] = NULL; dist[s] = 0;
while (PQ not empty)
v = PQ.ExtractMin();
for each w adj to v
if (w is unseen) {

dist[w] = dist[v] + wt(v,w)
PQ.Insert(w, dist[w] );
parent[w] = v;

}
else if (w is fringe &&

dist[v] + wt(v,w) < dist[w] ) {
dist[w] = dist[v] + wt(v,w)
PQ.decreaseKey(w, dist[w]);
parent[w] = v;

}



Prim’s Algorithm

23

MST-Prim(G, wt)
init PQ to be empty;
PQ.Insert(s, wt=0);
parent[s] = NULL;
while (PQ not empty)
v = PQ.ExtractMin();
for each w adj to v
if (w is unseen) {

PQ.Insert(w, wt(v,w));
parent[w] = v;

}
else if (w is fringe && wt[v,w] < fringeWt(w)){

PQ.decreaseKey(w, wt[v,w]);
parent[w] = v;

}



Better PQ Implementations

24

} Goal: Lower cost of PQ.decreaseKey()

} Example of naïve approach firstà



Better PQ Implementations

25

} Goal: Lower cost of PQ.decreaseKey()

} Indirect Heapà



Better PQ Implementations (2)

26

} Cost of Dijkstra’s and Prim’s
} O(V*log(V) + E*V)

} Indirect heap makes boldedV become log(V)

} New Cost:
} O(V*log(V) + E*log(V)) = O(E*log(V))



Proving Dijkstra’s Correct Using 
Proof by Induction

27



Structure of an induction proof for 
correctness

28

} Base case
} Show the algorithm correct for some small input size

} Inductive Hypothesis
} Assume algorithm is correct for all input sizes up to some size
} E.g. for input sizes up to not including k

} Or equivalently, up to and including n. It doesn’t matter how you
name the “boundary” as long as you’re consistent in next step!

} Inductive Step
} Show algorithm is correct for next larger input size
} E.g. for size k

} Or, for n+1 if you used n to define Inductive Hypothesis



Dijkstra' Algorithm

29

dijkstra(G, wt, s)
init PQ to be empty;
PQ.Insert(s, dist=0);
parent[s] = NULL; dist[s] = 0;
while (PQ not empty)
v = PQ.ExtractMin();
for each w adj to v
if (w is unseen) {

dist[w] = dist[v] + wt(v,w)
PQ.Insert(w, dist[w] );
parent[w] = v;

}
else if (w is fringe &&

dist[v] + wt(v,w) < dist[w] ) {
dist[w] = dist[v] + wt(v,w)
PQ.decreaseKey(w, dist[w]);
parent[w] = v;

}



30



31



Summary

32



What Did We Learn?

33

} Review of Dijkstra’s and Prim’s
} Almost same algorithm but solve different problems!!

} Review of Naïve runtime analysis
} Indirect heap and better runtime for each algorithm

} Use of induction to prove Dijkstra’s find minimum
distance to every vertex


