Graphs - Dijkstra's, Prim's, Indirect Heaps

CS4102, Spring 2022

Readings: CLRS 23.2, 24.2, 24.3

Topics

- Dijkstra's algorithm + naïve runtime
- Review!!
- Prim's algorithm + naïve runtime
- Also Review!!!
- Why these two algorithms? Turns out they are VERY similar
- Indirect Heaps
- A new data structure that makes both algorithms above more efficient

Dijkstra's Algorithm

Weighted Shortest Path

- no negative weight edges.
- Dijkstra's algorithm: uses similar ideas as the unweighted case.

Greedy algorithms:
do what seems to be best at every decision point.

Dijkstra's algorithm

- Initialize each vertex's distance as infinity
- Start at a given vertex s
, Update s's distance to be 0
- Repeat
- Pick the next unknown vertex with the shortest distance to be the next v
- If no more vertices are unknown, terminate loop
- Mark v as known
- For each edge from v to adjacent unknown vertices w
- If the total distance to w is less than the current distance to w
\square Update w's distance and the path to w

V	Known	Dist	path
v0			
v1			
v2			
v3			
v4			
v5			
v6			

void Graph: :dijkstra (Vertex s) \{
Vertex v,w;
s.dist $=0$;
while (there exist unknown vertices, find the unknown v with the smallest distance)
v.known $=$ true;
for each w adjacent to v
if (!w.known)
if (v.dist + Cost_VW < w.dist) \{ w.dist $=$ v.dist + Cost_VW;
w.path $=$ v;
\}
\}
\}

Naïve Analysis

- How long does it take to find the smallest unknown distance?
, simple scan using an array: $\mathrm{O}(\mathrm{V})$
- Total running time:
- Using a simple scan: $\mathrm{O}\left(\mathrm{V}^{2}+\mathrm{E}\right)=\mathrm{O}\left(\mathrm{V}^{2}\right)$

Dijkstra' Algorithm

```
dijkstra(G, wt, s)
    init PQ to be empty;
    PQ.Insert(s, dist=0);
    parent[s] = NULL; dist[s] = 0;
    while (PQ not empty)
    v = PQ.ExtractMin();
    for each w adj to v
        if (w is unseen) {
            dist[w] = dist[v] + wt(v,w)
        PQ.Insert(w, dist[w] );
        parent[w] = v;
    }
    else if (w is fringe &&
                        dist[v] + wt(v,w) < dist[w] ) {
        dist[w] = dist[v] + wt(v,w)
        PQ.decreaseKey(w, dist[w]);
        parent[w] = v;
    }
```


Analysis of Priority Queue implementation?

- How long does it take to find the smallest unknown distance?
b extract min from PQ: O($\log (\mathrm{V})$)
b But called V times total, so $\mathrm{O}(\mathrm{V} * \log (\mathrm{~V})$)
- Inner loop:
, runs E times like before but....
- Each edge could force a PQ.decreaseKey() call, runtime??
- Naïve decreaseKey() is linear time: $\mathrm{O}(\mathrm{V})$, total of $\mathrm{O}\left(\mathrm{E}^{*} \mathrm{~V}\right)$
- So, total is $\mathrm{O}\left(\mathrm{V} * \log (\mathrm{~V})+\mathrm{E}^{*} \mathrm{~V}\right)$. Is this better??
- Earlier, using a simple scan: $\mathrm{O}\left(\mathrm{V}^{2}+\mathrm{E}\right)=\mathrm{O}\left(\mathrm{V}^{2}\right)$

Prim's Algorithm

Prim's algorithm

Idea: Grow a tree by adding an edge from the "known" vertices to the "unknown" vertices. Pick the edge with the smallest weight.

Prim's Algorithm for MST

- Pick one node as the root,
- Incrementally add edges that connect a "new" vertex to the tree.
- Pick the edge (u,v) where:
b u is in the tree, v is not AND
b where the edge weight is the smallest of all edges (where u is in the tree and v is not).

MST

Prim's MST Algorithm

- Greedy strategy:
- Choose some start vertex as current-tree
- Greedy rule:Add edge from graph to current-tree that
- has the lowest weight of edges that...
- have one vertex in the tree and one not in the tree.
- Thus builds-up one tree by adding a new edge to it
- Can this lead to an infeasible solution?
(Tell me why not.)
- Is it optimal? (Yes. Need a proof.)

Tracking Edges for Prim's MST

- Candidate edges: edge from a tree-node to a nontree node
- Since we'll choose smallest, keep only one candidate edge for each non-tree node
- But, may need to make sure we always have the smallest edge for each non-tree node
- Fringe-nodes: non-trees nodes adjacent to the tree
- Need data structure to hold fringe-nodes
- Priority queue, ordered by min-edge weight
- May need to update priorities!

Prim's Algorithm

```
MST-Prim(G, wt)
    init PQ to be empty;
    PQ.Insert(s, wt=0);
    parent[s] = NULL;
    while (PQ not empty)
    v = PQ.ExtractMin();
    for each w adj to v
    if (w is unseen) {
        PQ.Insert(w, wt(v,w));
        parent[w] = v;
    }
    else if (w is fringe && wt[v,w] < fringeWt(w)){
        PQ.decreaseKey(w, wt[v,w]);
        parent[w] = v;
    }
```


Cost of Prim's Algorithm

- Looks VERY similar to Dijkstra's doesn't it!!
- Outer loop extracts from PQ total of V times
, $\mathrm{O}(\mathrm{V} * \log (\mathrm{~V}))$
- Inner loop runs E times total, but calls decreaseKey()
- If decreaseKey() is naïve and linear (V), then
- $\mathrm{O}\left(\mathrm{E}^{*} \mathrm{~V}\right)$
- Total: $\mathrm{O}\left(\mathrm{V}^{*} \log (\mathrm{~V})+\mathrm{E}^{*} \mathrm{~V}\right)$

Indirect Heaps

Compare

- Both Dijkstra and Prim have same structure, and suffer from a naïve, slow implementation of decreaseKey()
- Let's compare the code real fast, and then introduce the Indirect Heap

Dijkstra' Algorithm

```
dijkstra(G, wt, s)
    init PQ to be empty;
    PQ.Insert(s, dist=0);
    parent[s] = NULL; dist[s] = 0;
    while (PQ not empty)
    v = PQ.ExtractMin();
    for each w adj to v
        if (w is unseen) {
        dist[w] = dist[v] + wt(v,w)
        PQ.Insert(w, dist[w] );
        parent[w] = v;
    }
    else if (w is fringe &&
                        dist[v] + wt(v,w) < dist[w] ) {
        dist[w] = dist[v] + wt(v,w)
        PQ.decreaseKey(w, dist[w]);
        parent[w] = v;
    }
```


Prim's Algorithm

```
MST-Prim(G, wt)
    init PQ to be empty;
    PQ.Insert(s, wt=0);
    parent[s] = NULL;
    while (PQ not empty)
    v = PQ.ExtractMin();
    for each w adj to v
    if (w is unseen) {
        PQ.Insert(w, wt(v,w));
        parent[w] = v;
    }
    else if (w is fringe && wt[v,w] < fringeWt(w)){
        PQ.decreaseKey(w, wt[v,w]);
        parent[w] = v;
    }
```


Better PQ Implementations

- Goal: Lower cost of PQ.decreaseKey()
- Example of naïve approach first \rightarrow

Better PQ Implementations

- Goal: Lower cost of PQ.decreaseKey()
- Indirect Heap \rightarrow

Better PQ Implementations (2)

- Cost of Dijkstra's and Prim's
- $\mathrm{O}\left(\mathrm{V} * \log (\mathrm{~V})+\mathrm{E}^{*} \mathrm{~V}\right)$
- Indirect heap makes bolded V become $\log (\mathrm{V})$
- New Cost:
- $\mathrm{O}\left(\mathrm{V}^{*} \log (\mathrm{~V})+\mathrm{E}^{*} \log (\mathrm{~V})\right)=\mathrm{O}\left(\mathrm{E}^{*} \log (\mathrm{~V})\right)$

Proving Dijkstra's Correct Using Proof by Induction

Structure of an induction proof for correctness

- Base case
- Show the algorithm correct for some small input size
- Inductive Hypothesis
- Assume algorithm is correct for all input sizes up to some size
- E.g. for input sizes up to not including k
- Or equivalently, up to and including n. It doesn't matter how you name the "boundary" as long as you're consistent in next step!
- Inductive Step
- Show algorithm is correct for next larger input size
- E.g.for size k
- Or, for $n+1$ if you used n to define Inductive Hypothesis

Dijkstra' Algorithm

```
dijkstra(G, wt, s)
    init PQ to be empty;
    PQ.Insert(s, dist=0);
    parent[s] = NULL; dist[s] = 0;
    while (PQ not empty)
    v = PQ.ExtractMin();
    for each w adj to v
        if (w is unseen) {
        dist[w] = dist[v] + wt(v,w)
        PQ.Insert(w, dist[w] );
        parent[w] = v;
    }
    else if (w is fringe &&
                        dist[v] + wt(v,w) < dist[w] ) {
        dist[w] = dist[v] + wt(v,w)
        PQ.decreaseKey(w, dist[w]);
        parent[w] = v;
    }
```


Summary

What Did We Learn?

- Review of Dijkstra's and Prim's
- Almost same algorithm but solve different problems!!
- Review of Naïve runtime analysis
- Indirect heap and better runtime for each algorithm
- Use of induction to prove Dijkstra's find minimum distance to every vertex

