
Kruskal’s MST Algorithm
and

Find-Union Data Structure

CS 4102: Algorithms
Spring 2022

Robbie Hott and Tom Horton

1

Topics in this slide-deck:

2

• Motivating Problem: Minimum Spanning Trees
– This is a graph problem, and you’ve seen it

• One solution
– Kruskal’s Algorithm (Uses a find-union structure)

• Define and design the find-union to support Kruskal’s
Algorithm
– Will require some clever implementation details

Minimum Spanning Trees

Readings: CLRS 23
(but not 23.1 and only first part of 23.2)

3

Spanning Tree

4

• A spanning tree of a graph G is a subgraph of G that contains
every vertex in G and is also a tree (i.e., it has no cycles)
– All connected graphs have spanning tree(s)
– All spanning trees have the same number of nodes (all of them)
– You can construct a spanning tree by arbitrarily remove edges from

cycles

Spanning Tree: Example

5

• Original Graph:

• Possible spanning trees:

Spanning Tree: Example (almost)

6

Minimum Spanning Tree

7

• Just constructing any spanning tree is simple

• Suppose edges have costs!
– Cost of building tracks between two stations
– Length of wire between boxes in a house

• Each spanning tree has a different total cost (sum of edges included in tree)

• The Minimum Spanning Tree is the spanning tree with lowest overall cost

Minimum Spanning Tree

8

• Given a connected and undirected graph G=(V, E)

• Find a graph G’ = (V, E’) such that:
– E’ is a subset of E
– |E’| = |V| - 1
– G’ is connected (assuming G was connected)
– Sum of cost of edges in E’ is minimum

• G’ is then the minimum spanning tree

Kruskal’s MST Algorithm

Readings: CLRS first part of 23.2

9

Kruskal’s MST Algorithm

10

• Prim’s approach:
– Build one tree. Make the one tree bigger and as good as it can be.

• Kruskal’s approach
– Choose the best edge possible: smallest weight
– Not one tree – maintain a forest!
– Each edge added will connect two trees.

Can’t form a cycle in a tree!
– After adding V-1 edges, you have one tree, the MST

Kruskal’s MST Algorithm

11

• Idea: Have a forest (set of trees) that eventually shrinks into one tree
– At each step, add an edge that joins two trees (no cycles!)
– Choose the one (v,w) that has the smallest weight of possible connecting edges
– Continue until you have one tree, which will be a MST

G=(V,E)

v

w
3

6 4

7

MST Example

v4

v7

v2

v3 v5

v6

v1

2

2

5

4

7

1 10

4 6

3

8

1

MST and Kruskal’s Example

v4

v7

v2

v3 v5

v6

v1

2

2

5

4

7

1 10

4 6

3

8

1

v1

v4

v2

v3

v7
v6

v5

Cost(MST) = 16

14

void Graph::kruskal(){
int edgesAccepted = 0;
DisjSet s(NUM_VERTICES);

while (edgesAccepted < NUM_VERTICES – 1){
e = smallest weight edge not deleted yet;
// edge e = (u, v)
uset = s.find(u);
vset = s.find(v);
if (uset != vset){
edgesAccepted++;
s.unionSets(uset, vset);

}
}

}

2|E| finds

|V| unions

|E| heap ops

Kruskal code
Assumes we’ve created a heap. (Could we sort?)

Initialize DisjSet object so all items in separate set

Runtime of Kruskal’s

15

• Every edge is placed on priority queue once and removed once
– Θ 𝐸 ∗ log 𝐸 = Θ(𝐸 ∗ log 𝑉)

• For each edge you do 2 set finds and one set union.
– Let f(V) be time of find, and u(V) be time of union.

– Θ 𝐸 ∗ 2𝑓 𝑉 + 𝑢 𝑉

– If find and union are linear time, then Θ 𝐸 ∗ 2𝑉 + 𝑉 = Θ 𝐸 ∗ 𝑉 = 𝑂(𝑉!)

• Overall: Θ 𝐸 ∗ log 𝑉 + 𝐸 ∗ 𝑉 = Θ 𝐸 ∗ 𝑉 = 𝑶 𝑽𝟑 //Assumes find and union linear time

Strategy for Kruskal’s

16

• EL = sorted set of edges ascending by weight
– (For this discussion, we’re sorting here, not using a heap)

• Foreach edge e in EL
– T1 = tree for head(e)
– T2 = tree for tail(e)
– If (T1 != T2)

• add e to the output (the MST)
• Combine trees T1 and T2

• Seems simple, no?
– But, how do you keep track of what trees a vertex is in?
– Trees are sets of vertices. Need to findset(v) and “union” two sets

Disjoint Sets and Find/Union Algorithms

Readings: CLRS 21.3

17

Union/Find and Disjoint Sets

18

• An Abstract Data Type (ADT) for a collection of sets of any kind
of item, where an item can only belong to one of the sets
– We’ll assume each item is identified by a unique integer value

• Need to support the following operations
– void makeSet(int n) // construct n independent sets
– int findSet(int i) // given i, which set does i belong to?
– void union(int i, int j) // merge sets containing i and j

Represent Sets As Trees

19

• In our implementation, we’ll represent each set as a tree
• Identify set by its root node’s ID (its “label”)
– findSet() means tracing up to root
– union() makes one root child of the other root

Two sets After a union

Union/Find and Disjoint Sets

20

• Needs to support the following operations
– void makeSet(int n) //construct n independent sets

• Solution:
– Store as array of size n. Each location stores label for that

set.

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

Union/Find and Disjoint Sets

21

• Needs to support the following operations
– int findSet(int i) //given i, which set does i belong to?

• Solution: Trace around array until we find place where
index and contents match
– Start at index i and repeat:

• If a[i] == i then return i
• Else set i = a[i]

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

Union/Find and Disjoint Sets

22

• Needs to support the following operations
– void union(int i, int j) //merge sets i and j

• Solution: find label for each set (call find() method),
then set one label to point to other
– Label1 = find(i); Label2 = find(j)
– a[Label1] = Label2 //OR a[Label2] = Label1

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

Union/Find and Disjoint Sets

23

• Example:
– union(4,5)
– union(6,7)
– union(1,2)
– union(5,6)
– find(1); find(4); find(6)

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

Example Using MST Example

v4

v7

v2

v3 v5

v6

v1

2

2

5

4
7

1 10

4
6

3

8
1

v1

v4

v2

v3

v7v6

v5

25

Union/Find and Disjoint Sets

26

• Time-complexity, where n is size of array?

• makeSet()
– Linear: just create array and fill it with values

• find()
– Linear if have to trace a long way to get to label
– Constant if lucky and input is the label (root note) or

near it

• union()
– Constant to change the label BUT…
– Could be linear to find the two labels first.

Optimization 1: Union by rank

27

Two Sets: Union’d under 0: Union’d under 3:

Optimization 1: Union by rank

28

• Easy to implement!!
• What’s “rank” here?
– Upper bound on height of a node

in our set’s tree

• Union by rank:
– Make the root with smaller rank

point to the root with larger rank

Optimization 2: Path Compression

29

• Nothing special about tree’s structure,
as long as we can trace back to root

• Idea: as we do a find,
each node we visit gets
updated to point
directly to root

• Later finds will be faster

Optimization 2: Path Compression

30

• Also easy to implement
– CLRS code uses recursion à
– Or would loop and keep a list

def find_set(x):
path = []
while x != x.p:

path.append(x)
x = x.p

for n in path:
n.p = x.p

return x.p

Complexity for Kruskal’s

31

• Union-by-rank and path compression yields m operations in
Θ 𝑚 ∗ 𝛼 𝑛
– where 𝛼 𝑛 a VERY slowly growing function. (See textbook for details)
– m is the number of times you run the operation. So constant time, for each

operation
• So overall Kruskal’s with path compression:

Θ 𝐸 ∗ log 𝑉 + 𝐸 ∗ 1 = Θ(𝐸 ∗ log 𝑉) //now the heap is slowest part
• Originally:

Θ 𝐸 ∗ log 𝑉 + 𝐸 ∗ 𝑉 = Θ 𝐸 ∗ 𝑉 = 𝑶 𝑽𝟑 //Assumed find and union linear time

– (Time complexity if we’d sorted edges and not used a heap?)

Summary

32

What did we learn?

33

• Minimum Spanning Trees
– Review!

• Kruskal’s Algorithm
– Review again!

• Find-union
– How to implement
– How to optimize
– How it affects runtime of Kruskal’s algorithm.

