Kruskal’s MIST Algorithm
and
Find-Union Data Structure

CS 4102: Algorithms
Spring 2022
Robbie Hott and Tom Horton

Topics In this slide-deck:

* Motivating Problem: Minimum Spanning Trees
— This is a graph problem, and you’ve seen it

* One solution
— Kruskal’s Algorithm (Uses a find-union structure)

* Define and design the find-union to support Kruskal’s
Algorithm

— Will require some clever implementation details

(but not 23.1 and only first part of 23.2)

Spanning Tree

* A spanning tree of a graph G is a subgraph of G that contains
every vertex in G and is also a tree (i.e., it has no cycles)
— All connected graphs have spanning tree(s)
— All spanning trees have the same number of nodes (all of them)

— You can construct a spanning tree by arbitrarily remove edges from
cycles

Spanning Tree: Example
* Original Graph: ?

* Possible spanning trees:

aLiatiatliae

spanning Tree: Example (almost

rm Golders
Cross]
/ — Manor
— House.
N Leytonstone
Archway =
gJFinsbury
Park wed
Zone 3 ‘
Hampstead Arsenal Zone 3
I Tufnell Layton.
Neasden g Park
Doliis Holloway
Hill Road
ill
N Cesen (f kenisn
i Finchley Belsize
Kilburn Road Park Caledonian 3
Q Road
Wt Chalk P Highbury & \
Hampstead Siiiss Farm Islington e 3
- Cottage
stratford et
Camden N
Town
Harlesden \
. Mornington
Willesden Park et o Crescent -
Junction fed 52::“ King's Cross - Mill Lane
e Malda St. Pancras Plaistow,., =
/one 3
Vale Bethnal
Kensal - Green
Green Old e O
North H{Street “Bow
Warwick /& e . o, Road
Westbourne Avenue / Marylebone Russell e Shored e
Park ", o > Square . oreditch - End
G Royal /Edgware 2 » Farringdon _ e - e Devons
O;k / Road Chancery “ary soBarbican Jiiverpool ao™ " Stepney Road
Lane » "% [Street N Green \
ol 7 Whitechapel
o4 Moorgate| b Aldgate
| ey e Ladbroke ; . st. Paul's » B Conning
Acton Road Grove / » * 'Paddington fed Aldgate O, |
| /Bayswater - Cov:nt anaekfng.s er ‘ leeouse
(arble rden --On i = sgument | Gateway o Roya
White N otting Ancootar Arch O\ = Shadwell Westferry Vicor
City O™ Queensway ~ Gate o /
‘ Tower |
\ Shepherd's Y London Hill West India Quay
\ Bush Holland Iy Bridge feh
\ Park p
. IS : i /- Wepping
\ Soldhawk Shepherd's i Knightsbridge Heron
oldhawk Bush | % High Street Tiyde Park / Rotherhithe Quays
oa Kensington / Kensington -2, b h -
(Glymeia) bt / o = * Westminster Borougl S ENorth
g \Greenwich
e Stamford » ® StJames's Lambeth' - Q"Canada
o Brook e Victoria b R North Bermondsey Water Crosshathouria
/ ondon Arena |
Turnham Toucester Socin™ s peicphan & .
Green Ravenscourt Kengi‘:‘gmn . --O i Quays
Park Sloane
Barons . west i Square Mudchute
Court - —
Kensington West Bod e o Zone 1 Kennington Island /
\ Brompton g Gardens /
Cutty
Sark
Fulham
Broadway
\ 3 EGreenwich feh
! o New Cross e
iy Deptiord
ridge
Hfstockwell 2
Elverson
Road
Clapham
North O Lewisham Fed.
Clapham ‘
Common o /
Brixton y
od
= 1km
Zone 3 Claphari- — - T
South

Minimum Spanning Tree

Just constructing any spanning tree is simple

Suppose edges have costs!

— Cost of building tracks between two stations
— Length of wire between boxes in a house

Each spanning tree has a different total cost (sum of edges included in tree)

The Minimum Spanning Tree is the spanning tree with lowest overall cost

Minimum Spanning Tree

* Given a connected and undirected graph G=(V, E)

* Find a graph G’ =(V, E’) such that:
— E’ is a subset of E
- |E| =[V]-1
— G’ is connected (assuming G was connected)
— Sum of cost of edges in E’ is minimum

* G’ is then the minimum spanning tree

Kruskal's MST Algorithm

* Prim’s approach:

— Build one tree. Make the one tree bigger and as good as it can be.

e Kruskal’s approach

— Choose the best edge possible: smallest weight
— Not one tree — maintain a forest!

— Each edge added will connect two trees.
Can’t form a cycle in a tree!

— After adding V-1 edges, you have one tree, the MST

10

Kruskal's MST Algorithm

* |dea: Have a forest (set of trees) that eventually shrinks into one tree
— At each step, add an edge that joins two trees (no cycles!)
— Choose the one (v,w) that has the smallest weight of possible connecting edges
— Continue until you have one tree, which will be a MST

G=(V,E)

11

MST Example

MST and Kruskal's Example

D—

Cost(MST) = 16

Kruskal code

void Graph: :kruskal() { Assumes we’ve created a heap. (Could we sort?)
int edgesAccepted = 0;
DisjSet s (NUM VERTICES) ; < Initialize DisjSet object so all items in separate set

while (edgesAccepted < NUM VERTICES - 1) { *//,,|E|heapops
e = smallest weight edge not deleted yet;
// edge e = (u, v)

uset = s.find(u) ;

i -
vset = s.find(v); 2|E| finds

if (uset != wvset) {
edgesAccepted++;

s.unionSets (uset, wvset);

} | \

V| unions

14

Runtime of Kruskal's

* Every edge is placed on priority queue once and removed once
— O(E xlog(E)) = O(E * log(V))

* For each edge you do 2 set finds and one set union.
— Let f(V) be time of find, and u(V) be time of union.

- 0(E+(2f V) +u()))
— If find and union are linear time, then G)(E * (2V + V)) =0(ExV)=0(V3

* Overall: @(E * log(V) + E * V) = @(E * V) = O(VB) //Assumes find and union linear time

15

Strategy for Kruskal's

 EL =sorted set of edges ascending by weight
— (For this discussion, we’re sorting here, not using a heap)

 Foreach edgeeinEL
— T1 = tree for head(e)
— T2 = tree for tail(e)
— If (T1 1=T2)
e add e to the output (the MST)
* Combine trees T1 and T2

 Seems simple, no?
— But, how do you keep track of what trees a vertex is in?
— Trees are sets of vertices. Need to findset(v) and “union” two sets

16

Disjoint Sets and Find/Union Algorithms

Readings: CLRS 21.3

Union/FIind and Disjoint Sets

* An Abstract Data Type (ADT) for a collection of sets of any kind
of item, where an item can only belong to one of the sets

— We’'ll assume each item is identified by a unique integer value
* Need to support the following operations
— void makeSet(int n) // construct n independent sets
— int findSet(int i) // given i, which set does i belong to?

— void union(int i, int j) // merge sets containing i and j

18

Represent Sets As Trees

* In our implementation, we’ll represent each set as a tree

 |dentify set by its root node’s ID (its “label”)
— findSet() means tracing up to root
— union() makes one root child of the other root

] &

®» @ (&)

& &)
Two sets After a union

19

Union/FIind and Disjoint Sets

* Needs to support the following operations
— void makeSet(int n) //construct n independent sets

e Solution:

— Store as array of size n. Each location stores label for that
set.

UBEHENOEDOR
0 1 2 3 4 5 6 7

20

Union/FIind and Disjoint Sets

* Needs to support the following operations
— int findSet(inti) //given i, which set does i belong to?

e Solution: Trace around array until we find place where
index and contents match

— Start at index i and repeat:
e Ifa[i] ==ithenreturni
* Else seti=ali]

ofli oz Wafisfelf7
0 1 2 3 4 5 6 7

21

Union/FIind and Disjoint Sets

* Needs to support the following operations
— void union(inti, intj) //merge setsiandj

e Solution: find label for each set (call find() method),
then set one label to point to other

— Labell = find(i); Label2 = find(j)
— a[Labell] = Label2 //OR a[Label2] = Labell

OBEHENEDE
0 1 2 3 4 5 6 7

22

Union/FIind and Disjoint Sets

 Example:
— union(4,5)
— union(6,7)
— union(1,2)
— union(5,6)
— find(1); find(4); find(6)

OBEHENEDE
0 1 2 3 4 5 6 7

23

Example Using MST Example

25

Union/FIind and Disjoint Sets

* Time-complexity, where n is size of array?

* makeSet()
— Linear: just create array and fill it with values

e find()
— Linear if have to trace a long way to get to label

— Constant if lucky and input is the label (root note) or
near it

e union()
— Constant to change the label BUT...
— Could be linear to find the two labels first.

26

Optimization 1: Union by rank

Two Sets: Union’d under 0; Union'd under 3:
(0 (o) (s,
3 O () O @
o (2)) OO
OO ONONO (2)

Optimization 1: Union by rank

MAKE-SET(x)

e Easy to implement!! 1 xp=x
* What’s “rank” here? 2 x.rank =0
— Upper bound on height of a node UNION(x, y)
in our set’s tree 1 LINK(FIND-SET(x), FIND-SET(y))
* Union by rank: LINK(x, y)
— Make the root with smaller rank 1 if x.rank > y.rank
point to the root with larger rank - y.p =X
3 elsex.p=y
4 if x.rank == y.rank

5 y.rank = y.rank + 1

28

Optimization 2: Path Compression

* Nothing special about tree’s structure,
as long as we can trace back to root

* |ldea: as we do a find,
each node we visit gets
updated to point
directly to root

e Later finds will be faster @ @& @ @

(b)

29

Optimization 2: Path Compression

* Also easy to implement

— CLRS code uses recursion = FIND-SET(x)
— Or would loop and keep a list 1 ifx #x.p
2 x.p = FIND-SET(x.p)
def find_set(x): 3 return X.p
path = []
while X != X.p:
path.append(x)
X = X.p
for n 1n path:
n.p = X.p

return x.p

30

Complexity for Kruskal's

* Union-by-rank and path compression yields m operations in
@(m * a(n))
— where a(n) a VERY slowly growing function. (See textbook for details)

— m is the number of times you run the operation. So constant time, for each
operation

* So overall Kruskal’s with path compression:
O(E xlog(V)+ E +«1) = O(E *log(V)) //now the heap is slowest part

* Originally:
OCE xlog(V) + ExV)=0(E +xV) = O(V?’) //Assumed find and union linear time
— (Time complexity if we’d sorted edges and not used a heap?)

31

What did we learn”

* Minimum Spanning Trees
— Review!
e Kruskal’s Algorithm
— Review again!
* Find-union
— How to implement
— How to optimize

— How it affects runtime of Kruskal’s algorithm.

33

