
Using DFS for Topological Sorting and
Strongly Connected Components

CS 4102: Algorithms
Spring 2022

Robbie Hott and Tom Horton

1

Topological Sorting

Readings: CLRS 22.4

2

Topological Sort

3

• Given a directed acyclic graph, construct a
linear ordering of the vertices such that if
there is an edge from u to v, then u appears
before v in the ordering.

• One valid topological sort is:
V1 V6 V8 V3 V2 V7 V4 V5

Topological Sort

4

• What are allowable
orderings I can take all
these CS classes?
– Note there are many

possible orderings
– Unlike sorting a list

Getting Dressed

Underwear Socks

ShoesPants

Belt

Shirt

Watch

Tie

Jacket

Topologically sorted vertices appear in reverse order of their finish times!

We Can Use DFS and Finish Times

This is the same graph
with a different layout.

Topological Sort Algorithm

DFS_sweep(G)
0 toposort-list = [] // empty list
1 for each vertex u in G.V
2 u.color = WHITE
3 u.π = NIL
4 time = 0
5 for each vertex u in G.V
6 if u.color == WHITE // if unseen
7 DFS-VISIT(G, u) // explore paths out of u
8 // toposort-list contains the result

• Strategy: modify the two DFS functions so that they order nodes by
finish-time in reverse order. This slide: modified version of DFS “Sweep”.

Topological Sort Algorithm

DFS-VISIT(G, u) // modified to do topological sort
1 time = time + 1 // white vertex u has just been discovered
2 u.d = time // discovery time of u
3 u.color = GRAY // mark as seen
4 for each v in G.Adj[u] // explore edge (u, v)
5 if v.color == WHITE // if unseen
6 v.π = u
7 DFS-VISIT(G, v) // explore paths out of v (i.e., go “deeper”)
8 u.color = BLACK // u is finished
9 time = time + 1
10 u.f = time // finish time of u
11 toposort-list.prepend(u)

Forward vs. Reverse

• Topological sort is a type of sort
– Implies an ordering
– Can sort backwards, of course

• Forward topological order
– If edge vw in graph, then topo[v] < topo[w]

• Reverse topological order
– If edge vw in graph, then topo[v] > topo[w]

• And, every directed graph has a transpose, which means… (see next slide)

What’s an Edge Mean?
• What does our graph model?

• Edge uv means do u first, then v. Or, …
• Edge uv means task u depends on v (i.e. v must be done first)

– The latter is called a dependency graph
– “forward in time” vs. “depend on this one”

• Big deal? No, we can order vertices in reverse topological order if
needed

Underwear

Shoes

Pants

Underwear

Shoes

Pants

Strongly Connected Components
in a Digraph

Readings: CLRS 22.5, but you can ignore the
proof-y parts

11

Strongly Connected Components (SCCs)

• In a digraph, Strongly Connected Components (SCCs) are
subgraphs where all vertices in each SCC are reachable from
one another
– Thus vertices in an SCC are on a directed cycle
– Any vertex not on a directed cycle is an SCC all by itself

• Common need: decompose a digraph into its SCCs
– Perhaps then operate on each, combine results based on connections

between SCCs

12

Real-world Example: Social Networks
• Model a social network of users
– Directed edge u->v means u follows v

• We want to identify a group of users
who follow each other
– Maybe not directly
– OK if it’s indirect, i.e. if there’s a path

connecting any pair in the group
• In this example, the group of solid-colored users

is an SCC
• Note: if all pairs had to follow each other, we call

this a clique
13

SCC Example

• Example: digraph below has 3 SCCs
– Note here each SCC has a cycle. (Possible to have a single-node SCC.)
– Note connections to other SCCs, but no path leaves a SCC and comes back
– Note there’s a unique set of SCCs for a given digraph

14

Component Graph
• Sometimes for a problem it’s useful to consider digraph G’s

component graph, GSCC

– It’s like we ”collapse” each SCC into one node
– Might need a topological ordering between SCCs

15

How to Decompose Digraph into SCCs
• Several algorithms do this using DFS
• We’ll use CLRS’s choice (by Kosaraju and Sharir)
• Algorithm works as follows:

1. Call DFS-sweep(G) to find finishing times u.f for each vertex u in G.
2. Compute GT, the transpose of digraph G.

(Reminder: transpose means same nodes, edges reversed.)
3. Call DFS-sweep(GT) but do the recursive calls on nodes in the order

of decreasing u.f from Step 1. (Start with the vertex with largest
finish time in G’s DFS tree,…)

4. The DFS forest produced in Step 3 is the set of SCCs

16

Why Do We Care about the Transpose?
• If we call DFS on a node in an SCC, it will visit all nodes in that SCC

– But it could leave the SCC and find other nodes L
– Could we prevent that somehow?

• Note that a digraph and its transpose have the same SCCs
– Maybe we can use the fact that edge-directions are reversed in GT to stop DFS from

leaving an SCC?
– But this depends on the order you choose vertices to do DFS-sweep() in GT

17

Why Do We Care About Finish Times?
• Our algorithm first finds DFS finish times in G
• Then calls recursive DFS on transpose GT from vertex with

largest finish time (here, B)
– Reversed edges in GT stop it visiting nodes in other SCCs

18

Why Do We Care About Finish Times?
• After recursive DFS on transpose GT finds SCC containing B,

next DFS will start from C
– Nodes in previously found SCC(s) have been visited
– Reversed edges in GT stop it visiting nodes in SCCs yet to be found

19

Ties to Topological Sorting

• Formal proof of correctness in CLRS, but hopefully from previous slides you’re
convinced it works!

• Note how the use of finish times makes this seem like topological sort. And it is,
if you think of topological ordering for GSCC

– Cycles in G, but no cycles in GSCC so we could sort that
– Topological sort controls the order we do things, and DFS finds all the reachable nodes in

an SCC

20

Final Thoughts

• There are many interesting problems involving digraphs and
DAGs

• They can model real-world situations
– Dependencies, network flows, …

• DFS is often a valuable strategy to tackle such problems
– For DAGs, not interested in back-edges, since DAGs are acyclic
– Ordering, reachability from DFS can be useful

21

