CS4102 Algorithms Spring 2022

$\frac{\text{Warm up:}}{\text{Show that }P = NP}$

Today's Keywords

- Reductions
- P vs NP
- NP Hard, NP Completeness
- k-Independent Set
- k-Vertex Cover
- 3SAT
- k-Clique
- CLRS: Ch 34

Homeworks

- Unit C and D Programming Due 5/3
- Unit D Advanced Due 5/3
 - NP Completeness and Reductions
- Unit D Basic Due 5/3 (but no penalty submission through 5/6)

• Tuesday, May 10, 7pm in MEC 205 (our section)

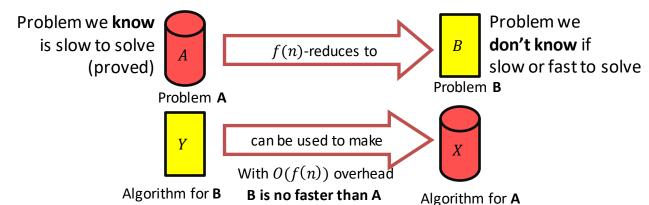
Reductions

- Algorithm technique of supreme ultimate power
- Convert instance of problem A to an instance of Problem B
- Convert solution of problem B back to a solution of problem A

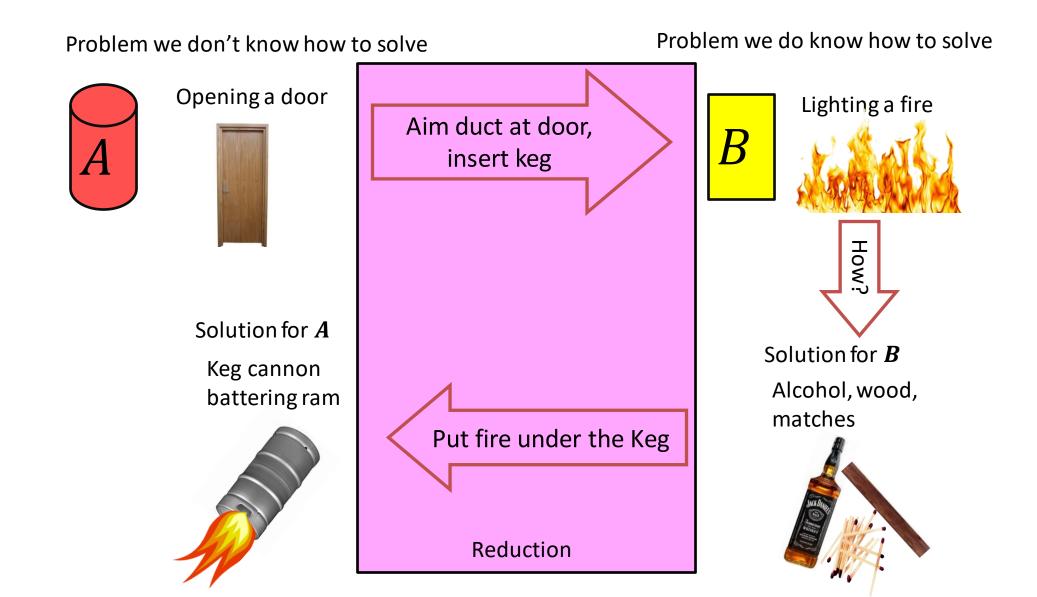
Reductions

Possible uses

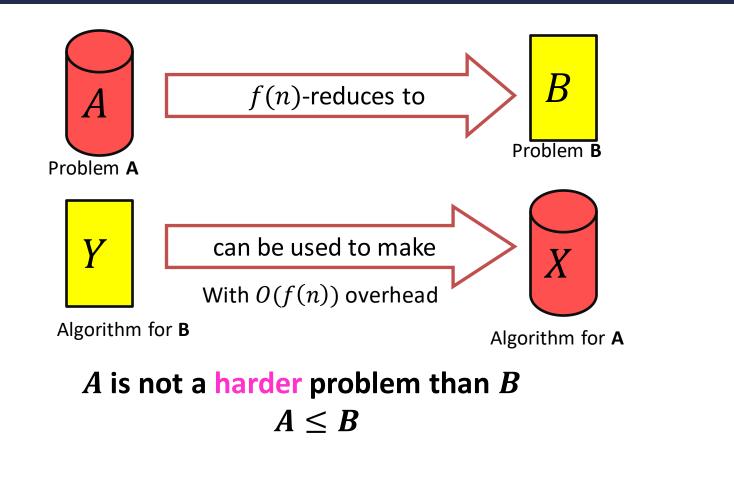
- Prove lower bound for B by showing it's as hard as A



MacGyver's Reduction



Reduction Proof Notation



If A requires time $\Omega(f(n))$ time then B also requires $\Omega(f(n))$ time $A \leq_{f(n)} B$

Or we could have solved A faster using B's solver!

Proof of Lower Bound by Reduction

To Show: Y is slow

1. We know X is slow (by a proof)
(e.g., X = some way to open the door)

2. Assume Y is quick [toward contradiction](Y = some way to light a fire)

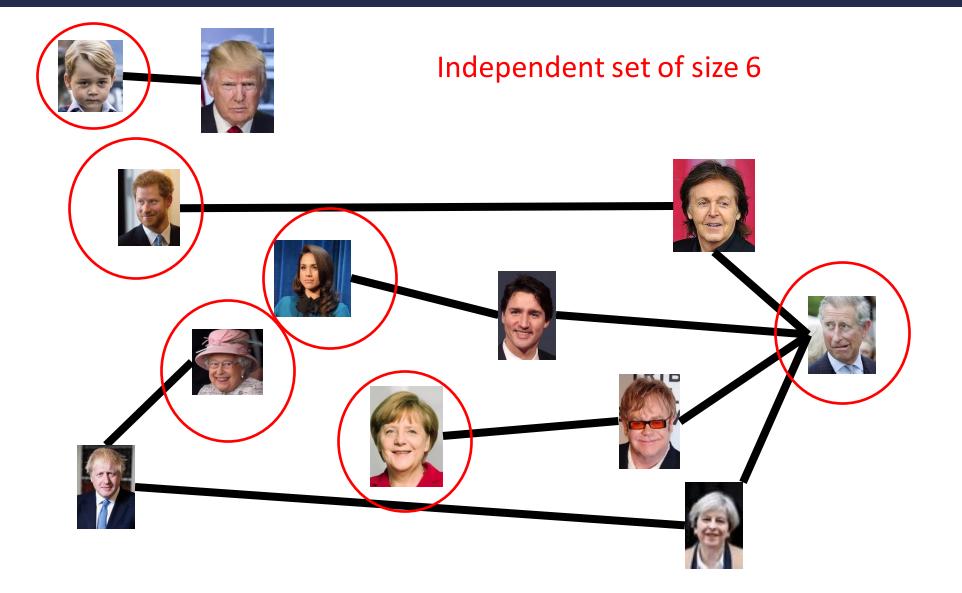
3. Show how to use Y to perform X quickly

4. X is slow, but Y could be used to perform X quickly conclusion: Y must not actually be quick

Maximum Independent Set

- Independent set: S ⊆ V is an independent set if no two nodes in S share an edge
- Maximum Independent Set Problem: Given a graph G = (V, E) find the maximum independent set S

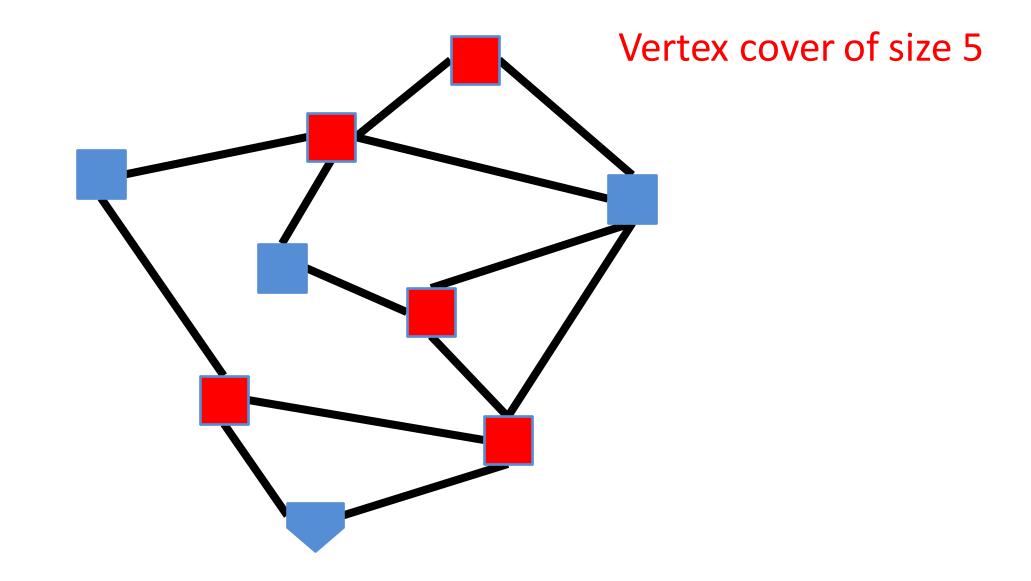
Example



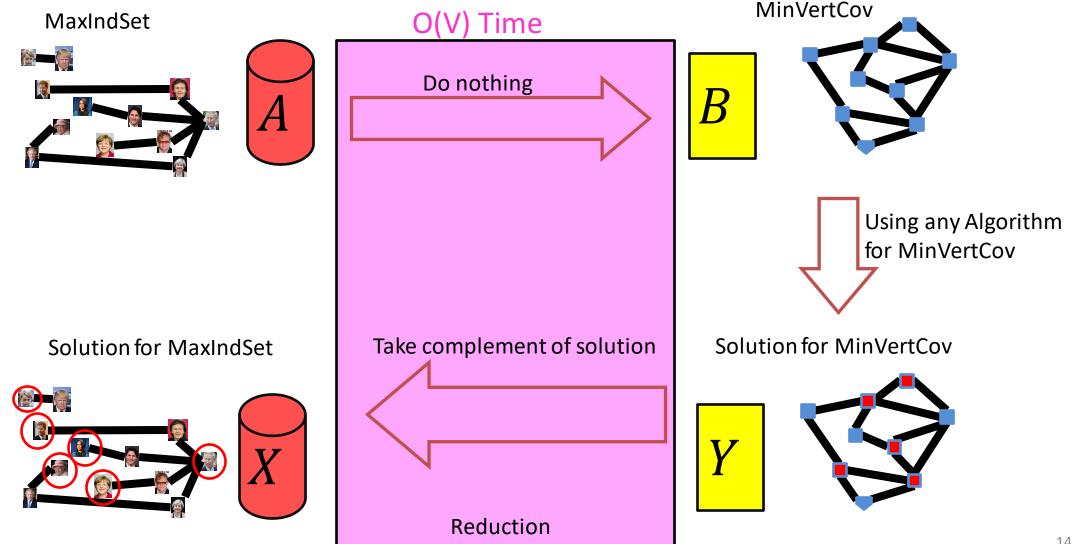
Minimum Vertex Cover

- Vertex Cover: C ⊆ V is a vertex cover if every edge in E has one of its endpoints in C
- Minimum Vertex Cover: Given a graph G = (V, E) find the minimum vertex cover C

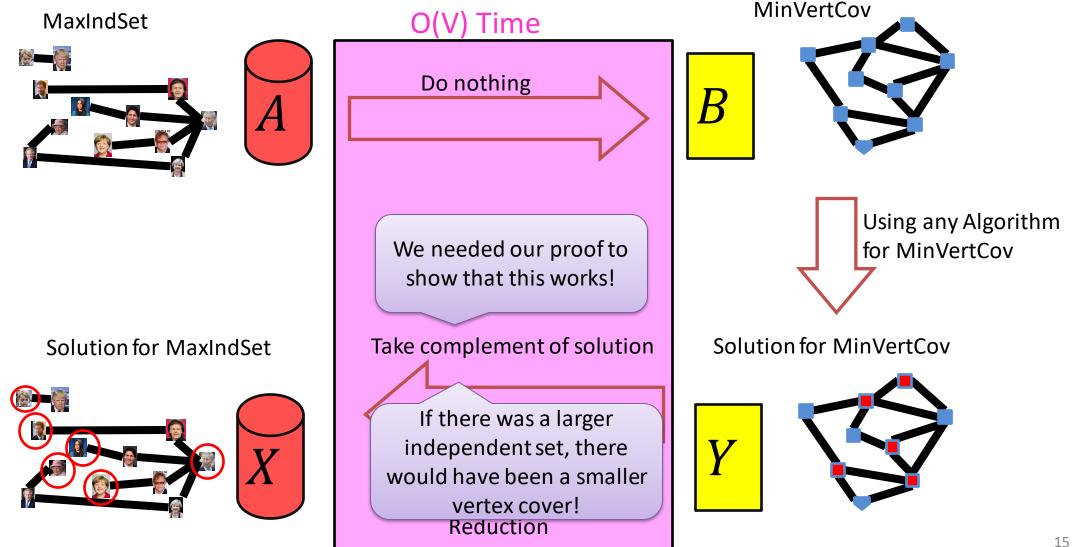
Example



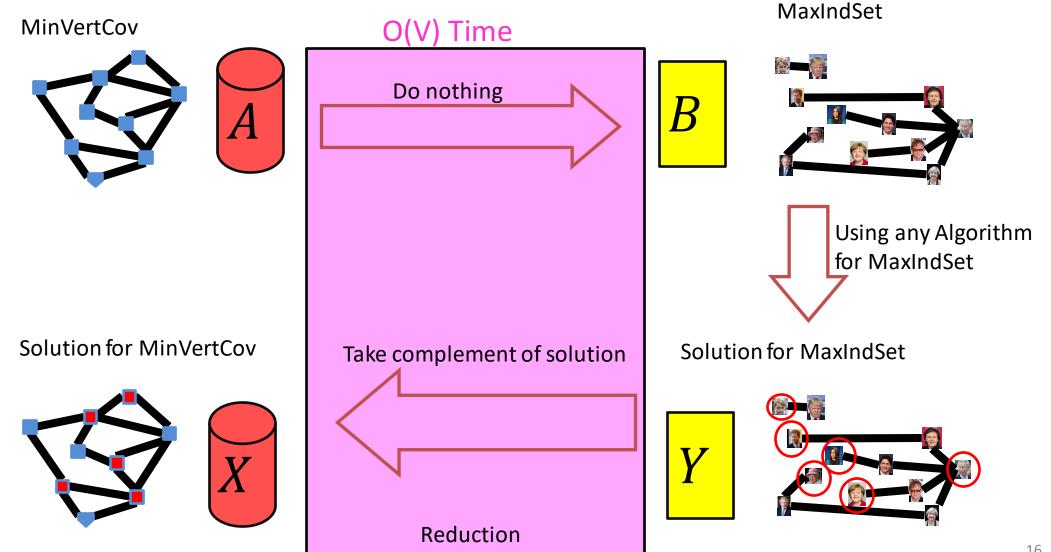
MaxIndSet V-Time Reducible to **MinVertCover**



MaxIndSet V-Time Reducible to **MinVertCov**



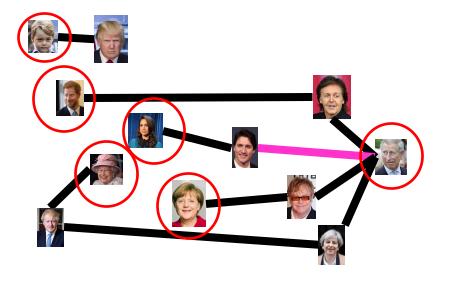
MinVertCover V-Time Reducible to **MaxIndSet**



Proof: \Rightarrow

S is an independent set of G iff V - S is a vertex cover of G

Let *S* be an independent set

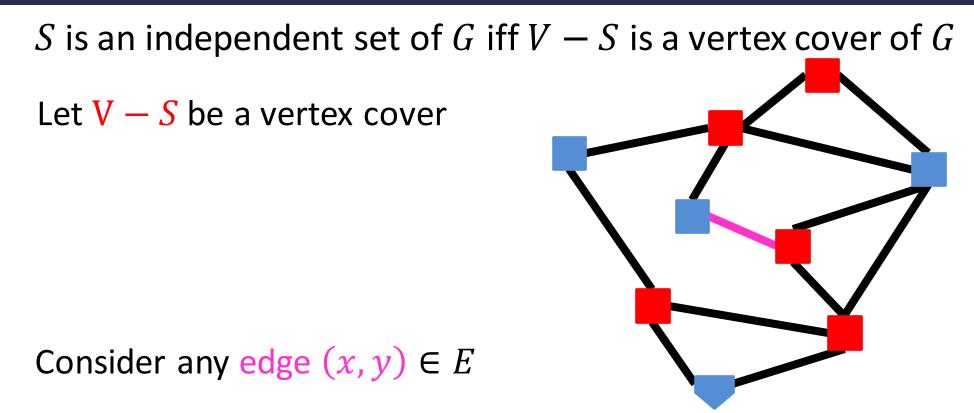


Consider any edge $(x, y) \in E$

If $x \in S$ then $y \notin S$, because otherwise S would not be an independent set

Therefore $y \in V - S$, so edge (x, y) is covered by V - S

Proof: ⇐



At least one of x and y belong to V - S, because V - S is a vertex cover

Therefore x and y are not both in S, No edge has both end-nodes in S, thus S is an independent set

Conclusion

- MaxIndSet and MinVertCov are either both fast, or both slow
 - Spoiler alert: We don't know which!
 - (But we think they're both slow)
 - Both problems are NP-Complete

Why Study NP-Completeness

- All semester, we've studied <u>finding algorithms</u> to solve problems using various tools.
- Sometimes we instead need to prove that a problem is <u>extremely hard</u>, so as not to waste time on it!
 - NP-Complete Problems are hard
 - Let's go over a few of them quickly
 - Let's show how to prove a new problem is NP-Complete

Some Preliminaries

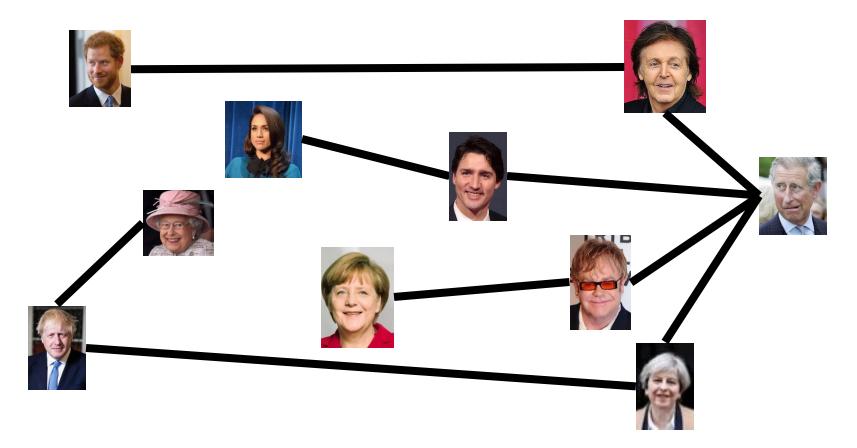
Before we go further on this topic....

- This is a complex (and interesting!) topic in CS theory
- In our few lectures, we may approach things from a simpler viewpoint than you'd get in a CS theory course
- The math and theory related to NP-complete problems starts with *decision problems*
 - What's that? Let's use independent set and vertex cover as examples
 - What's described next applies to any optimization problems we've seen

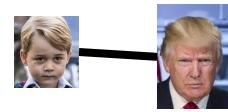
Max Independent Set



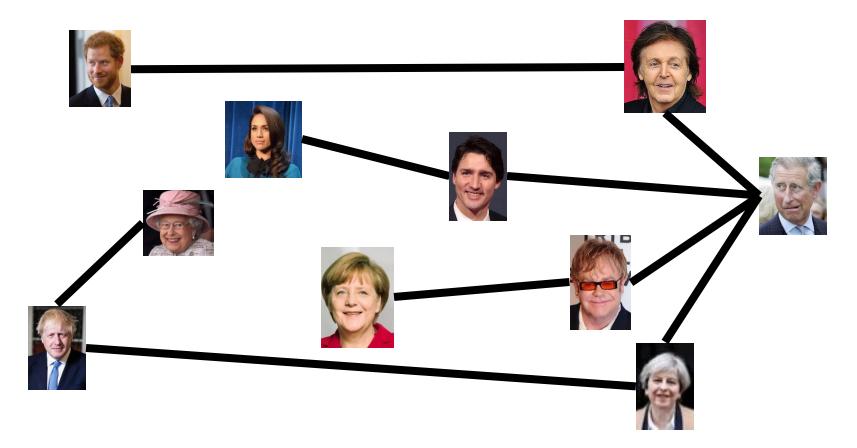
Find the largest set of non-adjacent nodes



k Independent Set



Is there a set of non-adjacent nodes of size k?



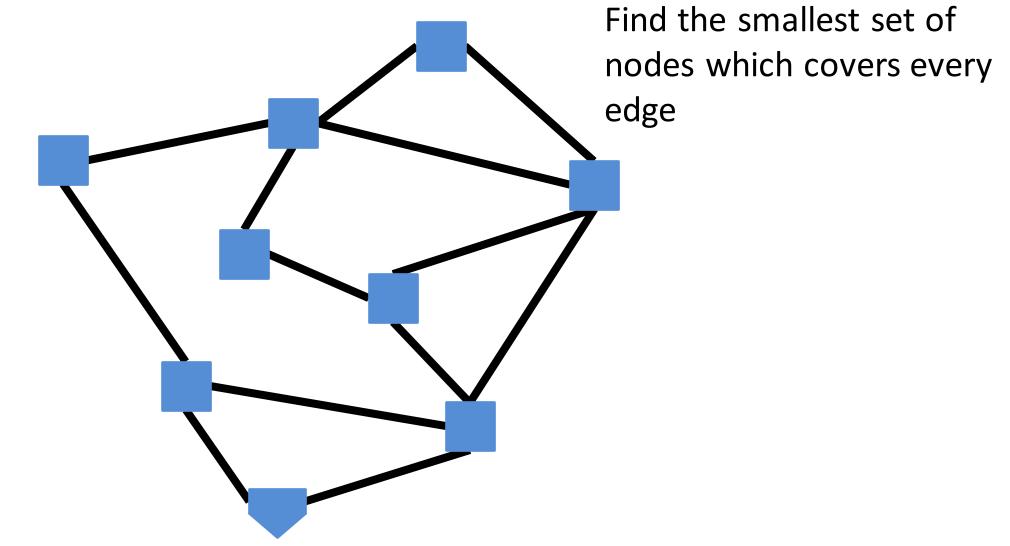
Maximum Independent Set

- Independent set: S ⊆ V is an independent set if no two nodes in S share an edge
- Maximum Independent Set Problem: Given a graph G = (V, E) find the maximum independent set S

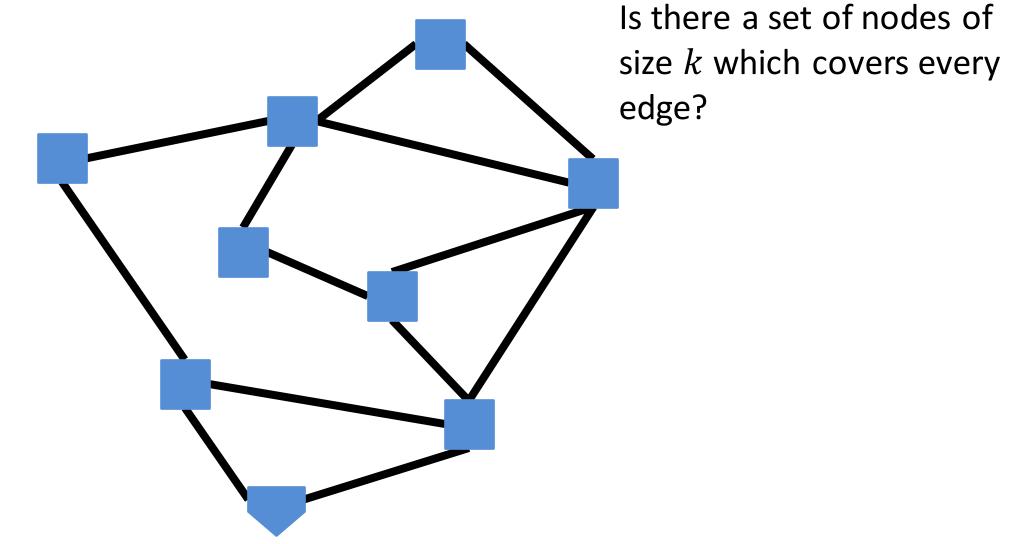
k Independent Set

- Independent set: S ⊆ V is an independent set if no two nodes in S share an edge
- k Independent Set Problem: Given a graph G = (V, E) and a number k, determine whether there is an independent set S of size k

Min Vertex Cover



k Vertex Cover



Minimum Vertex Cover

- Vertex Cover: C ⊆ V is a vertex cover if every edge in E has one of its endpoints in C
- Minimum Vertex Cover: Given a graph G = (V, E) find the minimum vertex cover C

k Vertex Cover

- Vertex Cover: C ⊆ V is a vertex cover if every edge in E has one of its endpoints in C
- k Vertex Cover: Given a graph G = (V, E) and a number k,
 determine if there is a vertex cover C of size k

k Vertex Cover

k Vertex Cover Problem: Given a graph G = (V, E) and an integer k, determine if there is a vertex cover C of size k



Problem Types

If we can solve this...

- Decision Problems:
 - Is there a solution?
 - Result is True/False
 - E.g. Is there a vertex cover of size k?
- Optimal Value Problems:
 - E.g. What's the min k for k-vertex cover decision problem?
- Search Problems:
 - Find a solution

...and also this

- Result more complex than T/F or a k
- E.g. Find a vertex cover of size k
- Verification Problems:
 - Given a potential solution for an input, is that input valid?
 - Result is True/False
 - For decision problem, check solution to its search problem
 - E.g. Is set of vertices a vertex cover of size k?

Looking ahead: We'll use this to define a problem classes P and NP

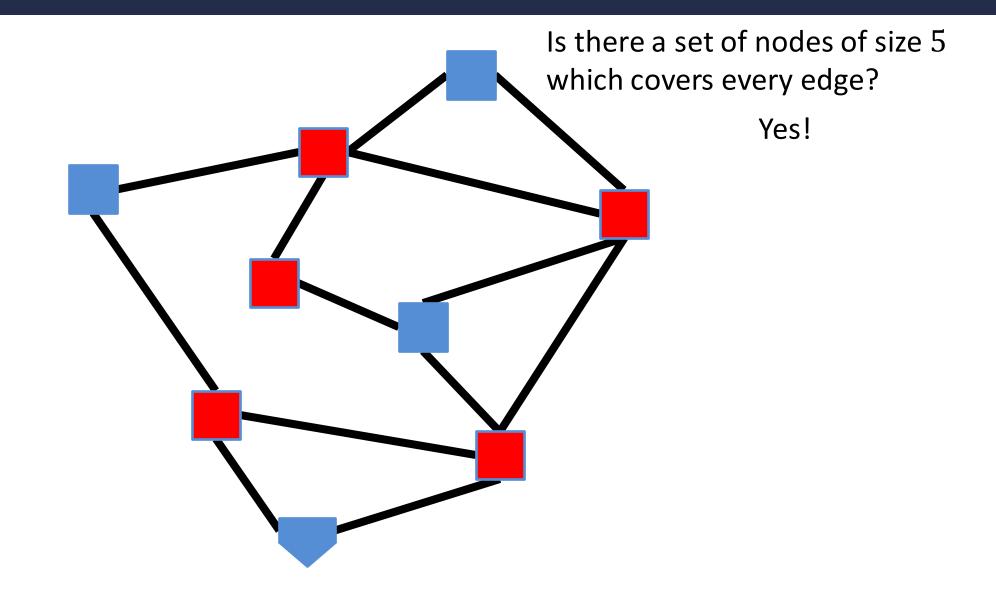
Looking ahead: We'll use this to define a problem class called NP

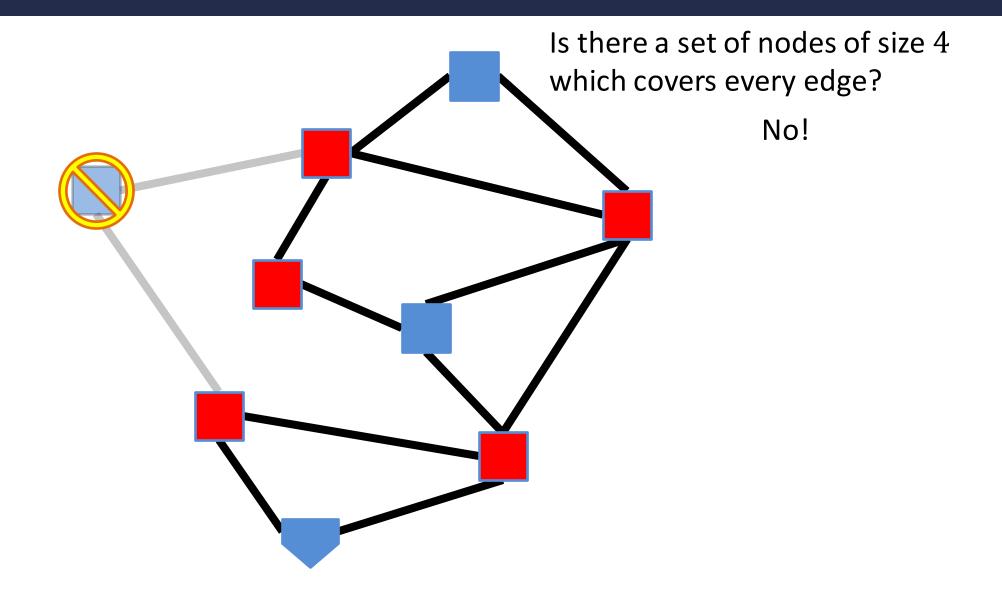
Using a k-VertexCover decider to build a searcher

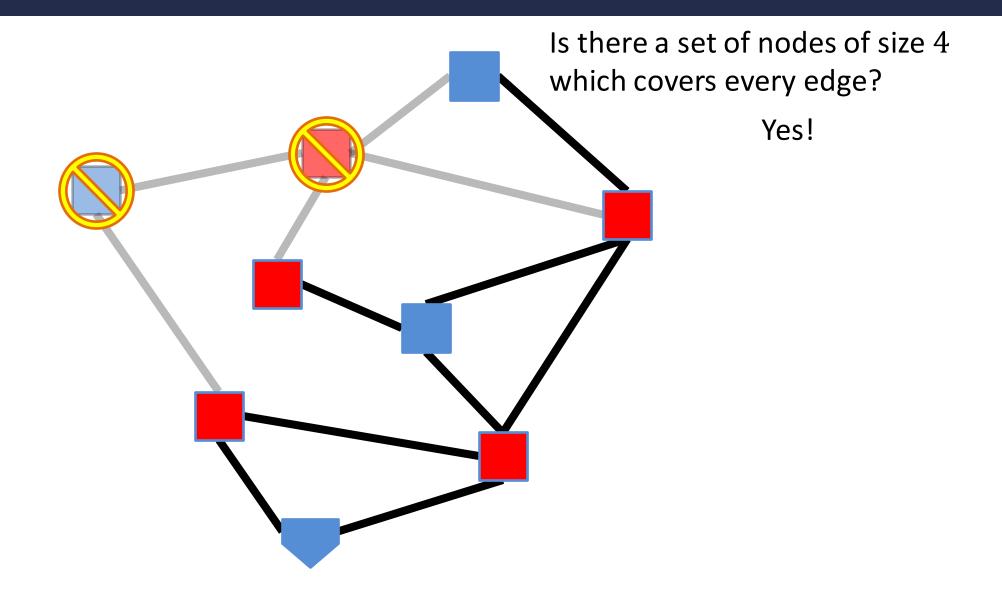
Note this is a reduction! kVC-search \leq_p kVC-decider

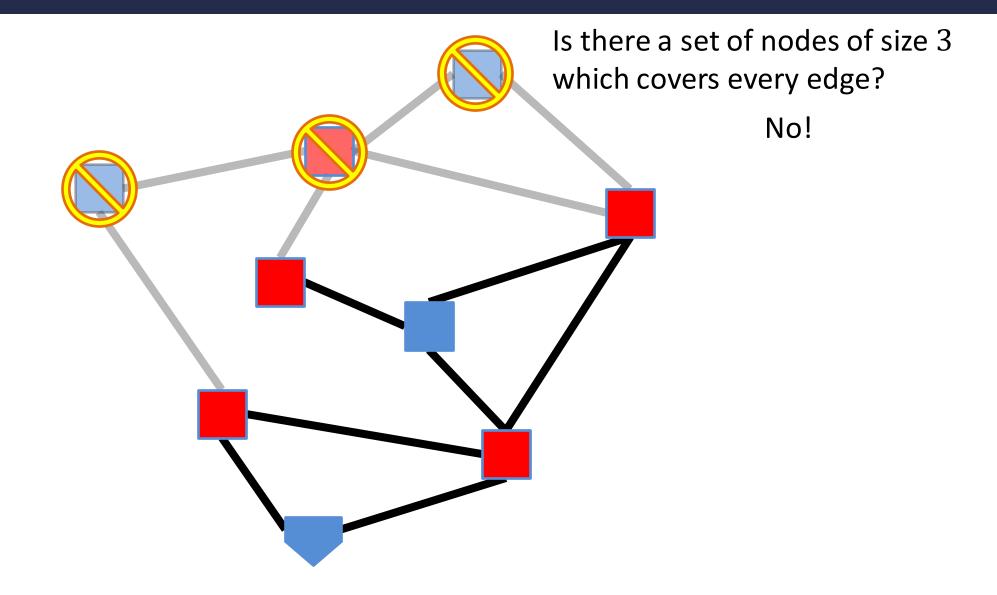
- Set i = k 1
- Remove nodes (and incident edges) one at a time
- Check if there is a vertex cover of size *i* (i.e. use the "decider")
 - If so, then that removed node was part of the k vertex cover, set i = i 1
 - Else, it wasn't

Did I need this node to cover its edges to have a vertex cover of size k?

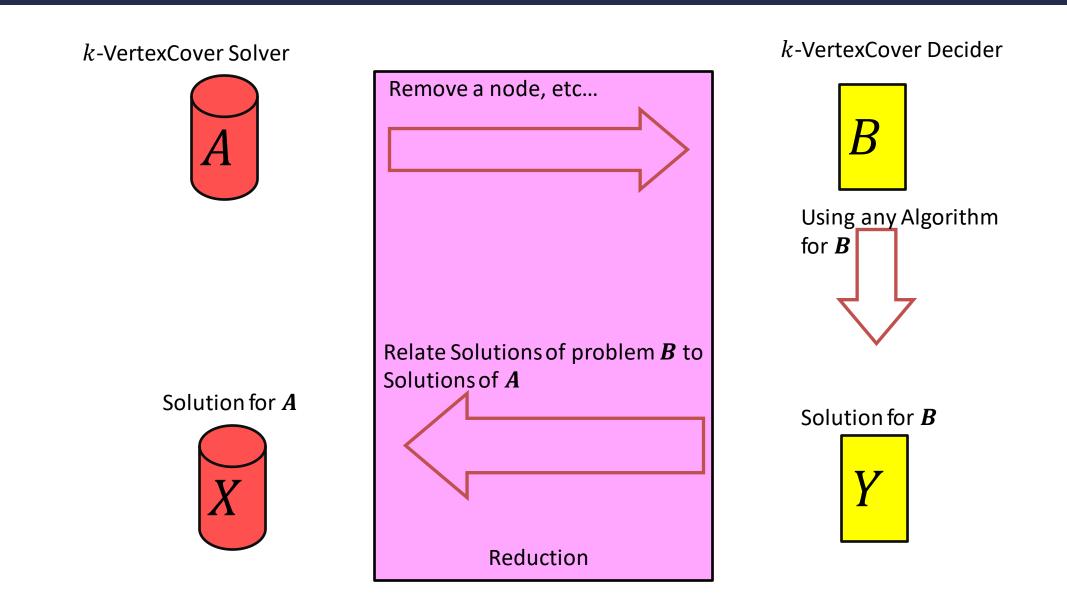






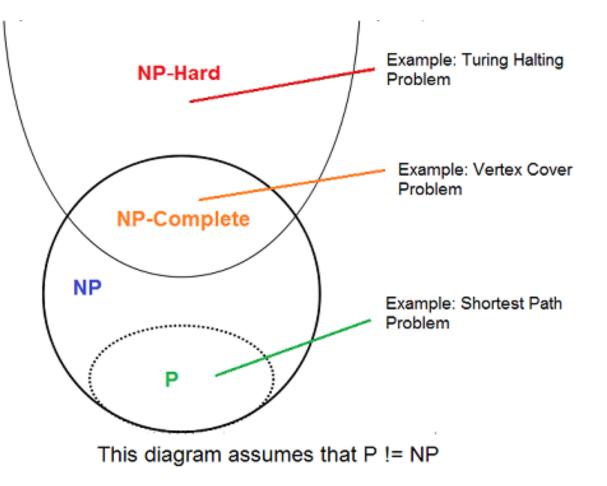


Reduction



Quick Background!

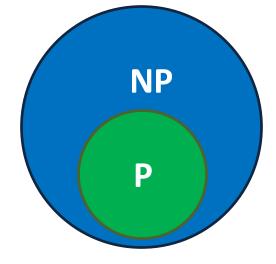
- <u>**P**</u>: Set of problems solved in polynomial time (e.g., sorting a list)
- <u>NP</u>: Set of problems that can be:
 1) Solved in non-deterministic polynomial time
 2) A solution verified in polynomial time
- <u>NP-Hard</u>: Set of problems that are as hard as (or harder) than the hardest problems in NP
- <u>NP-Complete</u>: Set of problems that are both NP and NP-Hard (i.e., the equally hardest problems in NP)



Classes of Problems: P vs NP

• P

- Deterministic Polynomial Time
- P is the set of problems solvable in polynomial time
 - $O(n^c)$ for some number c
- NP
 - Non-Deterministic Polynomial Time
 - NP is the set of problems *verifiable* in polynomial time
 - Verify a proposed solution (not find one) in $O(n^c)$ for some number c
 - For decision problems, really verifying using some information we call a certificate
- Open Problem: Does P=NP?
 - Certainly $P \subseteq NP$



k-Independent Set is NP

• To show: Given a potential solution, can we **verify** it in $O(n^p)$? [n = V + E]

How can we verify it?

- 1. Check that it's of size k O(V)
- 2. Check that it's an independent set $O(V^2)$

k-Vertex Cover is NP

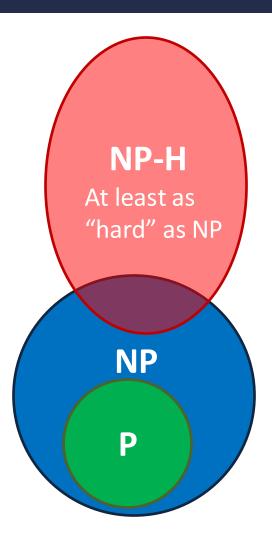
• To show: Given a potential solution, can we **verify** it in $O(n^p)$? [n = V + E]

How can we verify it?

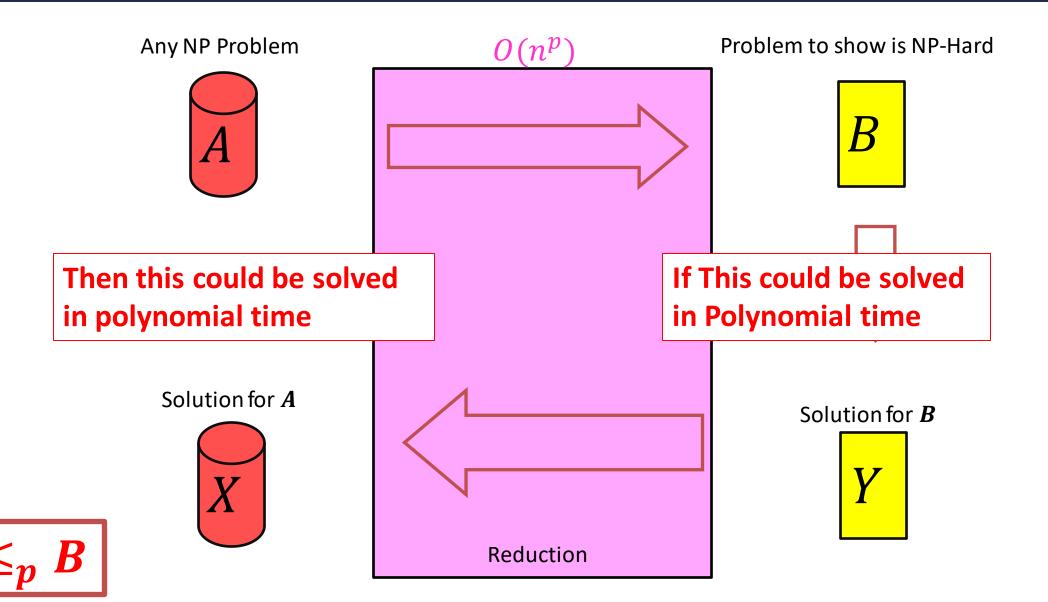
- 1. Check that it's of size k O(V)
- 2. Check that it's a Vertex Cover O(E)

NP-Hard

- How can we try to figure out if P=NP?
- Identify problems at least as "hard" as NP
 - If any of these "hard" problems can be solved in polynomial time, then all NP problems can be solved in polynomial time.
- Definition: NP-Hard:
 - -B is NP-Hard if $\forall A \in NP$, $A \leq_p B$
 - $-A \leq_p B$ means A reduces to B in polynomial time
 - Remember: $A \leq_p B$ implies A is not harder than B



NP-Hardness Reduction



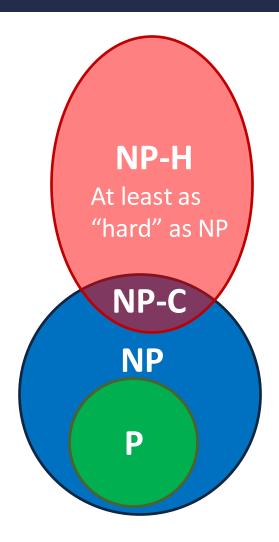
NP-Complete

NP-Complete = NP \cap **NP-Hard**

- The "hardest" of all the problems in NP
- An NP-C problem is polynomial iff all NP problems are polynomial. I.e. P=NP
- If P=NP, then all NP-C problems are polynomial
- "Together they stand, together they fall"

• How to show a problem *C* is NP-Complete?

- Show C belongs to NP
 - Show we can verify a solution in polynomial time
- Show C is NP-Hard
 - $\forall A \in NP, A \leq_p C$ (That sounds really hard to do!)
 - Or, show a reduction from another NP-Hard problem. (Why? Details next.)



We now just need a FIRST NP-Hard problem

NP-Completeness

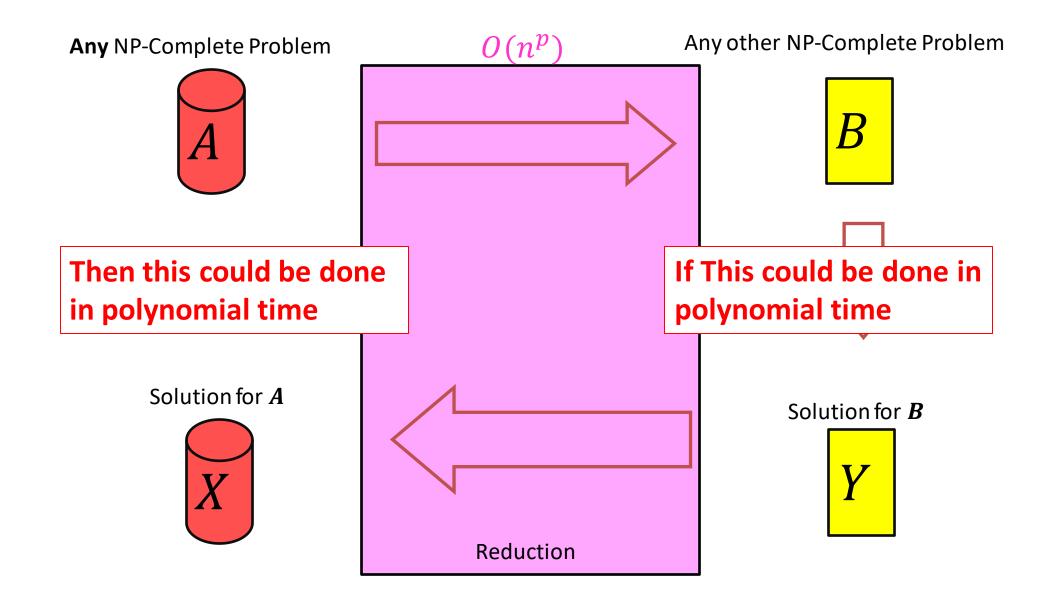
- So...a problem is NP-Complete if you can do the following:
- 1) Show how to verify it in polynomial time
 - Given a solution to the problem, verify it is correct
 - That algorithm's runtime needs to be a polynomial (usually easy)
- 2) Show the problem is NP-Hard (as hard or harder than a known NP-Hard Problem)
 - Take a currently known NP-Hard problem (let's call it A)
 - Show that $A \leq_p X$ (where X is your problem)
 - Why? If A is NP-Hard, then: any NP problem $\leq_p A$
 - Transitivity: any NP problem $\leq_p A \leq_p X$
 - So X satisfies definition of NP-Hard

"Consequences" of NP-Completeness

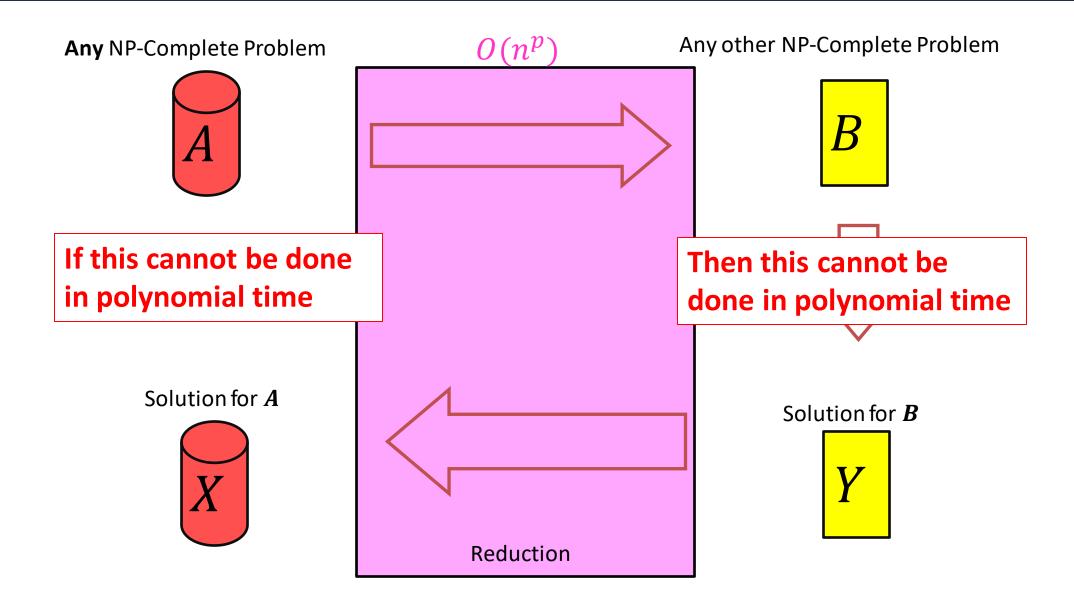
- NP-Complete is the set of "hardest" problems in NP, with these important properties:
 - If any *one* NP-Complete problem can be solved in polynomial time...
 - ...then every NP-Complete problem can be solved in polynomial time...
 - ...and in fact *every* problem in NP can be solved in polynomial time (which would show P = NP)
 - Or, prove an exponential lower-bound for any single NP-hard problem, then every NP-hard problem (including NP-C) is exponential

Therefore: solve (say) traveling salesperson problem in $O(n^{100})$ time, you've proved that **P** = **NP**. Retire rich & famous!

NP-Completeness: $A \leq_p B$ and **B** in **P**



NP-C: $A \leq_p B$ and we prove A <u>not</u> in P



Summary of Where We Are

- Focusing on "hard" problems, those that seem to be exponential
- Reductions used to show "hardness" relationships between problems
- Starting to define "classes" of problems based on complexity issues
 - P are problems that can be solved in polynomial time
 - NP are problems where a solution can be verified in polynomial time
 - NP-hard are problems that are at least as hard as anything in NP
 - NP-complete are NP-hard problems that "stand or fall together"

Review: P and NP Summary

- **P** = set of problems that can be solved in polynomial time
- NP = set of problems for which a solution can be verified in polynomial time
 - Note: this is a more "informal" definition, but it's fine for CS4102
 - See later slide on "certificates" for more info.
- $P \subseteq NP$
- Open question: Does **P** = **NP**?

More Reminders and Some Consequences

- Definition of NP-Hard and NP-Complete:
 - If all problems $\mathsf{A} \in \mathbf{NP}$ are reducible to B , then B is NP-Hard
 - We say B is *NP-Complete* if:
 - B is NP-Hard
 - $\bullet \; \underline{and} \; B \in \textbf{NP}$
- Any NP-C must reduce to any other NP-C. Can you see why?
- If $B \leq_p C$ and B is NP-Complete, C is also NP-Complete — Don't see why? We'll show details in two more slides
 - As long as $C \in \mathbf{NP}$. Otherwise can only say $C \in \mathbf{NP}$ -hard.

- Shown to be NP-Hard by Cook and Levin (independently)
- Given a 3-CNF formula (logical AND of clauses, each an OR of 3 variables), Is there an assignment of true/false to each variable to make the formula true?

$$(x \lor y \lor z) \land (x \lor \overline{y} \lor y) \land (u \lor y \lor \overline{z}) \land (z \lor \overline{x} \lor u) \land (\overline{x} \lor \overline{y} \lor \overline{z})$$
Clause
$$x = true$$

$$y = false$$

$$z = false$$

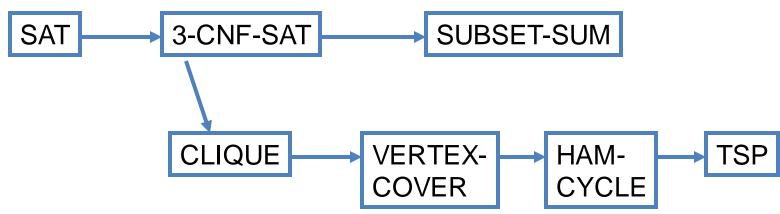
$$u = true$$

Conjunctive Normal Form (CNF)

- Even if the form of the Boolean expression is simplified, the problem may be NP-Complete
 - Literal: an occurrence of a Boolean or its negation
 - A Boolean formula is in *conjunctive normal form*, or *CNF*, if it is an AND of clauses, each of which is an OR of literals
 - Ex: $(x_1 \lor \neg x_2) \land (\neg x_1 \lor x_3 \lor x_4) \land (\neg x_5)$
 - 3-CNF: each clause has exactly 3 distinct literals
 - Ex: $(x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor x_3 \lor x_4) \land (\neg x_5 \lor x_3 \lor x_4)$
 - Notice: true if at least one literal in each clause is true
 - Note: Arbitrary SAT expressions can be translated into CNF forms by introducing intermediate variables etc.

Joining the Club

- Given one NP-Complete problem, others can join the club
 - Prove that SAT reduces to another problem, and so on...



- Membership in NP-Complete grows...
- Classic textbook: Garey, M. and D. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, 1979.

k-Independent Set is NP-Complete

- 1. Show that it belongs to NP
 - Give a polynomial time verifier
- 2. Show it is NP-Hard
 - Give a reduction from a known NP-Hard problem
 - Show $3SAT \leq_p kIndSet$

Remember: k-Independent Set is NP

• To show: Given a certificate ("solution" for the search problem), can we **verify** it in $O(n^p)$? [n = V + E]

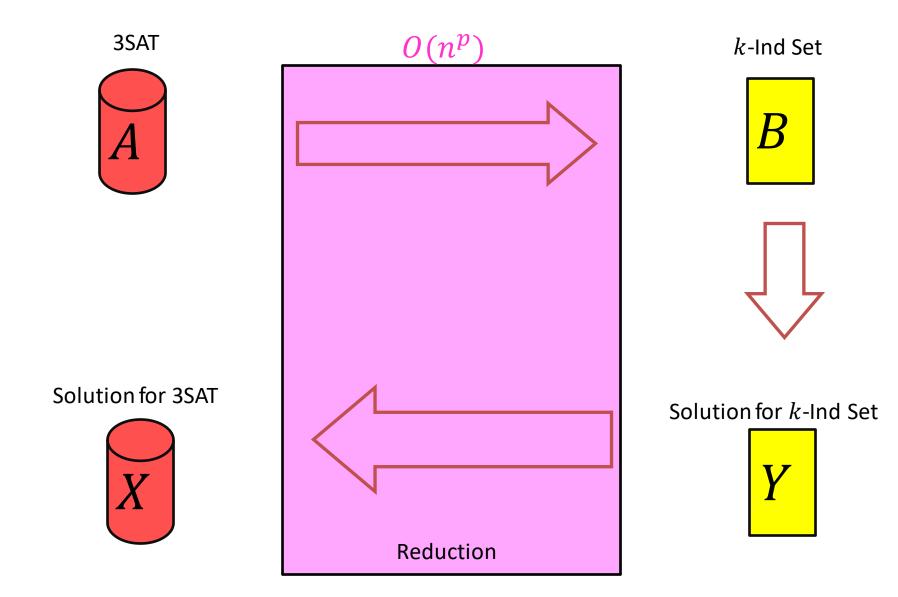
How can we verify it?

- 1. Check that it's of size k O(V)
- 2. Check that it's an independent set $O(V^2)$

k-Independent Set is NP-Complete

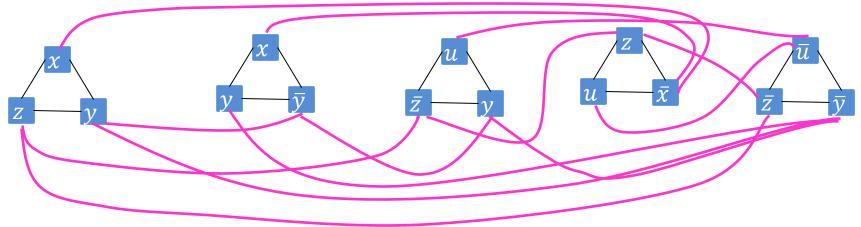
- 1. Show that it belongs to NP
 - Give a polynomial time verifier
- 2. Show it is NP-Hard
 - Give a reduction from a known NP-Hard problem
 - Show $3SAT \leq_p kIndSet$

$3SAT \leq_p kIndSet$



Instance of 3SAT to Instance of kIndSet

$(x \lor y \lor z) \land (x \lor \overline{y} \lor y) \land (u \lor y \lor \overline{z}) \land (z \lor \overline{x} \lor u) \land (\overline{x} \lor \overline{y} \lor \overline{z})$



For each clause, produce a triangle graph with its three variables as nodes

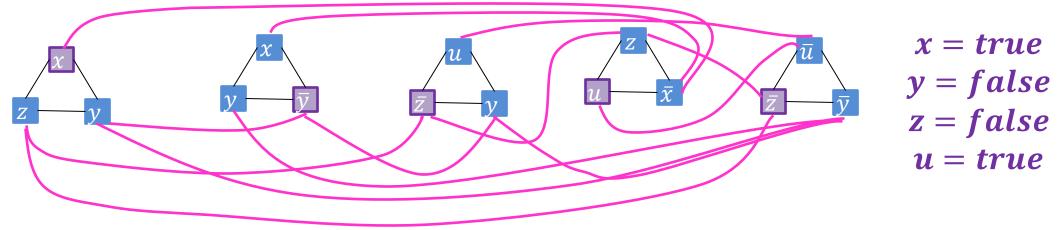
Connect each node to all of its opposites

Let k = number of clauses

There is a k-IndSet in this graph **iff** there is a satisfying assignment

kIndSet ⇒ Satisfying Assignment

$(x \lor y \lor z) \land (x \lor \overline{y} \lor y) \land (u \lor y \lor \overline{z}) \land (z \lor \overline{x} \lor u) \land (\overline{x} \lor \overline{y} \lor \overline{z})$



One node per triangle is in the Independent set:

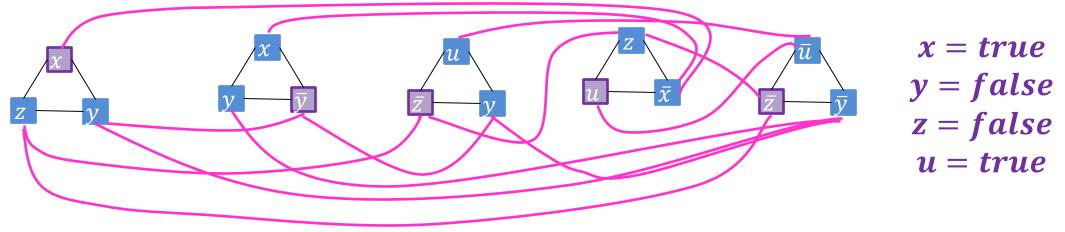
because we can have exactly k total in the set, and 2 in a triangle would be adjacent

If x is selected in some triangle, \bar{x} is not selected in any triangle: Because every x is adjacent to every \bar{x}

Set the variable which each included node represents to "true"

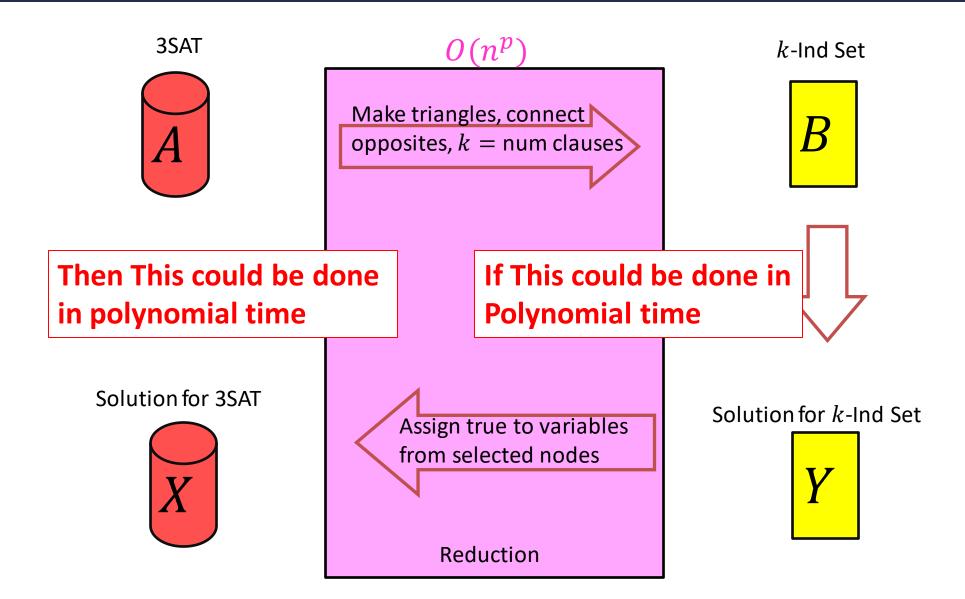
Satisfying Assignment \Rightarrow kIndSet

$(x \lor y \lor z) \land (x \lor \overline{y} \lor y) \land (u \lor y \lor \overline{z}) \land (z \lor \overline{x} \lor u) \land (\overline{x} \lor \overline{y} \lor \overline{z})$



Use one true variable from the assignment for each triangle The independent set has k nodes, because there are k clauses If any variable x is true then \overline{x} cannot be true

$3SAT \leq_p kIndSet$



k-Vertex Cover is NP-Complete

- 1. Show that it belongs to NP
 - Give a polynomial time verifier
- 2. Show it is NP-Hard
 - Give a reduction from a known NP-Hard problem
 - We showed $kIndSet \leq_p kVertCov$

Remember: *k*-Vertex Cover is NP

• To show: Given a certificate ("solution" for the search problem), can we verify it in $O(n^p)$? [n = V + E]

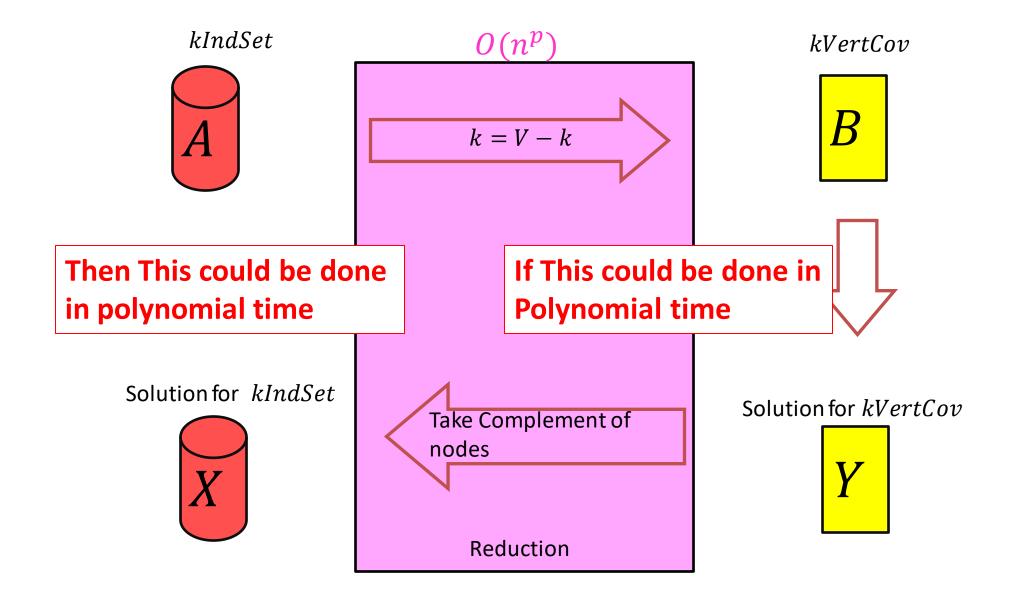
How can we verify it?

- 1. Check that it's of size k O(V)
- 2. Check that it's a Vertex Cover O(E)

k-Vertex Cover is NP-Complete

- 1. Show that it belongs to NP
 - Give a polynomial time verifier
- 2. Show it is NP-Hard
 - Give a reduction from a known NP-Hard problem
 - We showed $kIndSet \leq_p kVertCov$

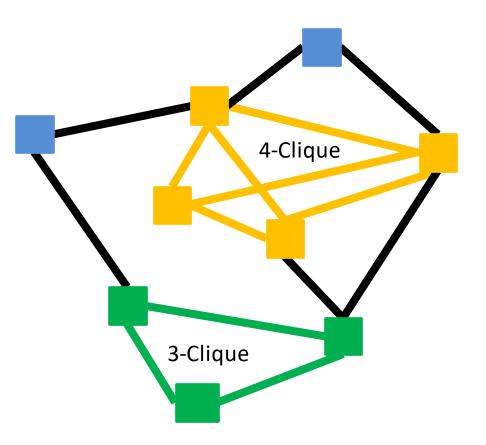
Remember: kIndSet \leq_{p} kVertCov



k-Clique Problem

Given a graph G and a number k, is there a *clique* of size k?

• Clique: A complete subgraph



k-Clique is NP-Complete

- 1. Show that it belongs to NP
 - Give a polynomial time verifier
- 2. Show it is NP-Hard
 - Give a reduction from a known NP-Hard problem
 - We will show $3SAT \leq_p kClique$

k-Clique is in NP

- **Show:** For any graph *G*:
 - There is a short certificate ("solution") that G has a k-clique
 - The certificate can be checked efficiently (in polynomial time)



```
Suppose k = 4
```

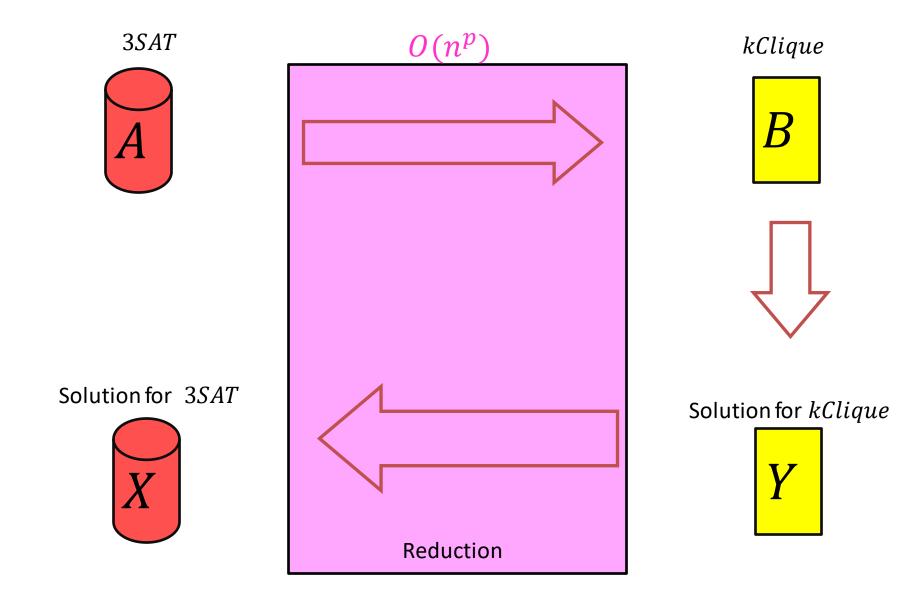
Certificate for $G: S = \{B, D, E, F\}$ (nodes in the *k*-clique)

Checking the certificate:

- Check that |S| = k O(k) = O(|V|)
- Check that every pair of nodes in S share an edge $O(k^2) = O(|V|^2)$

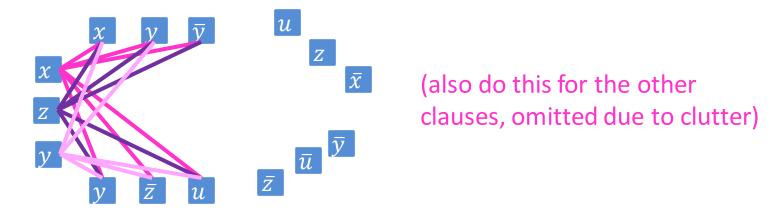
Fotal time:
$$O(|V|^2) = poly(|V| + |E|)$$
 73

 $3SAT \leq_p kClique$



Instance of 3SAT to Instance of kClique

$$(x \lor y \lor z) \land (x \lor \overline{y} \lor y) \land (u \lor y \lor \overline{z}) \land (z \lor \overline{x} \lor u) \land (\overline{x} \lor \overline{y} \lor \overline{z})$$



For each clause, produce a node for each of its three variables

Connect each node to all non-contradictory nodes in the other clauses (i.e., anything that's not its negation)

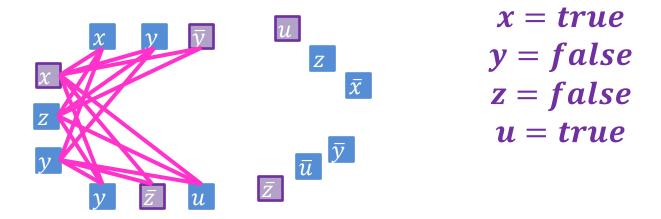
Let k = number of clauses

There is a k-Clique in this graph **iff** there is a satisfying assignment

75

*k*Clique ⇒ Satisfying Assignment

$(x \lor y \lor z) \land (x \lor \overline{y} \lor y) \land (u \lor y \lor \overline{z}) \land (z \lor \overline{x} \lor u) \land (\overline{x} \lor \overline{y} \lor \overline{z})$



There are k triplets in the graph, and no two nodes in the same triplet are adjacent

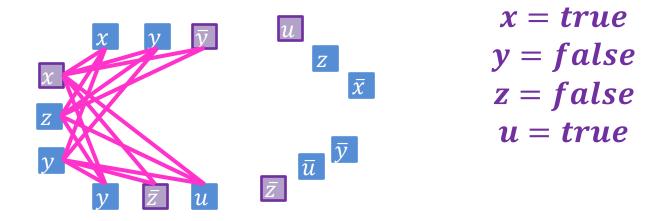
To have a k-Clique, must have one node from each triplet

Cannot select a node for both a variable and its negation

Therefore selection of nodes is a satisfying assignment

Satisfying Assignment \Rightarrow *k*Clique

$$(x \lor y \lor z) \land (x \lor \overline{y} \lor y) \land (u \lor y \lor \overline{z}) \land (z \lor \overline{x} \lor u) \land (\overline{x} \lor \overline{y} \lor \overline{z})$$



Select one node for a true variable from each clause

There will be k nodes selected We can't select both a node and its negation All nodes will be non-contradictory, so they will be pairwise adjacent

 $3SAT \leq_p kClique$

