
Warm up:
Show that 𝑃 = 𝑁𝑃

Spring 2022



Today’s Keywords

• Reductions
• P vs NP
• NP Hard, NP Completeness
• k-Independent Set
• k-Vertex Cover
• 3SAT
• k-Clique

• CLRS: Ch 34
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Homeworks

• Unit C and D Programming Due 5/3

• Unit D Advanced Due 5/3

– NP Completeness and Reductions

• Unit D Basic Due 5/3 (but no penalty submission through 5/6)
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Final Exam

• Tuesday, May 10, 7pm in MEC 205 (our section)
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Reductions

• Algorithm technique of supreme ultimate power

• Convert instance of problem A to an instance of Problem B

• Convert solution of problem B back to a solution of problem A
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Reductions

Possible uses

• Use solver for B to solve A

• Prove lower bound for B by showing it’s as hard as A
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𝑓(𝑛)-reduces to   

Algorithm for B

can be used to make  

Algorithm for A

𝐵

𝑋𝑌

𝐴

Problem A
Problem B

With 𝑂(𝑓 𝑛 ) overhead

Don’t know
how to solve

Do know
how to solve

𝑓(𝑛)-reduces to   

Algorithm for B

can be used to make  

Algorithm for A

𝐵

𝑋𝑌

𝐴

Problem A
Problem B

With 𝑂(𝑓 𝑛 ) overhead

Problem we know
is slow to solve

(proved)

Problem we
don’t know if
slow or fast to solve

B is no faster than A



MacGyver’s Reduction
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Opening a door

Problem we don’t know how to solve

Lighting a fire

Problem we do know how to solve

Alcohol, wood, 
matches

Solution for 𝑩
Keg cannon 
battering ram

Solution for 𝑨

Aim duct at door, 
insert keg

H
o

w
?

Put fire under the Keg

Reduction



Reduction Proof Notation
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𝑓(𝑛)-reduces to   

Algorithm for B

can be used to make  

Algorithm for A

𝑨 is not a harder problem than 𝑩
𝑨 ≤ 𝑩

𝐵

𝑋𝑌

𝐴

Problem A
Problem B

If 𝑨 requires time 𝛀(𝒇 𝒏 ) time then 𝑩 also requires 𝛀(𝒇 𝒏 ) time
𝑨 ≤𝒇(𝒏) 𝑩

With 𝑂(𝑓 𝑛 ) overhead

Or we 
could have 

solved A 
faster 

using B’s 
solver!



Proof of Lower Bound by Reduction

1. We know X is slow (by a proof)
(e.g., X = some way to open the door)

2. Assume Y is quick [toward contradiction]
(Y = some way to light a fire)

3. Show how to use Y to perform X quickly

4. X is slow, but Y could be used to perform X quickly

conclusion:  Y must not actually be quick

To Show: 𝑌 is slow



Maximum Independent Set

• Independent set: 𝑆 ⊆ 𝑉 is an independent set if no two nodes 
in 𝑆 share an edge

• Maximum Independent Set Problem: Given a graph 𝐺 = (𝑉, 𝐸)
find the maximum independent set 𝑆
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Example
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Independent set of size 6



Minimum Vertex Cover

• Vertex Cover: 𝐶 ⊆ 𝑉 is a vertex cover if every edge in 𝐸 has 
one of its endpoints in 𝐶

• Minimum Vertex Cover: Given a graph 𝐺 = (𝑉, 𝐸) find the 
minimum vertex cover 𝐶
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Example
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Vertex cover of size 5



MaxIndSet -Time Reducible to 

MinVertCover
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MaxIndSet MinVertCov

Solution for MinVertCovSolution for MaxIndSet

Reduction

Do nothing

Using any Algorithm 
for MinVertCov

Take complement of solution

O(V) Time



MaxIndSet -Time Reducible to 

MinVertCov
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MaxIndSet MinVertCov

Solution for MinVertCovSolution for MaxIndSet

Reduction

Do nothing

Using any Algorithm 
for MinVertCov

Take complement of solution

O(V) Time

We needed our proof to 
show that this works!

If there was a larger 
independent set, there 

would have been a smaller 
vertex cover!



MinVertCover -Time Reducible to 

MaxIndSet
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Reduction

Do nothing

Take complement of solution

O(V) Time

Using any Algorithm 
for MaxIndSet

MaxIndSet
MinVertCov

Solution for MinVertCov Solution for MaxIndSet



Proof: 

𝑆 is an independent set of 𝐺 iff 𝑉 − 𝑆 is a vertex cover of 𝐺
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Let 𝑆 be an independent set

Consider any edge 𝑥, 𝑦 ∈ 𝐸

If 𝑥 ∈ 𝑆 then 𝑦 ∉ 𝑆, because otherwise 𝑆 would not be an 
independent set

Therefore 𝑦 ∈ 𝑉 − 𝑆, so edge (𝑥, 𝑦) is covered by 𝑉 − 𝑆



Proof: 

𝑆 is an independent set of 𝐺 iff 𝑉 − 𝑆 is a vertex cover of 𝐺
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Let V − 𝑆 be a vertex cover

Consider any edge 𝑥, 𝑦 ∈ 𝐸

At least one of 𝑥 and 𝑦 belong to 𝑉 − 𝑆, because V − 𝑆 is a 
vertex cover

Therefore 𝑥 and 𝑦 are not both in 𝑆, 

No edge has both end-nodes in 𝑆, thus 𝑆 is an independent set 



Conclusion

• MaxIndSet and MinVertCov are either both fast, or both slow

– Spoiler alert: We don’t know which!

• (But we think they’re both slow)

– Both problems are NP-Complete
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Why Study NP-Completeness

• All semester, we’ve studied finding algorithms to solve 
problems using various tools.

• Sometimes we instead need to prove that a problem is 
extremely hard, so as not to waste time on it!

– NP-Complete Problems are hard

– Let’s go over a few of them quickly

– Let’s show how to prove a new problem is NP-Complete
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Some Preliminaries

Before we go further on this topic….

• This is a complex (and interesting!) topic in CS theory

• In our few lectures, we may approach things from a simpler 
viewpoint than you’d get in a CS theory course

• The math and theory related to NP-complete problems starts with 
decision problems

– What’s that? Let’s use independent set and vertex cover as examples

– What’s described next applies to any optimization problems we’ve seen
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Max Independent Set
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Find the largest set of non-adjacent nodes



Independent Set
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Is there a set of non-adjacent nodes of size 𝑘?



Maximum Independent Set

• Independent set: 𝑆 ⊆ 𝑉 is an independent set if no two nodes 
in 𝑆 share an edge

• Maximum Independent Set Problem: Given a graph 𝐺 = (𝑉, 𝐸)
find the maximum independent set 𝑆
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Independent Set

• Independent set: 𝑆 ⊆ 𝑉 is an independent set if no two nodes 
in 𝑆 share an edge

• 𝑘 Independent Set Problem: Given a graph 𝐺 = (𝑉, 𝐸) and a 
number 𝑘, determine whether there is an independent set 𝑺
of size 𝒌
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Min Vertex Cover
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Find the smallest set of 
nodes which covers every 
edge



Vertex Cover
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Is there a set of nodes of 
size 𝑘 which covers every 
edge?



Minimum Vertex Cover

• Vertex Cover: 𝐶 ⊆ 𝑉 is a vertex cover if every edge in 𝐸 has 
one of its endpoints in 𝐶

• Minimum Vertex Cover: Given a graph 𝐺 = (𝑉, 𝐸) find the 
minimum vertex cover 𝐶
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Vertex Cover

• Vertex Cover: 𝐶 ⊆ 𝑉 is a vertex cover if every edge in 𝐸 has 
one of its endpoints in 𝐶

• 𝑘 Vertex Cover: Given a graph 𝐺 = (𝑉, 𝐸) and a number 𝑘, 
determine if there is a vertex cover 𝑪 of size 𝒌
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k Vertex Cover

• 𝒌 Vertex Cover Problem: Given a graph 𝐺 = (𝑉, 𝐸) and an 
integer 𝑘, determine if there is a vertex cover 𝑪 of size 𝒌

31

True for k=6 True for k=5

Is 5 the smallest?
True for k=4?



Problem Types

• Decision Problems:
– Is there a solution?

• Result is True/False

– E.g. Is there a vertex cover of size 𝑘?

• Optimal Value Problems:
– E.g. What’s the min k for k-vertex cover decision problem?

• Search Problems:
– Find a solution

• Result more complex than T/F or a 𝑘

– E.g. Find a vertex cover of size 𝑘

• Verification Problems:
– Given a potential solution for an input, is that input valid?

• Result is True/False
• For decision problem, check solution to its search problem

– E.g. Is set of vertices a vertex cover of size 𝑘?
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If we can solve this…

…Then we can solve this,…

…and also this

Looking ahead:
We’ll use this to define a 
problem class called NP

Looking ahead:
We’ll use this to define a 
problem classes P and NP



Using a -VertexCover decider to build a 

searcher

• Set 𝑖 = 𝑘 − 1

• Remove nodes (and incident edges) one at a time 

• Check if there is a vertex cover of size 𝑖 (i.e. use the “decider”)

– If so, then that removed node was part of the 𝑘 vertex cover, 
set 𝑖 = 𝑖 − 1

– Else, it wasn’t
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Did I need this node to 
cover its edges to have 

a vertex cover of size 𝑘?

Note this is a reduction!
kVC-search ≤𝑝 kVC-decider



Vertex Cover (Decision)
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Is there a set of nodes of size 5
which covers every edge?

Yes!



Vertex Cover (Decision)
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Is there a set of nodes of size 4
which covers every edge?

No!



Vertex Cover (Decision)
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Is there a set of nodes of size 4
which covers every edge?

Yes!



Vertex Cover (Decision)
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Is there a set of nodes of size 3
which covers every edge?

No!



Reduction
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𝑘-VertexCover Solver 𝑘-VertexCover Decider

Solution for 𝑩
Solution for 𝑨

Reduction

Remove a node, etc…

Using any Algorithm 
for 𝑩

Relate Solutions of problem 𝑩 to 
Solutions of 𝑨



Quick Background!

• P: Set of problems solved in polynomial time 
(e.g., sorting a list)

• NP: Set of problems that can be:
1) Solved in non-deterministic polynomial time

2) A solution verified in polynomial time

• NP-Hard: Set of problems that are as hard as 
(or harder) than the hardest problems in NP

• NP-Complete: Set of problems that are both 
NP and NP-Hard (i.e., the equally hardest 
problems in NP)



Classes of Problems: P vs NP

• P
– Deterministic Polynomial Time
– P is the set of problems solvable in polynomial time

• 𝑂(𝑛𝑐) for some number c

• NP
– Non-Deterministic Polynomial Time
– NP is the set of problems verifiable in polynomial time

• Verify a proposed solution (not find one) in 𝑂(𝑛𝑐) for some number 𝑐
• For decision problems, really verifying using some information we call a certificate

• Open Problem: Does P=NP?
– Certainly 𝑃 ⊆ 𝑁𝑃

41

P

NP



-Independent Set is NP

• To show: Given a potential solution, can we verify it in 𝑂(𝑛𝑝)? 
[𝑛 = 𝑉 + 𝐸]
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How can we verify it?

1. Check that it’s of size 𝑘 𝑂(𝑉)

2. Check that it’s an independent set 𝑂(𝑉2)



-Vertex Cover is NP

• To show: Given a potential solution, can we verify it in 𝑂(𝑛𝑝)? 
[𝑛 = 𝑉 + 𝐸]
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How can we verify it?

1. Check that it’s of size 𝑘 𝑂(𝑉)

2. Check that it’s a Vertex Cover 𝑂(𝐸)



NP-Hard

• How can we try to figure out if P=NP?

• Identify problems at least as “hard” as NP
– If any of these “hard” problems can be solved in 

polynomial time, then all NP problems can be solved 
in polynomial time.

• Definition: NP-Hard:
– 𝐵 is NP-Hard if ∀𝐴 ∈ 𝑁𝑃, 𝐴 ≤𝑝 𝐵

– 𝐴 ≤𝑝 𝐵 means 𝐴 reduces to 𝐵 in polynomial time

– Remember: 𝐴 ≤𝑝 𝐵 implies 𝐴 is not harder than 𝐵

44

P

NP

NP-H
At least as 
“hard” as NP



NP-Hardness Reduction
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Any NP Problem Problem to show is NP-Hard

Solution for 𝑩
Solution for 𝑨

Reduction

𝑂(𝑛𝑝)

Then this could be solved 
in polynomial time

If This could be solved 
in Polynomial time

𝑨 ≤𝒑 𝑩



NP-Complete
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We now just need a FIRST NP-Hard problem

P

NP

NP-H
At least as 
“hard” as NP

NP-C

NP-Complete = NP ∩ NP-Hard
– The “hardest” of all the problems in NP
– An NP-C problem is polynomial iff all NP problems 

are polynomial.  I.e. P=NP
– If P=NP, then all NP-C problems are polynomial
– “Together they stand, together they fall”

• How to show a problem 𝑪 is NP-Complete?
– Show 𝐶 belongs to NP

• Show we can verify a solution in polynomial time

– Show 𝐶 is NP-Hard
• ∀𝐴 ∈ 𝑁𝑃, 𝐴 ≤𝑝 𝐶 (That sounds really hard to do!)

• Or, show a reduction from another NP-Hard problem. 
(Why?  Details next.)



NP-Completeness

• So…a problem is NP-Complete if you can do the following:

• 1) Show how to verify it in polynomial time
– Given a solution to the problem, verify it is correct
– That algorithm’s runtime needs to be a polynomial (usually easy)

• 2) Show the problem is NP-Hard (as hard or harder than a known NP-
Hard Problem)
– Take a currently known NP-Hard problem (let’s call it A)
– Show that 𝐴 ≤𝑝 𝑋 (where X is your problem)

– Why?  If 𝐴 is NP-Hard, then: any NP problem ≤𝑝 𝐴

– Transitivity:   any NP problem ≤𝑝 𝐴 ≤𝑝 𝑋
– So 𝑋 satisfies definition of NP-Hard



“Consequences” of NP-Completeness

• NP-Complete is the set of “hardest” problems in NP, with these 
important properties:
– If any one NP-Complete problem can be solved in polynomial time…

– …then every NP-Complete problem can be solved in polynomial time…

– …and in fact every problem in NP can be solved in polynomial time (which would 
show P = NP)

– Or, prove an exponential lower-bound for any single NP-hard problem, then 
every NP-hard problem (including NP-C) is exponential

Therefore: solve (say) traveling salesperson problem in O(n100) time, you've proved 
that P = NP.  Retire rich & famous!



NP-Completeness: and B in P
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Any NP-Complete Problem Any other NP-Complete Problem

Solution for 𝑩
Solution for 𝑨

Reduction

𝑂(𝑛𝑝)

Then this could be done 
in polynomial time

If This could be done in 
polynomial time



NP-C: and we prove A not in P
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Any NP-Complete Problem Any other NP-Complete Problem

Solution for 𝑩
Solution for 𝑨

Reduction

𝑂(𝑛𝑝)

Then this cannot be 
done in polynomial time

If this cannot be done 
in polynomial time



Summary of Where We Are

• Focusing on “hard” problems, those that seem to be exponential

• Reductions used to show “hardness” relationships between 
problems

• Starting to define “classes” of problems based on complexity issues

– P are problems that can be solved in polynomial time

– NP are problems where a solution can be verified in polynomial time

– NP-hard are problems that are at least as hard as anything in NP

– NP-complete are NP-hard problems that “stand or fall together”
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Review: P and NP Summary

• P = set of problems that can be solved in polynomial time

• NP = set of problems for which a solution can be verified in 
polynomial time

– Note: this is a more “informal” definition, but it’s fine for CS4102

– See later slide on ”certificates” for more info.

• P NP

• Open question: Does P = NP?



More Reminders and Some 

Consequences

• Definition of NP-Hard and NP-Complete: 
– If all problems A  NP are reducible to B , then B is NP-Hard
– We say B is NP-Complete if:

• B is NP-Hard
• and B NP

• Any NP-C must reduce to any other NP-C.  Can you see why?

• If B p C and B is NP-Complete, C is also NP-Complete
– Don’t see why?  We’ll show details in two more slides
– As long as C  NP.  Otherwise can only say C  NP-hard.



3-SAT

• Shown to be NP-Hard by Cook and Levin (independently)

• Given a 3-CNF formula (logical AND of clauses, each an OR of 3 
variables), Is there an assignment of true/false to each variable 
to make the formula true?
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𝑥 ∨ 𝑦 ∨ 𝑧 ∧ 𝑥 ∨ ത𝑦 ∨ 𝑦 ∧ 𝑢 ∨ 𝑦 ∨ ҧ𝑧 ∧ 𝑧 ∨ ҧ𝑥 ∨ 𝑢 ∧ ( ҧ𝑥 ∨ ത𝑦 ∨ ҧ𝑧)

Clause
Variables

𝒙 = 𝒕𝒓𝒖𝒆
𝒚 = 𝒇𝒂𝒍𝒔𝒆
𝒛 = 𝒇𝒂𝒍𝒔𝒆
𝒖 = 𝒕𝒓𝒖𝒆



Conjunctive Normal Form (CNF)

• Even if the form of the Boolean expression is simplified, the 
problem may be NP-Complete
– Literal: an occurrence of a Boolean or its negation

– A Boolean formula is in conjunctive normal form, or CNF, if it is an AND 
of clauses, each of which is an OR of literals

• Ex: (x1 x2)  (x1  x3  x4)  (x5)

– 3-CNF: each clause has exactly 3 distinct literals
• Ex: (x1 x2  x3)  (x1  x3  x4)  (x5  x3 x4)

• Notice: true if at least one literal in each clause is true

– Note: Arbitrary SAT expressions can be translated into CNF forms by 
introducing intermediate variables etc.



Joining the Club

• Given one NP-Complete problem, others can join the club
– Prove that SAT reduces to another problem, and so on…

– Membership in NP-Complete grows…
– Classic textbook: Garey, M. and D. Johnson,

Computers and Intractability: A Guide to the Theory of NP-
Completeness, 1979.

SAT 3-CNF-SAT

CLIQUE

SUBSET-SUM

VERTEX-

COVER

HAM-

CYCLE

TSP



-Independent Set is NP-Complete

1. Show that it belongs to NP

– Give a polynomial time verifier

2. Show it is NP-Hard

– Give a reduction from a known NP-Hard problem

– Show 3𝑆𝐴𝑇 ≤𝑝 𝑘𝐼𝑛𝑑𝑆𝑒𝑡
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Remember: -Independent Set is NP

• To show: Given a certificate (“solution” for the search 
problem), can we verify it in 𝑂(𝑛𝑝)? [𝑛 = 𝑉 + 𝐸]

58

How can we verify it?

1. Check that it’s of size 𝑘 𝑂(𝑉)

2. Check that it’s an independent set 𝑂(𝑉2)



-Independent Set is NP-Complete

1. Show that it belongs to NP

– Give a polynomial time verifier

2. Show it is NP-Hard

– Give a reduction from a known NP-Hard problem

– Show 3𝑆𝐴𝑇 ≤𝑝 𝑘𝐼𝑛𝑑𝑆𝑒𝑡
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3SAT 𝑘-Ind Set

Solution for 𝑘-Ind Set
Solution for 3SAT

Reduction

𝑂(𝑛𝑝)



Instance of 3SAT to Instance of IndSet
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𝑥 ∨ 𝑦 ∨ 𝑧 ∧ 𝑥 ∨ ത𝑦 ∨ 𝑦 ∧ 𝑢 ∨ 𝑦 ∨ ҧ𝑧 ∧ 𝑧 ∨ ҧ𝑥 ∨ 𝑢 ∧ ( ҧ𝑥 ∨ ത𝑦 ∨ ҧ𝑧)

𝑥

𝑦𝑧

𝑥

ത𝑦𝑦

𝑢

𝑦ҧ𝑧

𝑧

ҧ𝑥𝑢

ത𝑢

ത𝑦ҧ𝑧

For each clause, produce a triangle graph with its three variables as nodes

Connect each node to all of its opposites

There is a 𝑘-IndSet in this graph iff there is a satisfying assignment

Let 𝑘 = number of clauses



IndSet Satisfying Assignment
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𝑥 ∨ 𝑦 ∨ 𝑧 ∧ 𝑥 ∨ ത𝑦 ∨ 𝑦 ∧ 𝑢 ∨ 𝑦 ∨ ҧ𝑧 ∧ 𝑧 ∨ ҧ𝑥 ∨ 𝑢 ∧ ( ҧ𝑥 ∨ ത𝑦 ∨ ҧ𝑧)

One node per triangle is in the Independent set: 
because we can have exactly 𝑘 total in the set, and 2 in a triangle would be adjacent

𝑥

𝑦𝑧

𝑥

ത𝑦𝑦

𝑢

𝑦ҧ𝑧

𝑧

ҧ𝑥𝑢

ത𝑢

ത𝑦ҧ𝑧

If 𝑥 is selected in some triangle, ҧ𝑥 is not selected in any triangle:
Because every 𝑥 is adjacent to every ҧ𝑥

Set the variable which each included node represents to “true”

𝒙 = 𝒕𝒓𝒖𝒆
𝒚 = 𝒇𝒂𝒍𝒔𝒆
𝒛 = 𝒇𝒂𝒍𝒔𝒆
𝒖 = 𝒕𝒓𝒖𝒆



Satisfying Assignment IndSet
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𝑥 ∨ 𝑦 ∨ 𝑧 ∧ 𝑥 ∨ ത𝑦 ∨ 𝑦 ∧ 𝑢 ∨ 𝑦 ∨ ҧ𝑧 ∧ 𝑧 ∨ ҧ𝑥 ∨ 𝑢 ∧ ( ҧ𝑥 ∨ ത𝑦 ∨ ҧ𝑧)

Use one true variable from the assignment for each triangle

The independent set has 𝑘 nodes, because there are 𝑘 clauses

If any variable 𝑥 is true then ҧ𝑥 cannot be true

𝑥

𝑦𝑧

𝑥

ത𝑦𝑦

𝑢

𝑦ҧ𝑧

𝑧

ҧ𝑥𝑢

ത𝑢

ത𝑦ҧ𝑧

𝒙 = 𝒕𝒓𝒖𝒆
𝒚 = 𝒇𝒂𝒍𝒔𝒆
𝒛 = 𝒇𝒂𝒍𝒔𝒆
𝒖 = 𝒕𝒓𝒖𝒆
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3SAT 𝑘-Ind Set

Solution for 𝑘-Ind Set
Solution for 3SAT

Reduction

𝑂(𝑛𝑝)

Make triangles, connect 
opposites, 𝑘 = num clauses

Assign true to variables 
from selected nodes

Then This could be done 
in polynomial time

If This could be done in 
Polynomial time



-Vertex Cover is NP-Complete

1. Show that it belongs to NP

– Give a polynomial time verifier

2. Show it is NP-Hard

– Give a reduction from a known NP-Hard problem

– We showed 𝑘𝐼𝑛𝑑𝑆𝑒𝑡 ≤𝑝 𝑘𝑉𝑒𝑟𝑡𝐶𝑜𝑣
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Remember: -Vertex Cover is NP

• To show: Given a certificate (“solution” for the search 
problem), can we verify it in 𝑂(𝑛𝑝)? [𝑛 = 𝑉 + 𝐸]

67

How can we verify it?

1. Check that it’s of size 𝑘 𝑂(𝑉)

2. Check that it’s a Vertex Cover 𝑂(𝐸)



-Vertex Cover is NP-Complete

1. Show that it belongs to NP

– Give a polynomial time verifier

2. Show it is NP-Hard

– Give a reduction from a known NP-Hard problem

– We showed 𝑘𝐼𝑛𝑑𝑆𝑒𝑡 ≤𝑝 𝑘𝑉𝑒𝑟𝑡𝐶𝑜𝑣
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Remember: 

69

𝑘𝐼𝑛𝑑𝑆𝑒𝑡 𝑘𝑉𝑒𝑟𝑡𝐶𝑜𝑣

Solution for 𝑘𝑉𝑒𝑟𝑡𝐶𝑜𝑣
Solution for  𝑘𝐼𝑛𝑑𝑆𝑒𝑡

Reduction

𝑂(𝑛𝑝)

𝑘 = 𝑉 − 𝑘

Take Complement of 
nodes

Then This could be done 
in polynomial time

If This could be done in 
Polynomial time



-Clique Problem

Given a graph 𝐺 and a number 𝑘, 
is there a clique of size 𝑘?

• Clique: A complete subgraph 
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3-Clique

4-Clique



-Clique is NP-Complete

1. Show that it belongs to NP

– Give a polynomial time verifier

2. Show it is NP-Hard

– Give a reduction from a known NP-Hard problem

– We will show 3𝑆𝐴𝑇 ≤𝑝 𝑘𝐶𝑙𝑖𝑞𝑢𝑒
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-Clique is in NP

• Show: For any graph 𝐺:

– There is a short certificate (“solution”) that 𝐺 has a 𝑘-clique

– The certificate can be checked efficiently (in polynomial time)

73Graph 𝐺

Certificate for 𝑮: 𝑆 = 𝐵,𝐷,𝐸,𝐹
(nodes in the 𝑘-clique)

Checking the certificate:
• Check that 𝑆 = 𝑘
• Check that every pair of nodes in 𝑆 share 

an edge

𝑂 𝑘 = 𝑂 𝑉

𝑂 𝑘2 = 𝑂( 𝑉 2)

Total time: 𝑂 𝑉 2 = poly 𝑉 + 𝐸

G
I

E

D

A

B

F

C

3-Clique

4-Clique

Suppose 𝑘 = 4
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3𝑆𝐴𝑇 𝑘𝐶𝑙𝑖𝑞𝑢𝑒

Solution for 𝑘𝐶𝑙𝑖𝑞𝑢𝑒
Solution for 3𝑆𝐴𝑇

Reduction

𝑂(𝑛𝑝)



Instance of 3SAT to Instance of Clique

75

𝑥

𝑦

𝑧

𝑥 ത𝑦𝑦

𝑢𝑦 ҧ𝑧

For each clause, produce a node for each of its three variables

Connect each node to all non-contradictory nodes in the other clauses
(i.e., anything that’s not its negation)

(also do this for the other 
clauses, omitted due to clutter)

There is a 𝑘-Clique in this graph iff there is a satisfying assignment

Let 𝑘 = number of clauses

𝑥 ∨ 𝑦 ∨ 𝑧 ∧ 𝑥 ∨ ത𝑦 ∨ 𝑦 ∧ 𝑢 ∨ 𝑦 ∨ ҧ𝑧 ∧ 𝑧 ∨ ҧ𝑥 ∨ 𝑢 ∧ ( ҧ𝑥 ∨ ത𝑦 ∨ ҧ𝑧)

𝑧
ҧ𝑥

𝑢

ത𝑢
ത𝑦

ҧ𝑧



Clique Satisfying Assignment
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𝑥 ∨ 𝑦 ∨ 𝑧 ∧ 𝑥 ∨ ത𝑦 ∨ 𝑦 ∧ 𝑢 ∨ 𝑦 ∨ ҧ𝑧 ∧ 𝑧 ∨ ҧ𝑥 ∨ 𝑢 ∧ ( ҧ𝑥 ∨ ത𝑦 ∨ ҧ𝑧)

There are 𝑘 triplets in the graph, and no two nodes in the same triplet 
are adjacent

𝒙 = 𝒕𝒓𝒖𝒆
𝒚 = 𝒇𝒂𝒍𝒔𝒆
𝒛 = 𝒇𝒂𝒍𝒔𝒆
𝒖 = 𝒕𝒓𝒖𝒆

𝑥

𝑦

𝑧

𝑥 ത𝑦𝑦

𝑢𝑦 ҧ𝑧

𝑧
ҧ𝑥

𝑢

ത𝑢
ത𝑦

ҧ𝑧

To have a 𝑘-Clique, must have one node from each triplet

Cannot select a node for both a variable and its negation

Therefore selection of nodes is a satisfying assignment



Satisfying Assignment Clique 

77

𝑥 ∨ 𝑦 ∨ 𝑧 ∧ 𝑥 ∨ ത𝑦 ∨ 𝑦 ∧ 𝑢 ∨ 𝑦 ∨ ҧ𝑧 ∧ 𝑧 ∨ ҧ𝑥 ∨ 𝑢 ∧ ( ҧ𝑥 ∨ ത𝑦 ∨ ҧ𝑧)

Select one node for a true variable from each clause

𝒙 = 𝒕𝒓𝒖𝒆
𝒚 = 𝒇𝒂𝒍𝒔𝒆
𝒛 = 𝒇𝒂𝒍𝒔𝒆
𝒖 = 𝒕𝒓𝒖𝒆

𝑥

𝑦

𝑧

𝑥 ത𝑦𝑦

𝑢𝑦 ҧ𝑧

𝑧
ҧ𝑥

𝑢

ത𝑢
ത𝑦

ҧ𝑧

There will be 𝑘 nodes selected
We can’t select both a node and its negation
All nodes will be non-contradictory, so they will be pairwise adjacent
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3𝑆𝐴𝑇

Solution for 3𝑆𝐴𝑇

Reduction

𝑂(𝑛𝑝)
Make a triplet per clause, 
connect non-contraditcory
nodes among clauses

Assign each variable 
selected to True

𝑘𝐶𝑙𝑖𝑞𝑢𝑒

Solution for 𝑘𝐶𝑙𝑖𝑞𝑢𝑒

Then This could be done 
in polynomial time

If This could be done in 
Polynomial time


