CS4102 Algorithms
Spring 2022

Warm up:
Show that P = NP

Today’s Keywords

* Reductions

* PvsNP

* NP Hard, NP Completeness
* k-Independent Set

* k-Vertex Cover

e 3SAT

* k-Clique

* CLRS: Ch 34

Homeworks

* Unit Cand D Programming Due 5/3
e Unit D Advanced Due 5/3

— NP Completeness and Reductions
* Unit D Basic Due 5/3 (but no penalty submission through 5/6)

e Tuesday, May 10, 7pm in MEC 205 (our section)

e Algorithm technique of supreme ultimate power
* Convertinstance of problem A to an instance of Problem B
* Convert solution of problem B back to a solution of problem A

Reductions

Possible uses
e Use solver for B to solve A

Don’t know 5 Do know
how to solve f()-reduces to how to solve
Problem A Problem B
Y can be used to ma ke>
With 0(f(n)) overhéad
Algorithm for B Algorithm for A
[} ° ’
* Prove lower bound for B by showingit’s as hard as A
Problem we know Problemwe
is slow to solve £(n)-reduces to B | don’t know if
(proved) slow or fast to solve
Problem A Problem B

Y can be used to make > .
With 0(f(n)) overhea

Algorithm forB B is no faster than A Algorithm for A

MacGyver’s Reduction

Problem we don’t know how to solve

Openinga door

Solutionfor 4

Keg cannon
batteringram

Aim duct at door,
insert keg

Problem we do know how to solve

B

Lighting a fire

\.f/‘

i W@M‘ (‘)4

Put fire under the Keg

Reduction

Solutionfor B

Alcohol, wood,
matches

Reduction Proof Notation

f(n)-reduces to > B

Problem B

Problem A

Y can be used to make

With O(f(n)) overhead

Algorithm for B Algorithm for A

A is not a harder problem than B

A<B Or we R
could have
solved A
. faster
If A requires time Q(f(n)) time then B also requires Q(f(n)) time using B's

A Sf(n) B solver!)

Proof of Lower Bound by Reduction

To Show: Y is slow

1. We know X is slow (by a proof)
(e.g., X = some way to open the door)

2. Assume Y is quick [toward contradiction]
(Y = some way to light a fire)

f iy /& -
— wy 7 0
"y
7
W :

ﬁ . 3. Show how to use Y to perform X quickly

4. X is slow, but Y could be used to perform X quickly
conclusion: Y must not actually be quick

Maximum Independent Set

* Independentset: S € V is an independent set if no two nodes
in S share an edge

* Maximum Independent Set Problem: Given a graph G = (V,E)
find the maximum independentset S

10

Minimum Vertex Cover

* Vertex Cover: C € I/ is a vertex cover if every edge in E has
one of its endpointsin C

* Minimum Vertex Cover: Given a graph ¢ = (V, E) find the
minimum vertex cover C

12

Vertex cover of size 5

13

MaxIndSet V-Time Reducible to

MaxIndSet

oy
m

Solution for MaxIindSet

MinVertCover

O(V) Time

MinVertCov

Do nothing >

Take complement of solution

Reduction

Using any Algorithm
for MinVertCov

Solution for MinVertCov

Y

14

MaxIndSet V-Time Reducible to

MaxIndSet

oy
m

Solution for MaxIindSet

MinVertCov

O(V) Time

Do nothing >

We needed our proofto }

show that this works!

Take complement of solution

MinVertCov

If there was a larger)

independent set, there
would have been a smaller

Using any Algorithm
for MinVertCov

Solution for MinVertCov

vertex cover! Y,
Reduction

Y

15

MinVertCover V-Time Reducible to

MinVertCov

Solution for MinVertCov

Y E

MaxIndSet

O(V) Time

Do nothing >

Take complement of solution

MaxIndSet

oG

=

B 2

Using any Algorithm
for MaxIndSet

Solution for MaxIndSet

Reduction

16

S is an independent set of G iff V — S is a vertex cover of G

Let S be an independent set

Consider any edge (x,y) € E

If x € S theny &€ S, because otherwise S would not be an
independent set

Therefore y € V — 5, so edge (x,y) is coveredby I/ — S

17

S is an independent set of G iff V — S is a vertex cover of G

Let V — S be a vertex cover

Consider any edge (x,y) € E

At least one of x and y belong to V' — S, because V — S'is a
vertex cover

Therefore x and y are not both in S,
No edge has both end-nodes in §, thus S is an independent set

18

Conclusion

e MaxIindSetand MinVertCov are either both fast, or both slow

— Spoiler alert: We don’t know which!
e (But we think they’re both slow)

— Both problems are NP-Complete

19

Why Study NP-Completeness

* All semester, we've studied finding algorithms to solve
problems using various tools.

* Sometimes we instead need to prove that a problem is
extremely hard, so as not to waste time on it!

— NP-Complete Problems are hard

— Let’s go over a few of them quickly
— Let’s show how to prove a new problem is NP-Complete

20

Some Preliminaries

Before we go further on this topic....
* Thisis a complex (and interesting!) topic in CS theory

* |In our few lectures, we may approach things from a simpler
viewpoint than you’d get in a CS theory course

 The math and theory related to NP-complete problems starts with

decision problems
— What’s that? Let’s use independent set and vertex cover as examples

— What's described next applies to any optimization problems we’ve seen

21

Max Independent Set

k Independent Set

~
* o Is there a set of non-adjacent nodes of size k?

23

Maximum Independent Set

* Independentset: S € V is an independent set if no two nodes
in S share an edge

* Maximum Independent Set Problem: Given a graph G = (V,E)
find the maximum independentset S

24

k Independent Set

* Independentset: S € V is an independent set if no two nodes
in S share an edge

* k Independent Set Problem: Given a graph ¢ = (V,E) and a
number k, determine whether there is an independent set §

of size k

25

Min Vertex Cover

Find the smallest set of
nodes which covers every
edge

26

k Vertex Cover

Is there a set of nodes of
size k which covers every
edge?

27

Minimum Vertex Cover

* Vertex Cover: C € I/ is a vertex cover if every edge in E has
one of its endpointsin C

* Minimum Vertex Cover: Given a graph ¢ = (V, E) find the
minimum vertex cover C

28

k Vertex Cover

* Vertex Cover: C € I/ is a vertex cover if every edge in E has
one of its endpointsin C

* k Vertex Cover: Given a graph ¢ = (V, E) and a number k,
determine if there is a vertex cover C of size k

29

k Vertex Cover

* k Vertex Cover Problem: Given a graph ¢ = (V,E) and an
integer k, determine if there is a vertex cover C of size k

True for k=6 True for k=5

Is 5 the smallest?
True for k=47

31

Problem Types

Decision Problems:

If we can solve this...
— Is there a solution? e _ N
* Result is True/False Looklng ahead:
— E.g.Is there a vertex cover of size k? We'll use this to define a
Optimal VaIU,'e Problems: -\ we can solve this,... problem classes P and NP
— E.g. What’s the min k for k-vertex cover decision problem’? J

Search Problems:
_ Find a solution ...and also this
* Result more complex thanT/Forak
— E.g. Find a vertex cover of size k

\
Verification Problems: Looking ahead:

) . .
— Given a potential solution for an input, is that input valid? We'll use this to define a

* Resultis True/False problem class called NP
* Fordecision problem, check solution to its search problem %

— E.g.Is set of vertices a vertex cover of size k?

32

Using a k-VertexCover decider to build a

searcher

Note this is a reduction!
kVC-search <y kVC-decider
e Seti=k—1

 Remove nodes (and incident edges) one at a time
* Checkif there is a vertex cover of size i (i.e. use the “decider”)

— If so, then that removed node was part of the k vertex cover,

seti=1—1

— N
— Else, it wasn’t Did | need this node to
cover its edges to have

a vertex cover of size k?

-)

34

5 Vertex Cover (Decision)

Is there a set of nodes of size 5
which covers every edge?

Yes!

35

4 VVertex Cover (Decision)

Is there a set of nodes of size 4
which covers every edge?

No!

4 VVertex Cover (Decision)

Is there a set of nodes of size 4
which covers every edge?

Yes!

3 Vertex Cover (Decision)

Is there a set of nodes of size 3
which covers every edge?

No!

k-VertexCover Solver

Solutionfor 4

Reduction

Remove a node, etc...

Relate Solutions of problem B to
Solutionsof A

Reduction

k-VertexCover Decider

B

Using any Algorithm
for B

Solutionfor B

Y

39

Quick Background!

P: Set of problems solved in polynomial time c o _
.) xample: Turing Halting
(e.g., sorting a list) NP-Hard Problem

* NP: Set of problems that can be:

1) Solved in non-deterministic polynomial time
2) A solution verified in polynomial time

. Example: Vertex Cover
Problem

* NP-Hard: Set of problems that are as hard as

(or harder) than the hardest problems in NP Example: Shortest Path

Problem

* NP-Complete: Set of problems that are both
NP and NP-Hard (i.e., the equally hardest

problems in NP) .
This diagram assumes that P 1= NP

Classes of Problems: P vs NP

e P
— Deterministic Polynomial Time

— P is the set of problems solvable in polynomial time
* 0(n°) for some number c

* NP
— Non-Deterministic Polynomial Time

— NP is the set of problems verifiable in polynomial time
* Verify a proposed solution (not find one) in O(n°) for some number ¢
* For decision problems, really verifying using some information we call a certificate

* Open Problem: Does P=NP?
— Certainly P € NP

41

k-Independent Set is NP

* To show: Given a potential solution, can we verify it in O(n?)?
In=V + E]

How can we verify it?
1. Check thatit’s of size kK O(V)

2. Check that it’s an independent set O (V#)

42

k-Vertex Cover iIs NP

* To show: Given a potential solution, can we verify it in O(n?)?
In=V + E]

How can we verify it?

1. Checkthatit’s of size k O(1/)
2. Check thatit’s a Vertex Cover O(E)

43

NP-Hard

* How can we try to figure out if P=NP?

* |dentify problems at least as “hard” as NP

— If any of these “hard” problems can be solved in
polynomial time, then all NP problems can be solved
in polynomial time.

e Definition: NP-Hard:
— B is NP-Hard if VA € NP, A <, B
— A <, B means A reduces to B in polynomial time

— Remember: A <, B implies A is not harder than B

44

NP-Hardness Reduction

Any NP Problem

0 (nP)

Problem to show is NP-Hard

> B

Then this could be solved
in polynomial time

Solutionfor 4

If This could be solved
in Polynomial time

Solutionfor B

Reduction

Y

45

NP-Complete

NP-Complete = NP N NP-Hard

— The “hardest” of all the problems in NP

— An NP-C problem is polynomial iff all NP problems
are polynomial. l.e. P=NP

— If P=NP, then all NP-C problems are polynomial
— “Together they stand, together they fall”

 How to show a problem C is NP-Complete?
— Show C belongs to NP

* Show we can verify a solution in polynomial time
— Show C is NP-Hard
* VA€ NP,A <, C (That sounds really hard to do!)

e Or, show a reduction from another NP-Hard problem.
(Why? Details next.)
We now just need a FIRST NP-Hard problem

46

NP-Completeness

* So...a problem is NP-Complete if you can do the following:

e 1) Show how to verify it in polynomial time
— Given a solution to the problem, verify it is correct
— That algorithm’s runtime needs to be a polynomial (usually easy)

e 2)Show the problem is NP-Hard (as hard or harder than a known NP-
Hard Problem)

— Take a currently known NP-Hard problem (let’s call it A)
— Showthat A <, X (where X is your problem)
— Why? If A is NP-Hard, then: any NP problem
— Transitivity: any NP problem
— So X satisfies definition of NP-Hard

<, A
<, A<, X

“Consequences” of NP-Completeness

* NP-Complete is the set of “hardest” problems in NP, with these
Important properties:

— If any one NP-Complete problem can be solved in polynomial time...
— ...then every NP-Complete problem can be solved in polynomial time...

— ...and in fact every problem in NP can be solved in polynomial time (which would
show P = NP)

— Or, prove an exponential lower-bound for any single NP-hard problem, then
every NP-hard problem (including NP-C) is exponential

Therefore: solve (say) traveling salesperson problem in O(n'%) time, you've proved
that P = NP. Retire rich & famous!

NP-Completeness: A <, Band BIn P

Any NP-Complete Problem 0] (Tlp) Any other NP-Complete Problem
Then this could be done If This could be done in
in polynomial time polynomial time

v

i A
Solution for Solution for B

Y

Reduction
49

NP-C: A <, Band we prove AnotinP

Any NP-Complete Problem

0 (nP)

Any other NP-Complete Problem

If this cannot be done
in polynomial time

Solutionfor 4

>

B

—1

Then this cannot be
done in polynomial time

A4

Solutionfor B

Reduction

Y

50

Summary of Where We Are

* Focusing on “hard” problems, those that seem to be exponential

* Reductions used to show “hardness” relationships between
problems

e Starting to define “classes” of problems based on complexity issues
— P are problems that can be solved in polynomial time
— NP are problems where a solution can be verified in polynomial time

— NP-hard are problems that are at least as hard as anything in NP
— NP-complete are NP-hard problems that “stand or fall together”

51

Review: P and NP Summary

P = set of problems that can be solved in polynomial time

NP = set of problems for which a solution can be verified in
polynomial time

— Note: this is a more “informal” definition, but it’s fine for CS4102
— See later slide on “certificates” for more info.

Pc NP
Open question: Does P = NP?

More Reminders and Some

conseguences

* Definition of NP-Hard and NP-Complete:
— If all problems A € NP are reducible to B, then B is NP-Hard

— We say B is NP-Complete if:
* Bis NP-Hard
« and B € NP

* Any NP-C must reduce to any other NP-C. Can you see why?

* If B<,Cand B is NP-Complete, Cis also NP-Complete
— Don’t see why? We’ll show details in two more slides
— As long as C € NP. Otherwise can only say C € NP-hard.

3-SAT

* Shown to be NP-Hard by Cook and Levin (independently)

e Given a 3-CNF formula (logical AND of clauses, each an OR of 3
variables), Is there an assignment of true/false to each variable
to make the formula true?

‘(xVyVZ)/\(xV)_/Vy)/\(uVyVZ_)/\(ZV)ZVu)/\(JEV37VZ_)

Clause X = true
Variables y = false
z = false

54

u=true

Conjunctive Normal Form (CNF)

* Even if the form of the Boolean expression is simplified, the
problem may be NP-Complete

— Literal: an occurrence of a Boolean or its negation

— A Boolean formula is in conjunctive normal form, or CNF, if it is an AND
of clauses, each of which is an OR of literals

o EX:(XqV —X5) A (—Xq V X3V Xg) A (—X)

— 3-CNF: each clause has exactly 3 distinct literals
o EX:(Xq V=XV —X3) A (X1 V X3V Xg) A (X5 V X3V X,)
* Notice: true if at least one literal in each clause is true

— Note: Arbitrary SAT expressions can be translated into CNF forms by
introducing intermediate variables etc.

Joining the Club

* Given one NP-Complete problem, others can join the club
— Prove that SAT reduces to another problem, and so on...

SAT = 3-CNF-SAT » SUBSET-SUM
CLIQUE » VERTEX- = HAM- » TSP
COVER CYCLE

— Membership in NP-Complete grows...

— Classic textbook: Garey, M. and D. Johnson,
Computers and Intractability: A Guide to the Theory of NP-
Completeness, 1979.

k-Independent Set is NP-Complete

1. Show that it belongsto NP

— Give a polynomial time verifier

2. Show itis NP-Hard
— Give a reduction from a known NP-Hard problem
— Show 3SAT <, kIndSet

57

Remember: k-Independent Set is NP

* To show: Given a certificate (“solution” for the search
problem), can we verify itinO(n?)? [n =V + E]

How can we verify it?
1. Checkthatit’s of size k O(V)

2. Check that it’s an independent set O (V?)

58

k-Independent Set is NP-Complete

1. Show that it belongsto NP

— Give a polynomial time verifier

2. Show itis NP-Hard
— Give a reduction from a known NP-Hard problem
— Show 3SAT <, kIndSet

59

3SAT <, kindSet

3SAT 0 (nP) k-Ind Set

Solution for 3SAT
olutiontor < Solution for k-Ind Set

Reduction

60

Instance of 3SAT to Instance of klndSet

(xVYyVZD)AXVYVY)IA@VYVZ)AN@ZVIVU)ANGEVYVZI)

For each clause, produce a triangle graph with its three variables as nodes

Connect each node to all of its opposites

Let kK = number of clauses
There is a k-IndSet in this graph iff there is a satisfying assignment

61

kindSet = Satisfying Assignment

(xVYyVZ)AXVYVY)A@VYVZ)ANZVIVU)ANGEVYVZ)

/ —

x = true
y = false

: z = false
b N\ u = true
\

One node per triangle is in the Independent set:
because we can have exactly k total in the set, and 2 in a triangle would be adjacent

If x is selected in some triangle, X is not selected in any triangle:
Because every x is adjacent to every x

Set the variable which each included node represents to “true”

62

Satisfying Assignment = klndSet

(xVYyVZD)AXVYVY)IA@VYVZ)AN@ZVIVU)ANGEVYVZI)

/ —

x = true
y = false

: z = false
b \\ u = true

Use one true variable from the assignment for each triangle

The independent set has k nodes, because there are k clauses
If any variable x is true then X cannot be true

63

3SAT <, kindSet

3SAT 0 (nP) k-Ind Set

Make triangles, connect
opposites, k = num clauses B

Then This could be done If This could be done in
in polynomial time Polynomial time

Solution for 3SAT
olutiontor Solution for k-Ind Set

Y

Assign true to variables
from selected nodes

Reduction
65

k-Vertex Cover iIs NP-Complete

1. Show that it belongsto NP

— Give a polynomial time verifier

2. Show itis NP-Hard

— Give a reduction from a known NP-Hard problem
— We showed kIndSet <, kVertCov

66

Remember: k-Vertex Cover i1s NP

* To show: Given a certificate (“solution” for the search
problem), can we verifyitin O(nP)? [n =V + E]

How can we verify it?
1. Checkthatit’s of size k O(1/)
2. Check thatit’s a Vertex Cover O(E)

67

k-Vertex Cover iIs NP-Complete

1. Show that it belongsto NP

— Give a polynomial time verifier

2. Show itis NP-Hard

— Give a reduction from a known NP-Hard problem
— We showed kIndSet <, kVertCov

68

Remember: kiIndSet <p kVertCov

kindSet 0] (np) kVertCov
k=V—k > B
Then This could be done If This could be done in
in polynomial time Polynomial time

Solutionfor kindSet Solution for kVertCov

Y

Take Complement of
nodes

Reduction
69

k-Cligue Problem

4-Clique

=

Given a graph G and a number k,
is there a clique of size k?

* Clique: A complete subgraph

k-Cligue i1s NP-Complete

1. Show that it belongsto NP

— Give a polynomial time verifier

2. Show itis NP-Hard

— Give a reduction from a known NP-Hard problem
— We will show 3SAT <,, kClique

71

k-Cligue is In NP

 Show: For any graph G
— There is a short certificate (“solution”) that G has a k-clique

— The certificate can be checked efficiently (in polynomial time)
Suppose k = 4

Certificatefor G: S = {B,D ,E,F}
(nodes in the k-clique)

Checking the certificate:

* Checkthat|S| =k 0(k) = o(|V])
* Check that every pair of nodes in S share
an edge 0(k?) = 0(|V|?)

Total time: O(|V|*) = poly(|V| + |E|) 73

3SAT <, kClique

3SAT 0 (nP) kClique

Solutionfor 3SAT < Solutionfor kClique

Reduction

74

Instance of 3SAT to Instance of kClique

(XVYVZ)ANEVYVY)IAWUVYVZI)AEZVIVU)AKXVYVZ)
7“
(also do this for the other
clauses, omitted due to clutter)

For each clause, produce a node for each of its three variables

Connect each node to all non-contradictory nodes in the other clauses
(i.e., anything that’s not its negation)

Let k = number of clauses
There is a k-Clique in this graph iff there is a satisfying assignment 7

kCligue = Satisfying Assignment

(XVYVZ)ANEVYVY)IAWUVYVZI)ANEZVIVU)AKXKVYVZ)

x = true

y = false
z = false

u = true

There are k triplets in the graph, and no two nodes in the same triplet
are adjacent

To have a k-Cligue, must have one node from each triplet
Cannot select a node for both a variable and its negation

Therefore selection of nodes is a satisfying assignment

76

Satisfying Assignment = kCligue

(XVYVZ)ANEVYVY)IAWUVYVZI)ANEZVIVU)AKXKVYVZ)

x = true

y = false
z = false

u = true

Select one node for a true variable from each clause

There will be k nodes selected
We can’t select both a node and its negation
All nodes will be non-contradictory, so they will be pairwise adjacent

77

3SAT <, kClique

3SAT

0 (nP)

kClique

Make a triplet per clause,
connect non-contraditcory
nodes among clauses

Then This could be done
in polynomial time

Solutionfor 3SAT

B

If This could be done in
Polynomial time

Assign each variable
selected to True

Solutionfor kClique

Reduction

Y

78

