CS4102 Algorithms

Warm up:
Show that $P=N P$

Today's Keywords

- Reductions
- P vs NP
- NP Hard, NP Completeness
- k-Independent Set
- k-Vertex Cover
- 3SAT
- k-Clique
- CLRS: Ch 34

Homeworks

- Unit C and D Programming Due $5 / 3$
- Unit D Advanced Due 5/3
- NP Completeness and Reductions
- Unit D Basic Due 5/3 (but no penalty submission through 5/6)

Final Exam

- Tuesday, May 10, 7pm in MEC 205 (our section)

Reductions

- Algorithm technique of supreme ultimate power
- Convert instance of problem A to an instance of Problem B
- Convert solution of problem B back to a solution of problem A

Reductions

Possible uses

- Use solver for B to solve A

Don't know how to solve

- Prove lower bound for B by showing it's as hard as A

MacGyver's Reduction

Problem we don't know how to solve
Problem we do know how to solve

Lighting a fire

Solution for \boldsymbol{B}
Alcohol, wood, matches

Reduction Proof Notation

A is not a harder problem than B

$$
A \leq B
$$

If \boldsymbol{A} requires time $\Omega(\boldsymbol{f}(\boldsymbol{n}))$ time then \boldsymbol{B} also requires $\Omega(\boldsymbol{f}(\boldsymbol{n}))$ time

$$
A \leq_{f(n)} B
$$

Or we could have solved A faster using B's solver!

Proof of Lower Bound by Reduction

Maximum Independent Set

- Independent set: $S \subseteq V$ is an independent set if no two nodes in S share an edge
- Maximum Independent Set Problem: Given a graph $G=(V, E)$ find the maximum independent set S

Example

Minimum Vertex Cover

- Vertex Cover: $C \subseteq V$ is a vertex cover if every edge in E has one of its endpoints in C
- Minimum Vertex Cover: Given a graph $G=(V, E)$ find the minimum vertex cover C

Example

MaxIndSet V-Time Reducible to MinVertCover

Solution for MaxIndSet

Solution for MinVertCov

MaxIndSet V-Time Reducible to

MinVertCov

Solution for MaxIndSet

MinVertCov

Solution for MinVertCov

MinVertCover V-Time Reducible to

 MaxIndSet

Proof: \Rightarrow

S is an independent set of G iff $V-S$ is a vertex cover of G
Let S be an independent set

Consider any edge $(x, y) \in E$
If $x \in S$ then $y \notin S$, because otherwise S would not be an independent set

Therefore $y \in V-S$, so edge (x, y) is covered by $V-S$

Proof: \Leftarrow

S is an independent set of G iff $V-S$ is a vertex cover of G
Let $V-S$ be a vertex cover

Consider any edge $(x, y) \in E$
At least one of x and y belong to $V-S$, because $V-S$ is a vertex cover

Therefore x and y are not both in S,
No edge has both end-nodes in S, thus S is an independent set

Conclusion

- MaxIndSet and MinVertCov are either both fast, or both slow
- Spoiler alert: We don't know which!
- (But we think they're both slow)
- Both problems are NP-Complete

Why Study NP-Completeness

- All semester, we've studied finding algorithms to solve problems using various tools.
- Sometimes we instead need to prove that a problem is extremely hard, so as not to waste time on it!
- NP-Complete Problems are hard
- Let's go over a few of them quickly
- Let's show how to prove a new problem is NP-Complete

Some Preliminaries

Before we go further on this topic....

- This is a complex (and interesting!) topic in CS theory
- In our few lectures, we may approach things from a simpler viewpoint than you'd get in a CS theory course
- The math and theory related to NP-complete problems starts with decision problems
- What's that? Let's use independent set and vertex cover as examples
- What's described next applies to any optimization problems we've seen

Max Independent Set

Find the largest set of non-adjacent nodes

k Independent Set

Maximum Independent Set

- Independent set: $S \subseteq V$ is an independent set if no two nodes in S share an edge
- Maximum Independent Set Problem: Given a graph $G=(V, E)$ find the maximum independent set S

k Independent Set

- Independent set: $S \subseteq V$ is an independent set if no two nodes in S share an edge
- k Independent Set Problem: Given a graph $G=(V, E)$ and a number k, determine whether there is an independent set S of size \boldsymbol{k}

Min Vertex Cover

k Vertex Cover

Is there a set of nodes of size k which covers every edge?

Minimum Vertex Cover

- Vertex Cover: $C \subseteq V$ is a vertex cover if every edge in E has one of its endpoints in C
- Minimum Vertex Cover: Given a graph $G=(V, E)$ find the minimum vertex cover C

k Vertex Cover

- Vertex Cover: $C \subseteq V$ is a vertex cover if every edge in E has one of its endpoints in C
- k Vertex Cover: Given a graph $G=(V, E)$ and a number k, determine if there is a vertex cover \boldsymbol{C} of size \boldsymbol{k}

k Vertex Cover

- \boldsymbol{k} Vertex Cover Problem: Given a graph $G=(V, E)$ and an integer k, determine if there is a vertex cover \boldsymbol{C} of size \boldsymbol{k}

Is 5 the smallest? True for k=4?

Problem Types

- Decision Problems:
- Is there a solution?

If we can solve this...

- Result is True/False
- E.g. Is there a vertex cover of size k ?
- Optimal Value Problems:

Then we can solve this

- E.g. What's the min k for k-vërtex cover decision problem? ${ }^{*}$

Looking ahead:
 We'll use this to define a problem classes P and NP

- Search Problems:
- Find a solution
...and also this
- Result more complex than T/F or a k
- E.g. Find a vertex cover of size k
- Verification Problems:
- Given a potential solution for an input, is that input valid?
- Result is True/False
- For decision problem, check solution to its search problem
- E.g. Is set of vertices a vertex cover of size k ?

Using a k-VertexCover decider to build a searcher

```
Note this is a reduction!
kVC-search }\mp@subsup{\leq}{p}{}\mathrm{ kVC-decider
```

- Set $i=k-1$
- Remove nodes (and incident edges) one at a time
- Check if there is a vertex cover of size i (i.e. use the "decider")
- If so, then that removed node was part of the k vertex cover, set $i=i-1$
- Else, it wasn't

Did I need this node to cover its edges to have a vertex cover of size k ?

5 Vertex Cover (Decision)

Is there a set of nodes of size 5 which covers every edge?

4 Vertex Cover (Decision)

4 Vertex Cover (Decision)

3 Vertex Cover (Decision)

Reduction

k-VertexCover Solver

Solution for \boldsymbol{A}

k-VertexCover Decider

Using any Algorithm for \boldsymbol{B}

Solution for \boldsymbol{B}

Quick Background!

- $\underline{\boldsymbol{P}}$: Set of problems solved in polynomial time (e.g., sorting a list)
- NP: Set of problems that can be:

1) Solved in non-deterministic polynomial time
2) A solution verified in polynomial time

- NP-Hard: Set of problems that are as hard as (or harder) than the hardest problems in NP
- NP-Complete: Set of problems that are both NP and NP-Hard (i.e., the equally hardest problems in NP)

Classes of Problems: P vs NP

- P
- Deterministic Polynomial Time
- P is the set of problems solvable in polynomial time - $O\left(n^{c}\right)$ for some number c
- NP
- Non-Deterministic Polynomial Time

- NP is the set of problems verifiable in polynomial time
- Verify a proposed solution (not find one) in $O\left(n^{c}\right)$ for some number c
- For decision problems, really verifying using some information we call a certificate
- Open Problem: Does P=NP?
- Certainly $P \subseteq N P$

k-Independent Set is NP

- To show: Given a potential solution, can we verify it in $O\left(n^{p}\right)$? $[n=V+E]$

How can we verify it?

1. Check that it's of size $k O(V)$
2. Check that it's an independent set $O\left(V^{2}\right)$

k-Vertex Cover is NP

- To show: Given a potential solution, can we verify it in $O\left(n^{p}\right)$? $[n=V+E]$

How can we verify it?

1. Check that it's of size $k O(V)$
2. Check that it's a Vertex Cover $O(E)$

NP-Hard

- How can we try to figure out if $\mathrm{P}=\mathrm{NP}$?
- Identify problems at least as "hard" as NP
- If any of these "hard" problems can be solved in polynomial time, then all NP problems can be solved in polynomial time.
- Definition: NP-Hard:
$-B$ is NP-Hard if $\forall A \in N P, A \leq_{p} B$
$-A \leq_{p} B$ means A reduces to B in polynomial time
- Remember: $A \leq_{p} B$ implies A is not harder than B

NP-Hardness Reduction

Any NP Problem

$A \leq_{p} B$
Then this could be solved in polynomial time

Solution for \boldsymbol{A}

$O\left(n^{p}\right)$

Problem to show is NP-Hard

Solution for \boldsymbol{B}

NP-Complete

NP-Complete $=$ NP \cap NP-Hard

- The "hardest" of all the problems in NP
- An NP-C problem is polynomial iff all NP problems are polynomial. I.e. $\mathrm{P}=\mathrm{NP}$
- If $\mathrm{P}=\mathrm{NP}$, then all NP-C problems are polynomial
- "Together they stand, together they fall"
- How to show a problem C is NP-Complete?
- Show C belongs to NP
- Show we can verify a solution in polynomial time
- Show C is NP-Hard
- $\forall A \in N P, A \leq_{p} C$ (That sounds really hard to do!)
- Or, show a reduction from another NP-Hard problem.
 (Why? Details next.)

NP-Completeness

- So...a problem is NP-Complete if you can do the following:
- 1) Show how to verify it in polynomial time
- Given a solution to the problem, verify it is correct
- That algorithm's runtime needs to be a polynomial (usually easy)
- 2) Show the problem is NP-Hard (as hard or harder than a known NPHard Problem)
- Take a currently known NP-Hard problem (let's call it A)
- Show that $A \leq_{p} X$ (where X is your problem)
- Why? If A is NP-Hard, then: any NP problem $\leq_{p} A$
- Transitivity: any NP problem $\leq_{p} A \leq_{p} X$
- So X satisfies definition of NP-Hard

"Consequences" of NP-Completeness

- NP-Complete is the set of "hardest" problems in NP, with these important properties:
- If any one NP-Complete problem can be solved in polynomial time...
- ...then every NP-Complete problem can be solved in polynomial time...
- ...and in fact every problem in NP can be solved in polynomial time (which would show $\mathbf{P}=\mathbf{N P}$)
- Or, prove an exponential lower-bound for any single NP-hard problem, then every NP-hard problem (including NP-C) is exponential

Therefore: solve (say) traveling salesperson problem in $\mathrm{O}\left(n^{100}\right)$ time, you've proved that $\mathbf{P}=\mathbf{N P}$. Retire rich \& famous!

NP-Completeness: $A \leq_{p} B$ and B in P

NP-C: $A \leq_{p} B$ and we prove A not in P

Summary of Where We Are

- Focusing on "hard" problems, those that seem to be exponential
- Reductions used to show "hardness" relationships between problems
- Starting to define "classes" of problems based on complexity issues
- \mathbf{P} are problems that can be solved in polynomial time
- NP are problems where a solution can be verified in polynomial time
- NP-hard are problems that are at least as hard as anything in NP
- NP-complete are NP-hard problems that "stand or fall together"

Review: P and NP Summary

- $\mathbf{P}=$ set of problems that can be solved in polynomial time
- $\mathbf{N P}=$ set of problems for which a solution can be verified in polynomial time
- Note: this is a more "informal" definition, but it's fine for CS4102
- See later slide on "certificates" for more info.
- $\mathbf{P} \subseteq \mathbf{N P}$
- Open question: Does $\mathbf{P}=\mathbf{N P}$?

More Reminders and Some Consequences

- Definition of NP-Hard and NP-Complete:
- If all problems $\mathrm{A} \in \mathrm{NP}$ are reducible to B , then B is NP-Hard
- We say B is NP-Complete if:
- B is NP-Hard
- and $B \in \mathbf{N P}$
- Any NP-C must reduce to any other NP-C. Can you see why?
- If $B \leq_{p} C$ and B is NP-Complete, C is also NP-Complete - Don't see why? We'll show details in two more slides - As long as $C \in$ NP. Otherwise can only say $C \in$ NP-hard.

3-SAT

- Shown to be NP-Hard by Cook and Levin (independently)
- Given a 3-CNF formula (logical AND of clauses, each an OR of 3 variables), Is there an assignment of true/false to each variable to make the formula true?

$$
\underbrace{(x \vee y \vee z) \wedge(x \vee \bar{y} \vee y) \wedge(u \vee y \vee \bar{z}) \wedge(z \vee \bar{x} \vee u) \wedge(\bar{x} \vee \bar{y} \vee \bar{z})}_{\text {Clause }} \begin{aligned}
& x=\text { true } \\
& \boldsymbol{y}=\text { false } \\
& z=\text { false } \\
& \boldsymbol{u}=\text { true }
\end{aligned}
$$

Conjunctive Normal Form (CNF)

- Even if the form of the Boolean expression is simplified, the problem may be NP-Complete
- Literal: an occurrence of a Boolean or its negation
- A Boolean formula is in conjunctive normal form, or CNF, if it is an AND of clauses, each of which is an OR of literals
- Ex: $\left(x_{1} \vee \neg x_{2}\right) \wedge\left(\neg x_{1} \vee x_{3} \vee x_{4}\right) \wedge\left(\neg x_{5}\right)$
- 3-CNF: each clause has exactly 3 distinct literals
- Ex: $\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee x_{3} \vee x_{4}\right) \wedge\left(\neg x_{5} \vee x_{3} \vee x_{4}\right)$
- Notice: true if at least one literal in each clause is true
- Note: Arbitrary SAT expressions can be translated into CNF forms by introducing intermediate variables etc.

Joining the Club

- Given one NP-Complete problem, others can join the club
- Prove that SAT reduces to another problem, and so on...

- Membership in NP-Complete grows...
- Classic textbook: Garey, M. and D. Johnson, Computers and Intractability: A Guide to the Theory of NPCompleteness, 1979.

k-Independent Set is NP-Complete

1. Show that it belongs to NP

- Give a polynomial time verifier

2. Show it is NP-Hard

- Give a reduction from a known NP-Hard problem
- Show 3 SAT \leq_{p} kIndSet

Remember: k-Independent Set is NP

- To show: Given a certificate ("solution" for the search problem), can we verify it in $O\left(n^{p}\right)$? $[n=V+E]$

How can we verify it?

1. Check that it's of size $k O(V)$
2. Check that it's an independent set $O\left(V^{2}\right)$

k-Independent Set is NP-Complete

1. Show that it belongs to NP

- Give a polynomial time verifier

2. Show it is NP-Hard

- Give a reduction from a known NP-Hard problem
- Show 3 SAT \leq_{p} kIndSet

$3 S A T \leq_{p}$ kIndSet

Instance of 3SAT to Instance of k IndSet

$$
(x \vee y \vee z) \wedge(x \vee \bar{y} \vee y) \wedge(u \vee y \vee \bar{z}) \wedge(z \vee \bar{x} \vee u) \wedge(\bar{x} \vee \bar{y} \vee \bar{z})
$$

For each clause, produce a triangle graph with its three variables as nodes
Connect each node to all of its opposites
Let $k=$ number of clauses
There is a k-IndSet in this graph iff there is a satisfying assignment

k IndSet $=$ Satisfying Assignment

$$
(x \vee y \vee z) \wedge(x \vee \bar{y} \vee y) \wedge(u \vee y \vee \bar{z}) \wedge(z \vee \bar{x} \vee u) \wedge(\bar{x} \vee \bar{y} \vee \bar{z})
$$

$$
\begin{gathered}
x=\text { true } \\
y=\text { false } \\
z=\text { false } \\
u=\text { true }
\end{gathered}
$$

One node per triangle is in the Independent set:
because we can have exactly k total in the set, and 2 in a triangle would be adjacent
If x is selected in some triangle, \bar{x} is not selected in any triangle:
Because every x is adjacent to every \bar{x}
Set the variable which each included node represents to "true"

Satisfying Assignment $\Rightarrow k$ IndSet

$$
(x \vee y \vee z) \wedge(x \vee \bar{y} \vee y) \wedge(u \vee y \vee \bar{z}) \wedge(z \vee \bar{x} \vee u) \wedge(\bar{x} \vee \bar{y} \vee \bar{z})
$$

$$
\begin{gathered}
x=\text { true } \\
y=\text { false } \\
z=\text { false } \\
u=\text { true }
\end{gathered}
$$

Use one true variable from the assignment for each triangle
The independent set has k nodes, because there are k clauses If any variable x is true then \bar{x} cannot be true

$3 S A T \leq_{p}$ kIndSet

k-Vertex Cover is NP-Complete

1. Show that it belongs to NP

- Give a polynomial time verifier

2. Show it is NP-Hard

- Give a reduction from a known NP-Hard problem
- We showed kIndSet \leq_{p} kVertCov

Remember: k-Vertex Cover is NP

- To show: Given a certificate ("solution" for the search problem), can we verify it in $O\left(n^{p}\right)$? $[n=V+E]$

How can we verify it?

1. Check that it's of size $k O(V)$
2. Check that it's a Vertex Cover $O(E)$

k-Vertex Cover is NP-Complete

1. Show that it belongs to NP

- Give a polynomial time verifier

2. Show it is NP-Hard

- Give a reduction from a known NP-Hard problem
- We showed kIndSet \leq_{p} kVertCov

Remember: kIndSet $\leq_{\mathrm{p}} \mathrm{kVertCov}$

k-Clique Problem

Given a graph G and a number k, is there a clique of size k ?

- Clique: A complete subgraph

k-Clique is NP-Complete

1. Show that it belongs to NP

- Give a polynomial time verifier

2. Show it is NP-Hard

- Give a reduction from a known NP-Hard problem
- We will show $3 S A T \leq_{p}$ kClique

k-Clique is in NP

- Show: For any graph G :
- There is a short certificate ("solution") that G has a k-clique
- The certificate can be checked efficiently (in polynomial time)

Suppose $k=4$
Certificate for $\boldsymbol{G}: S=\{B, D, E, F\}$
(nodes in the k-clique)
Checking the certificate:

- Check that $|S|=k$

$$
O(k)=O(|V|)
$$

- Check that every pair of nodes in S share an edge

$$
O\left(k^{2}\right)=O\left(|V|^{2}\right)
$$

Graph G
Total time: $O\left(|V|^{2}\right)=\operatorname{poly}(|V|+|E|)$

$3 S A T \leq_{p} k C l i q u e$

Instance of 3SAT to Instance of k Clique

$$
(x \vee y \vee z) \wedge(x \vee \bar{y} \vee y) \wedge(u \vee y \vee \bar{z}) \wedge(z \vee \bar{x} \vee u) \wedge(\bar{x} \vee \bar{y} \vee \bar{z})
$$

For each clause, produce a node for each of its three variables
Connect each node to all non-contradictory nodes in the other clauses
(i.e., anything that's not its negation)

Let $k=$ number of clauses
There is a k-Clique in this graph iff there is a satisfying assignment

k Clique $=$ Satisfying Assignment

$$
(x \vee y \vee z) \wedge(x \vee \bar{y} \vee y) \wedge(u \vee y \vee \bar{z}) \wedge(z \vee \bar{x} \vee u) \wedge(\bar{x} \vee \bar{y} \vee \bar{z})
$$

There are k triplets in the graph, and no two nodes in the same triplet are adjacent
To have a k-Clique, must have one node from each triplet
Cannot select a node for both a variable and its negation
Therefore selection of nodes is a satisfying assignment

Satisfying Assignment $\Rightarrow k$ Clique

$$
(x \vee y \vee z) \wedge(x \vee \bar{y} \vee y) \wedge(u \vee y \vee \bar{z}) \wedge(z \vee \bar{x} \vee u) \wedge(\bar{x} \vee \bar{y} \vee \bar{z})
$$

$$
\begin{gathered}
x=\text { true } \\
y=\text { false } \\
z=\text { false } \\
u=\text { true }
\end{gathered}
$$

Select one node for a true variable from each clause
There will be k nodes selected
We can't select both a node and its negation
All nodes will be non-contradictory, so they will be pairwise adjacent

$3 S A T \leq_{p} k C l i q u e$

