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Today’s Keywords

• Reductions
• P vs NP
• NP Hard, NP Completeness
• k-Independent Set
• k-Vertex Cover
• 3SAT
• k-Clique
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Why Study NP-Completeness

• All semester, we’ve studied finding algorithms to solve 
problems using various tools.

• Sometimes we instead need to prove that a problem is 
extremely hard, so as not to waste time on it!
– NP-Complete Problems are hard
– Let’s go over a few of them quickly
– Let’s show how to prove a new problem is NP-Complete
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Some Preliminaries

Before we go further on this topic….
• This is a complex (and interesting!) topic in CS theory
• In our few lectures, we may approach things from a simpler 

viewpoint than you’d get in a CS theory course

• The math and theory related to NP-complete problems starts with 
decision problems
– What’s that?  Let’s use vertex cover as an example
– What’s described next applies to any optimization problems we’ve seen
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Forms of the Vertex Cover Problem

Vertex Cover: 𝐶 ⊆ 𝑉 is a vertex cover if every edge in 𝐸 has one 
of its endpoints in 𝐶
• Minimum Vertex Cover Problem: Given a graph 𝐺 = (𝑉, 𝐸)

find the minimum vertex cover 𝐶
– Result is C, a set of vertices

• 𝒌 Vertex Cover Problem: Given a graph 𝐺 = (𝑉, 𝐸) and an 
integer 𝑘, determine if there is a vertex cover 𝑪 of size 𝒌
– Result is True or False
– This is the decision problem form of Vertex Cover
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k Vertex Cover

• 𝒌 Vertex Cover Problem: Given a graph 𝐺 = (𝑉, 𝐸) and an 
integer 𝑘, determine if there is a vertex cover 𝑪 of size 𝒌
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True for k=6 True for k=5
Is 5 the smallest?
True for k=4?



Problem Types
• Decision Problems:

– Is there a solution?
• Result is True/False

– E.g. Is there a vertex cover of size 𝑘?
• Optimal Value Problems:

– E.g. What’s the min k for k-vertex cover decision problem?
• Search Problems:

– Find a solution
• Result more complex than T/F or a 𝑘

– E.g. Find a vertex cover of size 𝑘

• Verification Problems:
– Given a potential solution for an input, is that input valid?

• Result is True/False
• For decision problem, check solution to its search problem

– E.g. Is set of vertices a vertex cover of size 𝑘?
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If we can solve this…

…Then we can solve this,…

…and also this

Looking ahead:
We’ll use this to define a 
problem class called NP

Looking ahead:
We’ll use this to define a 
problem classes P and NP



Using a 𝑘-VertexCover decider to build a searcher

• Set 𝑖 = 𝑘 − 1
• Remove nodes (and incident edges) one at a time 
• Check if there is a vertex cover of size 𝑖 (i.e. use the “decider”)
– If so, then that removed node was part of the 𝑘 vertex cover, 

set 𝑖 = 𝑖 − 1
– Else, it wasn’t
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Did I need this node to 
cover its edges to have 

a vertex cover of size 𝑘?

Note this is a reduction!
kVC-search≤" kVC-decider



Quick Background!

• P: Set of problems solved in polynomial time 
(e.g., sorting a list)

• NP: Set of problems that can be:
1) Solved in non-deterministic polynomial time
2) A solution verified in polynomial time

• NP-Hard: Set of problems that are as hard as 
(or harder) than the hardest problems in NP

• NP-Complete: Set of problems that are both 
NP and NP-Hard (i.e., the equally hardest 
problems in NP)
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Classes of Problems: P vs NP

• P
– Deterministic Polynomial Time
– P is the set of problems solvable in polynomial time

• 𝑂(𝑛!) for some number c
• NP
– Non-Deterministic Polynomial Time
– NP is the set of problems verifiable in polynomial time

• Verify a proposed solution (not find one) in 𝑂(𝑛!) for some number 𝑐
• For decision problems, really verifying using some information we call a certificate

• Open Problem: Does P=NP?
– Certainly 𝑃 ⊆ 𝑁𝑃
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P

NP



𝑘-Independent Set is NP

To show: Given a potential solution S, can we verify
it in 𝑂(𝑛!)? [𝑛 = 𝑉 + 𝐸]
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How can we verify it?
1. Check that S is of size 𝑘?  Takes 𝑂(𝑉)
2. Check that S is an independent set?  Takes 𝑂(𝑉')

Therefore, k-IndSet ⊆ 𝑵𝑷



NP-Hard
• How can we try to figure out if P=NP?
• Identify problems at least as “hard” as any NP
– If any of these “hard” problems can be solved in 

polynomial time, then all NP problems can be solved 
in polynomial time.

• Definition: NP-Hard:
– 𝐵 is NP-Hard if ∀𝐴 ∈ 𝑁𝑃, 𝐴 ≤! 𝐵
– 𝐴 ≤! 𝐵 means 𝐴 reduces to 𝐵 in polynomial time
– Remember: 𝐴 ≤! 𝐵 implies 𝐴 is not harder than 𝐵

13

P

NP

NP-Hard
At least as 
“hard” as
any NP



Polynomial Reduction & Relative Hardness
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A problem we 
don’t know how to 
solve

A problem we do
know how to solve

Solution for 𝑩

𝐴

Solution for 𝑨

Polynomial
Reduction

Map Instances of problem 
𝑨 to Instances of 𝑩

Using any Algorithm for 𝑩

Map Solutions of problem 
𝑩 to Solutions of 𝑨

𝑅𝐵

𝐵

𝑅𝐴

If B could be solved in 
polynomial time

Then A could be solved 
in polynomial time

𝑨 ≤𝒑 𝑩



NP-Complete
NP-Complete = NP ∩ NP-Hard
– The “hardest” of all the problems in NP
– An NP-C problem is polynomial iff all NP problems 

are polynomial.  I.e. P=NP
– If P=NP, then all NP-C problems are polynomial
– “Together they stand, together they fall”

• How to show a problem 𝑪 is NP-Complete?
– Show 𝐶 belongs to NP

• Show we can verify a solution in polynomial time
– Show 𝐶 is NP-Hard

• ∀𝐴 ∈ 𝑁𝑃, 𝐴 ≤" 𝐶 (That sounds really hard to do!)
• Or, show a reduction from another NP-Hard problem. 

(Why?  Details next.)
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P

NP

NP-Hard
At least as 
“hard” as
any NP

NP-C



NP-Completeness
• So…a problem is NP-Complete if you can do the following:

• 1) Show how to verify it in polynomial time
– Given a solution to the problem, verify it is correct
– That algorithm’s runtime needs to be a polynomial (usually easy)

• 2) Show the problem is NP-Hard (as hard or harder than a known NP-
Hard Problem)
– Take a currently known NP-Hard problem (let’s call it A)
– Show that 𝐴 ≤! 𝑋 (where X is your problem)
– Why?  If 𝐴 is NP-Hard, then: any NP problem ≤! 𝐴
– Transitivity:   any NP problem ≤! 𝐴 ≤! 𝑋
– So 𝑋 satisfies definition of NP-Hard



“Consequences” of NP-Completeness

• NP-Complete is the set of “hardest” problems in NP, with these 
important properties:
– If any one NP-Complete problem can be solved in polynomial time…
– …then every  NP-Complete problem can be solved in polynomial time…
– …and in fact every problem in NP can be solved in polynomial time (which 

would show P = NP)
– Or, prove an exponential lower-bound for any single NP-hard problem, 

then every NP-hard problem (including NP-C) is exponential

Therefore: solve (say) traveling salesperson problem in O(n100) time, you've
proved that P = NP.  Retire rich & famous!



𝐴 ≤8 𝐵 and B in P
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Problem we don’t
know how to solve

Problem we do know
how to solve

Solution for 𝑩

𝐴

Solution for 𝑨

Reduction
Map Instances of problem 
𝑨 to Instances of 𝑩

Using any Algorithm for 𝑩

Map Solutions of problem 
𝑩 to Solutions of 𝑨

𝑅𝐵

If a polynomial 
algorithm exists 
to solve B, what 

does that tell 
us about A?

𝐵

𝑅𝐴



𝐴 ≤8 𝐵 and we prove A not in P
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Problem we don’t
know how to solve

Problem we do know
how to solve

Solution for 𝑩

𝐴

Solution for 𝑨

Reduction
Map Instances of problem 
𝑨 to Instances of 𝑩

Using any Algorithm for 𝑩

Map Solutions of problem 
𝑩 to Solutions of 𝑨

𝑅𝐵

If we prove an 
exponential 
lower bound 

for problem A, 
what does that 

tell us about 
solving B?

𝐵

𝑅𝐴



Summary of Where We Are

• Focusing on “hard” problems, those that seem to be exponential
• Reductions used to show “hardness” relationships between 

problems
• Starting to define “classes” of problems based on complexity issues
– P are problems that can be solved in polynomial time
– NP are problems where a solution can be verified in polynomial time
– NP-hard are problems that are at least as hard as anything in NP
– NP-complete are NP-hard problems that “stand or fall together”
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Review: P And NP Summary

• P = set of problems that can be solved in polynomial time
• NP = set of problems for which a solution can be verified in 

polynomial time
– Note: this is a more “informal” definition, but it’s fine for CS4102
– See later slide on ”certificates” for more info.

• P Í NP
• Open question: Does P = NP?



More Reminders and Some Consequences

• Definition of NP-Hard and NP-Complete: 
– If all problems A Î NP are reducible to B , then B is NP-Hard
–We say B is NP-Complete if:
• B is NP-Hard
• and B Î NP

• Any NP-C must reduce to any other NP-C.  Can you see why?

• If B £p C and B is NP-Complete, C is also NP-Complete
– Don’t see why?  We’ll show details in two more slides
– As long as C Î NP.  Otherwise can only say C Î NP-hard.
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But You Need One NP-Hard First…
• If you have one NP-Hard problem, you can use the technique just 

described to prove other problems are NP-Hard and NP-c
– We need an NP-C problem to start this off

• The definition of NP-Hard was created to prove a point
– There might be problems that are at least as hard as “anything” (i.e. all NP 

problems)
• Are there really NP-complete problems?
• Cook-Levin Theorem:  The satisfiability problem (SAT) is NP-Complete.

• Stephen Cook proved this “directly”, from first principles, in 1971
• Proven independently by Leonid Levin (USSR)
• Showed that any problem that meets the definition of NP can be transformed in polynomial 

time to a CNF formula.
• Proof outside the scope of this course (lucky you)



More About The SAT Problem

• The first problem to be proved NP-Complete was satisfiability (SAT):
– Given a Boolean expression on n variables, can we assign values such that the 

expression is TRUE?
– Ex: ((x1®x2) Ú ¬((¬x1« x3) Ú x4)) Ù¬x2

• You might imagine that lots of decision problems could be expressed as 
a complex logical expression
– And Cook and Levin proved you were right!
– Proved the general result that any NP problem can be expressed this way



Conjunctive Normal Form (CNF)

• Even if the form of the Boolean expression is simplified, the 
problem may be NP-Complete
– Literal: an occurrence of a Boolean or its negation
– A Boolean formula is in conjunctive normal form, or CNF, if it is an AND 

of clauses, each of which is an OR of literals
• Ex: (x1 Ú ¬x2) Ù (¬x1 Ú x3 Ú x4) Ù (¬x5)

– 3-CNF: each clause has exactly 3 distinct literals
• Ex: (x1 Ú ¬x2 Ú ¬x3) Ù (¬x1 Ú x3 Ú x4) Ù (¬x5 Ú x3 Ú x4)
• Notice: true if at least one literal in each clause is true

– Note: Arbitrary SAT expressions can be translated into CNF forms by 
introducing intermediate variables etc.



The 3-CNF Problem

• Satisfiability of Boolean formulas in 3-CNF form (the 3-CNF 
Problem) is NP-Complete
– Intuitively it’s not hard to imagine that SAT £p 3-CNF
– Proof: Also done by Cook (“part 2” of Cook’s theorem)

• The reason we care about the 3-CNF problem is that it is 
relatively easy to reduce to others 
– Having a proof that 3-CNF is NP-Complete lets us use it to prove 

many seemingly unrelated problems are NP-Complete



Joining the Club
• Given one NP-c problem, others can join the club
– Prove that SAT reduces to another problem, and so on…

– Membership in NP-c grows…
– Classic textbook: Garey, M. and D. Johnson,

Computers and Intractability: A Guide to the Theory of NP-
Completeness, 1979.

SAT 3-CNF-SAT

CLIQUE

SUBSET-SUM

VERTEX-
COVER

HAM-
CYCLE

TSP



Reductions to Prove NP-C

• Next:
– A tour of how to prove some problems are NP-C
– 3-SAT is a good starting point!

– 𝑘-Clique
– 𝑘-Independent Set
– 𝑘-Vertex Cover
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Reminder about 3-SAT

• Shown to be NP-hard by Cook
• Given a 3-CNF formula (logical AND of clauses, each an OR of 

3 variables), is there an assignment of true/false to each 
variable to make the formula true (i.e., satisfy the formula)?
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𝑥 ∨ 𝑦 ∨ 𝑧 ∧ 𝑥 ∨ ,𝑦 ∨ 𝑦 ∧ 𝑢 ∨ 𝑦 ∨ ̅𝑧 ∧ 𝑧 ∨ �̅� ∨ 𝑢 ∧ (�̅� ∨ ,𝑦 ∨ ̅𝑧)

Clause
Variables

𝑥 = true
𝑦 = false
𝑧 = false
𝑢 = true



• Next example:  k-Clique

• Let’s show that k-Clique is NP-Complete!
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𝑘-Clique Problem

• Clique: A complete subgraph 
• 𝒌-Clique problem: given a 

graph 𝐺 and a number 𝑘, is 
there a clique of size 𝑘?
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3-Clique

4-Clique



𝑘-Clique is NP-Complete

1. Show that it belongs to NP
– Give a polynomial time verifier

2. Show it is NP-Hard
– Give a reduction from a known NP-Hard problem
– We will show 3-SAT ≤" 𝑘-clique
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𝑘-Clique is in NP
• Show: For any graph 𝐺:

– There is a short certificate (“solution”) that 𝐺 has a 𝑘-clique
– The certificate can be checked efficiently (in polynomial time)

34Graph 𝐺

Certificate for 𝑮: 𝑆 = 𝐵,𝐷, 𝐸, 𝐹
(nodes in the 𝑘-clique)

Checking the certificate:
• Check that 𝑆 = 𝑘
• Check that every pair of nodes in 𝑆 share 

an edge

𝑂 𝑘 = 𝑂 𝑉

𝑂 𝑘" = 𝑂( 𝑉 ")

Total time: 𝑂 𝑉 " = poly 𝑉 + 𝐸

G
I

E

D
A

B

F

C

3-Clique

4-Clique

Suppose 𝑘 = 4



𝑘-Clique is NP-Complete

1. Show that it belongs to NP
– Give a polynomial time verifier

2. Show it is NP-Hard
– Give a reduction from a known NP-Hard problem
– We will show 3-SAT ≤" 𝑘-clique
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3-SAT ≤𝒑 𝒌-Clique

36

polynomial time

polynomial time

polynomial-time reduction

Map instances of problem 
𝑨 to instances of 𝑩

Map solutions of problem 
𝑩 to solutions of 𝑨

𝑘-clique3-SAT

𝑥 = true
𝑦 = false
𝑧 = false
𝑢 = true

𝑥 ∨ 𝑦 ∨ 𝑧 ∧ 𝑥 ∨ (𝑦 ∨ 𝑦 ∧ 𝑢 ∨ 𝑦 ∨ ̅𝑧 ∧
𝑧 ∨ �̅� ∨ 𝑢 ∧ (�̅� ∨ (𝑦 ∨ ̅𝑧) value 𝑘



𝑦 ̅𝑧
𝑧

3-SAT ≤𝒑 𝒌-Clique
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𝑥 ∨ 𝑦 ∨ 𝑧 ∧ 𝑥 ∨ ,𝑦 ∨ 𝑦 ∧ 𝑢 ∨ 𝑦 ∨ ̅𝑧 ∧ 𝑧 ∨ �̅� ∨ 𝑢 ∧ (�̅� ∨ ,𝑦 ∨ ̅𝑧)

For each clause, introduce a node for each of its three variables
Add an edge from each node to all non-contradictory nodes in the other clauses (i.e., 
to all nodes that is not the negation of its own variable)

Claim. There is a 𝑘-clique in this graph if and only if there is a 
satisfying assignment

Let 𝑘 = number of clauses

𝑥

𝑦

𝑥

𝑢

(also do this for the other clauses, 
omitted due to clutter)

𝑧 �̅� 𝑢

�̅� (𝑦 ̅𝑧

(𝑦 𝑦

𝑘 = 5



3-SAT ≤𝒑 𝒌-Clique
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𝑥 ∨ 𝑦 ∨ 𝑧 ∧ 𝑥 ∨ ,𝑦 ∨ 𝑦 ∧ 𝑢 ∨ 𝑦 ∨ ̅𝑧 ∧ 𝑧 ∨ �̅� ∨ 𝑢 ∧ (�̅� ∨ ,𝑦 ∨ ̅𝑧)

Suppose there is a 𝑘-clique in this graph
• There are no edges between nodes for variables in the same clause, so 𝑘-

clique must contain one node from each clause
• Nodes in clique cannot contain variable and its negation
• Nodes in clique must then correspond to a satisfying assignment

𝑦 ̅𝑧
𝑧

𝑥

𝑦

𝑥 (𝑦𝑦

𝑢

𝑧 �̅� 𝑢

�̅� (𝑦 ̅𝑧

𝑘 = 5



3-SAT ≤𝒑 𝒌-Clique
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𝑥 ∨ 𝑦 ∨ 𝑧 ∧ 𝑥 ∨ ,𝑦 ∨ 𝑦 ∧ 𝑢 ∨ 𝑦 ∨ ̅𝑧 ∧ 𝑧 ∨ �̅� ∨ 𝑢 ∧ (�̅� ∨ ,𝑦 ∨ ̅𝑧)

Suppose there is a satisfying assignment to the formula
• For each clause, choose one node whose value is true
• There are 𝑘 clauses, so this yields a collection of 𝑘 nodes
• Since the assignment is consistent, there is an edge between every pair of 

nodes, so this constitutes a 𝑘-clique

𝑦 ̅𝑧
𝑧

𝑥

𝑦

𝑥 (𝑦𝑦

𝑢

𝑧 �̅� 𝑢

�̅� (𝑦 ̅𝑧

𝑥 = true
𝑦 = false
𝑧 = false
𝑢 = true

𝑘 = 5



3-SAT ≤𝒑 𝒌-Clique
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polynomial time

polynomial time

polynomial-time reduction

Map instances of problem 
𝑨 to instances of 𝑩

Map solutions of problem 
𝑩 to solutions of 𝑨

𝑘-clique3-SAT

𝑥 = true
𝑦 = false
𝑧 = false
𝑢 = true

𝑥 ∨ 𝑦 ∨ 𝑧 ∧ 𝑥 ∨ (𝑦 ∨ 𝑦 ∧ 𝑢 ∨ 𝑦 ∨ ̅𝑧 ∧
𝑧 ∨ �̅� ∨ 𝑢 ∧ (�̅� ∨ (𝑦 ∨ ̅𝑧)

𝑘 = 5

𝑘 = 5



𝑘-Clique is NP-Complete

1. Show that it belongs to NP
– Give a polynomial time verifier

2. Show it is NP-Hard
– Give a reduction from a known NP-Hard problem
– We will show 3-SAT ≤" 𝑘-clique
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𝑘-Independent Set is NP-Complete

1. Show that it belongs to NP
2. Show it is NP-Hard
– Show 3-SAT≤" 𝑘-Independent Set

42



𝑘-Independent Set is in NP

• Show: For any graph 𝐺:
– There is a short certificate (“solution” for search problem) that 𝐺 has 

a 𝑘-independent set
– The certificate can be checked efficiently (in polynomial time)
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A B

C D

GF

H
J

K L

E

I

Graph 𝐺

Certificate for 𝑮: 𝑆 = 𝐴, 𝐶, 𝐸, 𝐺, 𝐻, 𝐽
(nodes in the 𝑘-independent set)

Checking the certificate:
• Check that 𝑆 = 𝑘
• Check that every edge is incident on at 

most one node in 𝑆

𝑂 𝑘 = 𝑂 𝑉

𝑂 𝑉 + 𝐸

Total time: 𝑂 𝐸 + 𝑉 = poly 𝑉 + 𝐸



𝑘-Independent Set is NP-Complete

1. Show that it belongs to NP
2. Show it is NP-Hard
– Show 3-SAT≤" 𝑘-Independent Set
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3-SAT ≤𝒑 𝒌-Independent Set

45

polynomial time

polynomial time

polynomial-time reduction

Map instances of problem 
𝑨 to instances of 𝑩

Map solutions of problem 
𝑩 to solutions of 𝑨

𝑘-independent set3-SAT

𝑥 = true
𝑦 = false
𝑧 = false
𝑢 = true



3-SAT ≤𝒑 𝒌-Independent Set
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𝑥 ∨ 𝑦 ∨ 𝑧 ∧ 𝑥 ∨ ,𝑦 ∨ 𝑦 ∧ 𝑢 ∨ 𝑦 ∨ ̅𝑧 ∧ 𝑧 ∨ �̅� ∨ 𝑢 ∧ (�̅� ∨ ,𝑦 ∨ ̅𝑧)

𝑥

𝑦𝑧

𝑥

(𝑦𝑦

𝑢

𝑦̅𝑧

𝑧

�̅�𝑢

(𝑢

(𝑦̅𝑧

For each clause, construct a triangle graph with its three variables as nodes
Add an edge between each node and its negation

Claim. There is a 𝑘-independent set in this graph if and only if 
there is a satisfying assignment

Let 𝑘 = number of clauses



3-SAT ≤𝒑 𝒌-Independent Set
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𝑥 ∨ 𝑦 ∨ 𝑧 ∧ 𝑥 ∨ ,𝑦 ∨ 𝑦 ∧ 𝑢 ∨ 𝑦 ∨ ̅𝑧 ∧ 𝑧 ∨ �̅� ∨ 𝑢 ∧ (�̅� ∨ ,𝑦 ∨ ̅𝑧)

𝑥

𝑦𝑧

𝑥

(𝑦𝑦

𝑢

𝑦̅𝑧

𝑧

�̅�𝑢

(𝑢

(𝑦̅𝑧

Suppose there is a 𝑘-independent set 𝑆 in this graph 𝐺
• By construction of 𝐺, at most one node from each triangle is in 𝑆
• Since 𝑆 = 𝑘 and there are 𝑘 triangles, each triangle contributes one node
• If a variable 𝑥 is selected in one triangle, then �̅� is never selected in another 

triangle (since each variable is connected to its negation)
• There are no contradicting assignments, so can set variable chosen in each 

triangle to “true”; satisfying assignment by construction

𝑥 = true
𝑦 = false
𝑧 = false
𝑢 = true



3-SAT ≤𝒑 𝒌-Independent Set
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𝑥 ∨ 𝑦 ∨ 𝑧 ∧ 𝑥 ∨ ,𝑦 ∨ 𝑦 ∧ 𝑢 ∨ 𝑦 ∨ ̅𝑧 ∧ 𝑧 ∨ �̅� ∨ 𝑢 ∧ (�̅� ∨ ,𝑦 ∨ ̅𝑧)

𝑥

𝑦𝑧

𝑥

(𝑦𝑦

𝑢

𝑦̅𝑧

𝑧

�̅�𝑢

(𝑢

(𝑦̅𝑧

Suppose there is a satisfying assignment to the formula
• At least one variable in each clause must be true
• Add the node to that variable to the set 𝑆
• There are 𝑘 clauses, so set 𝑆 has exactly 𝑘 nodes
• If we use 𝑥 in any clause, we will never use �̅�, so there are no edges among the 

nodes in 𝑆

𝑥 = true
𝑦 = false
𝑧 = false
𝑢 = true



3-SAT ≤𝒑 𝒌-Independent Set
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polynomial time

polynomial time

polynomial-time reduction

Map instances of problem 
𝑨 to instances of 𝑩

Map solutions of problem 
𝑩 to solutions of 𝑨

𝑘-independent set3-SAT

𝑥 = true
𝑦 = false
𝑧 = false
𝑢 = true

𝑘 = 3

𝑘 = 3



𝑘-Independent Set is NP-Complete

1. Show that it belongs to NP
2. Show it is NP-Hard
– Show 3-SAT≤" 𝑘-independent set
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• Next example:  k-Vertex Cover

• Remember?
–We did the following reduction in an earlier slide set!

k-Independent Set ≤N k-Vertex Cover

–We just showed k-Independent Set is NP-C
–Therefore…. (you know, right?)
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Max Independent Set ≤8 k-Vertex Cover
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𝑂(1) time

𝑂 𝑉 time

Reduction

Map instances of problem 
𝑨 to instances of 𝑩

Map solutions of problem 
𝑩 to solutions of 𝑨

𝑘-independent set 𝑘-vertex cover

value 𝑘



𝑘-Vertex Cover is NP-Complete
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1. Show that it belongs to NP
– Given a candidate cover, check that every edge is covered

2. Show it is NP-Hard
– Show 𝑘-independent set≤" 𝑘-vertex cover
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Wrap Up and Reminders
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Why Prove NP-Completeness?

• Though nobody has proven that P ≠ NP, if you prove a problem 
NP-Complete, most people accept that it is probably exponential

• Therefore it can be important for you to prove that a problem is 
NP-Complete
– Don't need to try to come up perfect non-exponential algorithm
– Can instead work on approximation algorithms



What’s a poor salesperson to do?

http://xkcd.com/399/



Approximation Algorithms

• Look at first 3 pages of Ch. 35 of CLRS textbook
• Can we find an algorithm for problem A Î NP-C that:
– Runs in polynomial time
– Gets “near optimal” results

• Prove some bound on the algorithm’s correctness in terms of the true 
optimal result
– No worse that (some factor) of optimal
– “It’s not always right (best), but it’s guaranteed to be this close.”



General Comments

• At least 3000 problems have been shown to be NP-Complete
– That number is from a non-recent report, so we might say that 

counts is a weak lower-bound on the true number found
– https://en.wikipedia.org/wiki/List_of_NP-complete_problems

including some popular games

• Some reductions are profound, some are comparatively easy, 
many are easy once the key insight is given

https://en.wikipedia.org/wiki/List_of_NP-complete_problems


Other NP-Complete Problems

• Hamilton Path/Cycle, Traveling Salesperson
• Subset-sum: Given a set of integers, does there exist a subset that adds 

up to some target T ?
• 0-1 knapsack: when weights not just integers
• Graph coloring: can a given graph be colored with k colors such that no 

adjacent vertices are the same color?
• Etc… 



Review (Again)

• A problem B is NP-complete
– if it is in NP and it is NP-hard.

• A problem B is NP-hard
– if every problem in NP is reducible to B.

• A problem A is reducible to a problem B if 
– there exists a polynomial reduction function T such that

• For every string x, 
• if x is a yes input for A, then T(x) is a yes input for B
• if x is a no input for A, then T(x) is a no input for B. 
• T can be computed in polynomially bounded time. 



“Consequences” of NP-Completeness

• NP-Complete the set of the“hardest” problems in NP, with these 
important properties:
– If any one NP-Complete problem can be solved in polynomial time…
– …then every  NP-Complete problem can be solved in polynomial time…
– …and in fact every problem in NP can be solved in polynomial time (which 

would show P = NP)
– Or, prove an exponential lower-bound for any single NP-C problem, then 

every NP-C problem is exponential

Therefore: solve (say) traveling salesperson problem in O(n100) time, you've
proved that P = NP.  Retire rich & famous!



What We Don’t Know: Open Questions

– Is it impossible to solve an NP-c problem in polynomial time?
• No one has proved an exponential lower bound for any problem in NP.
• But, most computer scientists believe such a lower bound exists for 

NP-c problems.

– Are all problems in NP tractable or intractable?
I.e., does P=NP or not?
• If someone found a polynomial solution to any

NP-c problem, we’d know P = NP.
• But, most computer scientists believe P≠ NP.


