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Today’s Keywords

• Reductions
• P vs NP
• NP Hard, NP Completeness
• k-Independent Set
• k-Vertex Cover
• 3SAT
• k-Clique
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Reductions

(We’re about to get interested in problems that 
seem to require exponential time…)
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Max-flow vs. Edge-disjoint paths
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• These two problems are “related”
– Here we’re saying: if you can solve Max-flow, you can solve Edge-disjoint 

path
• Alternatively, we can say that one problem reduces to the other
– The problem of finding Edge-disjoint paths reduces to the problem of 

finding max-flow
– Maybe this reduction requires some work to “convert”

• Could be nothing or minimal
– For these problems, the cost of the conversion is hopefully small (more on 

this in a moment).



Reduction

5

• A reduction is a transformation of one problem into another 
problem
– Edge-disjoint paths is reducible to max-flow because we can use max-flow 

to solve it
– Formally, problem A is reducible to problem B if we can use a solution to B 

to solve A
• We’re particularly interested in reductions that happen fast!
– Meaning the work to do the conversion is fast (how fast?)

• If A is polynomial-time reducible to B, we denote this as:
A £p B

• If the conversion takes linear time, we might say 𝑨 ≤𝒏 𝑩



In General: A Reduction
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A problem we 
don’t know how to 
solve

A problem we do
know how to solve

Solution for 𝑩

𝐴

Solution for 𝑨

Reduction
Map Instances of problem 
𝑨 to Instances of 𝑩

Using any Algorithm for 𝑩

Map Solutions of problem 
𝑩 to Solutions of 𝑨

𝑅𝐵

𝐵

𝑅𝐴



In General: Reduction
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Problem we don’t
know how to solve

Problem we do know
how to solve

Solution for 𝑩

𝐴

Solution for 𝑨

Reduction
Map Instances of problem 
𝑨 to Instances of 𝑩

Using any Algorithm for 𝑩

Map Solutions of problem 
𝑩 to Solutions of 𝑨

𝑅𝐵

For now: we are NOT 
focusing on an algorithm 

to solve one of these, 
just on the reduction!

𝐵

𝑅𝐴



Total Runtime
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• The total runtime to solve A is:
– Convert(A->B): Time it takes to convert problem A into problem B
– Execute(B): Time it takes to execute algorithm to solve B
– Solve(B->A): Time to convert solution of B back to solution of A

• Total Runtime: Convert(A->B) + Execute(B) + Solve(B->A)

• Do you see why we want convert() and solve() to be FAST. We 
want the slowest part to be the actual algorithm that solves B if 
possible.



Relative Hardness
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Total Runtime: Convert(A->B) + Execute(B) + Solve(B->A)

• Generally, we want execute() to be the slowest term, we then can 
say 𝐴 ≤" 𝐵 where alpha is the runtime of convert() and solve()

• If Execute() IS the slowest part, then what does that mean about the 
relative difficulty of solving A versus B??
– It means that B is as hard or harder than A. Why?
– Because B provides an algorithm that solves A, so if algorithm to solve B 

gets faster, so does the algorithm that solves A.



Reductions and Hardness (again)
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Problem we don’t
know how to solve

Problem we do know
how to solve

Solution 
for 𝑩

𝐴

Solution for 𝑨

Reduction
Map Instances of problem 
𝑨 to Instances of 𝑩

Using any 
Algorithm for 𝑩

Map Solutions of problem 
𝑩 to Solutions of 𝑨

𝑅𝐵

Reduction cost: O(f(n))

𝐵

𝑅𝐴

𝑨 is not a harder problem than 𝑩
𝑨 ≤ 𝑩

If 𝑨 requires time 𝛀(𝒇 𝒏 ) time, then 𝑩 also requires 𝛀(𝒇 𝒏 ) time
𝑨 ≤𝒇(𝒏) 𝑩

Or we 
could have 

solved A 
faster using 
B’s solver!

Solve A using
B’s solver.

Cost: Cost of 
B’s solver 

plus O(f(n)) 
for reduction.



Reduction for Bipartite Matching
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• We have transformed (in polynomial time) a bipartite 
matching problem into a max flow problem

• Specifically, bipartite-matching ≤p max-flow
– Because we can transform bipartite matching to max-flow in 

polynomial time

• But is it the case that max-flow ≤p bipartite-matching?
– Not so much: a solution to bipartite matching does not help us with a 

non-bipartite graph
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Party Problem
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Draw edges between people who don’t get along.
Find the maximum number of people who get along.



Maximum Independent Set

• Independent set: 𝑆 ⊆ 𝑉 is an independent set if no two nodes 
in 𝑆 share an edge

• Maximum Independent Set Problem: Given a graph 𝐺 = (𝑉, 𝐸)
find the maximum independent set 𝑆
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Example
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Independent set of size 6



Generalized Baseball
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Generalized Baseball
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Need to place defenders 
on bases such that every 
edge is defended

What’s the fewest 
number of defenders 
needed?



Minimum Vertex Cover

• Vertex Cover: 𝐶 ⊆ 𝑉 is a vertex cover if every edge in 𝐸 has 
one of its endpoints in 𝐶

• Minimum Vertex Cover: Given a graph 𝐺 = (𝑉, 𝐸) find the 
minimum vertex cover 𝐶
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Example

19

Vertex cover of size 5



MaxIndSet≤-MinVertCov
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𝑂(𝑉)-reduces to   

Algorithm for B

can be used to make  

Algorithm for A

𝐵

𝑋𝑌

𝐴
Problem A

Problem B

If 𝑨 requires time 𝛀(𝒇 𝒏 ) time then 𝑩 also requires 𝛀(𝒇 𝒏 ) time
𝑨 ≤𝑽 𝑩

With 𝑂(𝑉) overhead



We need to build this Reduction
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𝐴 𝐵

Reduction

Relate Instances of MaxIndSet
to Instances of MinVertCov

Using any Algorithm 
for MinVertCov

Relate Solutions of MinVertCov to 
Solutions of MaxIndSet

𝑌𝑋

O(V) TimeMaxIndSet MinVertCov

Solution for MinVertCovSolution for MaxIndSet



Reduction Idea
𝑆 is an independent set of 𝐺 iff 𝑉 − 𝑆 is a vertex cover of 𝐺
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Independent Set
Vertex Cover



Reduction Idea
𝑆 is an independent set of 𝐺 iff 𝑉 − 𝑆 is a vertex cover of 𝐺
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Independent SetVertex Cover



Proof: ⇒
𝑆 is an independent set of 𝐺 iff 𝑉 − 𝑆 is a vertex cover of 𝐺
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Let 𝑆 be an independent set

Consider any edge 𝑥, 𝑦 ∈ 𝐸

If 𝑥 ∈ 𝑆 then 𝑦 ∉ 𝑆, because o.w. 𝑆 would not be an 
independent set

Therefore 𝑦 ∈ 𝑉 − 𝑆, so edge (𝑥, 𝑦) is covered by 𝑉 − 𝑆



Proof: ⇐
𝑆 is an independent set of 𝐺 iff 𝑉 − 𝑆 is a vertex cover of 𝐺
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Let V − 𝑆 be a vertex cover

Consider any edge 𝑥, 𝑦 ∈ 𝐸

At least one of 𝑥 and 𝑦 belong to 𝑉 − 𝑆, because V − 𝑆 is a 
vertex cover

Therefore 𝑥 and 𝑦 are not both in 𝑆, 
No edge has both end-nodes in 𝑆, thus 𝑆 is an independent set 



MaxVertCov 𝑉-Time Reducible to MinIndSet
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MaxIndSet MinVertCov

Solution for MinVertCov

𝐴 𝐵

Solution for MaxIndSet

Reduction

Do nothing

Using any Algorithm 
for MinVertCov

Take complement of solution

𝑌𝑋

O(V) Time
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𝐴 𝐵

Reduction

Do nothing

Take complement of solution

𝑌𝑋

O(V) Time

Using any Algorithm 
for MaxIndSet

MaxIndSet
MinVertCov

Solution for MinVertCov Solution for MaxIndSet

MaxVertCov 𝑉-Time Reducible to MinIndSet



Corollary

28

𝐴 𝐵

Reduction

Do nothing

Using any 
Algorithm for 
MinIndSet

Take complement of solution

𝑌𝑋

O(V) Time

If Solving 𝑨 was 
always slow

Then this 
shows solving 
𝑩 is also slow

MaxIndSet MinVertCov

Solution for MinVertCovSolution for MaxIndSet



Corollary
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𝐴 𝐵

Reduction

Do nothing

Take complement of solution

𝑌𝑋

O(V) Time

Using any 
Algorithm for 
MaxVertCovIf Solving 𝑨 was 

always slow

Then this 
shows solving 
𝑩 is also slow

MaxIndSet
MinVertCov

Solution for MinVertCov Solution for MaxIndSet



Conclusion

• MaxIndSet and MinVertCov are either both fast, or both slow
– Spoiler alert: We don’t know which!
• (But we think they’re both slow)

– Both problems are NP-Complete
• Next time!
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