NP-Completeness

CS 4102: Algorithms Spring 2022 Robbie Hott and Tom Horton

Today's Keywords

- Reductions
- P vs NP
- NP Hard, NP Completeness
- k-Independent Set
- k-Vertex Cover
- 3SAT
- k-Clique

Reductions

(We're about to get interested in problems that seem to require exponential time...)

Max-flow vs. Edge-disjoint paths

- These two problems are "related"
 - Here we're saying: if you can solve <u>Max-flow</u>, you can solve <u>Edge-disjoint</u>
 <u>path</u>
- Alternatively, we can say that one problem *reduces* to the other
 - The problem of finding Edge-disjoint paths *reduces to* the problem of finding max-flow
 - Maybe this *reduction* requires some work to "convert"
 - Could be nothing or minimal
 - For these problems, the cost of the conversion is *hopefully small (more on this in a moment)*.

Reduction

- A *reduction* is a transformation of one problem into another problem
 - Edge-disjoint paths is reducible to max-flow because we can use max-flow to solve it
 - Formally, problem A is *reducible* to problem B if we can use a solution to B to solve A
- We're particularly interested in reductions that happen fast! — Meaning the work to do the conversion is fast (how fast?)
- If A is *polynomial-time reducible* to B, we denote this as:
 A ≤_p B
- If the conversion takes linear time, we might say $A \leq_n B$

In General: A Reduction

In General: Reduction

Total Runtime

- The total runtime to solve A is:
 - Convert(A->B): Time it takes to convert problem A into problem B
 - **Execute(B)**: Time it takes to execute algorithm to solve B
 - **Solve(B->A)**: Time to convert solution of B back to solution of A
- Total Runtime: Convert(A->B) + Execute(B) + Solve(B->A)
- Do you see why we want convert() and solve() to be FAST. We want the slowest part to be the actual algorithm that solves B if possible.

Relative Hardness

Total Runtime: Convert(A->B) + Execute(B) + Solve(B->A)

- Generally, we want execute() to be the slowest term, we then can say $A \leq_{\alpha} B$ where alpha is the runtime of convert() and solve()
- If Execute() IS the slowest part, then what does that mean about the relative difficulty of solving A versus B??
 - It means that B is as hard or harder than A. Why?
 - Because B provides an algorithm that solves A, so if algorithm to solve B gets faster, so does the algorithm that solves A.

Reductions and Hardness (again)

Reduction for Bipartite Matching

- We have transformed (in polynomial time) a bipartite matching problem into a max flow problem
- Specifically, bipartite-matching \leq_p max-flow
 - Because we can transform bipartite matching to max-flow in polynomial time
- But is it the case that max-flow \leq_p bipartite-matching?
 - Not so much: a solution to bipartite matching does not help us with a non-bipartite graph

Party Problem

Draw edges between people who don't get along. Find the maximum number of people who get along.

Maximum Independent Set

- Independent set: S ⊆ V is an independent set if no two nodes in S share an edge
- Maximum Independent Set Problem: Given a graph G = (V, E) find the maximum independent set S

Generalized Baseball

Generalized Baseball

Need to place defenders on bases such that every edge is defended

What's the fewest number of defenders needed?

Minimum Vertex Cover

- Vertex Cover: C ⊆ V is a vertex cover if every edge in E has one of its endpoints in C
- Minimum Vertex Cover: Given a graph G = (V, E) find the minimum vertex cover C

Example

$MaxIndSet \leq_V MinVertCov$

If A requires time $\Omega(f(n))$ time then B also requires $\Omega(f(n))$ time $A \leq_V B$

We need to build this Reduction

Reduction Idea

S is an independent set of G iff V - S is a vertex cover of G

Reduction Idea

S is an independent set of G iff V - S is a vertex cover of G

Proof: ⇒

S is an independent set of G iff V - S is a vertex cover of G

Let *S* be an independent set

Consider any edge $(x, y) \in E$

If $x \in S$ then $y \notin S$, because o.w. S would not be an independent set

Therefore $y \in V - S$, so edge (x, y) is covered by V - S

Proof: ←

At least one of x and y belong to V - S, because V - S is a vertex cover

Therefore x and y are not both in S, No edge has both end-nodes in S, thus S is an independent set

MaxVertCov V-Time Reducible to MinIndSet

MaxVertCov V-Time Reducible to MinIndSet

Corollary

- MaxIndSet and MinVertCov are either both fast, or both slow
 - Spoiler alert: We don't know which!
 - (But we think they're both slow)
 - Both problems are NP-Complete
 - Next time!