Network Flow

Question: What is the
maximum throughput of the
railroad network?

Railway map of Western USSR, 1955

Today’s Keywords

* Max Flow, Min Cut
* Reductions

* Bipartite Matching
* Vertex Cover

* Independent Set

* CLRS Chapter 34

Flow Network

Graph G = (V,E)

Source node s € IV
eV

Edge Capacities c(e) € Positive Real numbers :

Max flow intuition: If s is a faucet, t is a drain, and s connects to t
through a network of pipes with given capacities, what is the
maximum amount of water which can flow from the faucet to the
drain?

Assignment of values to edges
- fle)=n
— Amount of water going through that pipe
Capacity constraint
— f(e) =c(e)
— Flow cannot exceed capacity
Flow constraint
— Vv eV —{s,t}, inflow(v) = outflow(v)
— inflow(v) = ey f(x, V)

— outflow(v) = Yyey f(v,X)
— Water going in must match water coming out

Flow of G: |f| = outflow(s) — inflow(s)
— Net outflow of s
3 in example above

Flow/Capacity

e Of all valid flows through the graph, find the one which
maximizes:

— |f| = outflow(s) — inflow(s)

Residual Graph G

* Keep track of net available flow along each edge

* Forward edges: weight is equal to available flow along that edge in the flow
graph Flow | could add

— w(e) =c(e) — f(e)
* Back edges: weight is equal to flow along that edge in the flow graph
— w(e) = f(e) Flow | could remove

Residual Graph Gf

N\
No—

Flow Graph G

b

Ford Fulkerson: example

Residual Graph Gf

Flow Graph G

<

Add flow of 1 to this path

Ford Fulkerson: example

Residual Graph Gf

Flow Graph G

Add flow of 1 to this path

Ford Fulkerson: example

Residual Graph Gf

Flow Graph G

Add flow of 1 to this path

Ford Fulkerson: example

Residual Graph Gf

Flow Graph G

Ford-Fulkerson Running Time

Define an augmenting path to be an s — t path in the residual graph G¢ (using edges of
non-zero weight)

Ford-Fulkerson max-flow algorithm:
* |nitialize f(e) = 0foralle € E
* Construct the residual network Gy

* While there is an augmenting path p in G¢:
* letc= melgl cr(e) (cr(e) is the weight of edge e in the residual network Gr)
e

* Add c units of flow to G based on the augmenting path p
* Update the residual network G¢ for the updated flow

Initialization: O (|E|)

11

Ford-Fulkerson Running Time

Define an augmenting path to be an s — t path in the residual graph G¢ (using edges of
non-zero weight)

Ford-Fulkerson max-flow algorithm:
* |Initialize f(e) = 0foralle € E
* Construct the residual network Gy

* While there is an augmenting path p in G¢:
* letc= melgl cr(e) (cr(e) is the weight of edge e in the residual network Gr)
e

* Add c units of flow to G based on the augmenting path p
* Update the residual network G¢ for the updated flow

Initialization: O (|E|)
Construct residual network: O(|E|)

12

Ford-Fulkerson Running Time

Define an augmenting path to be an s — t path in the residual graph G¢ (using edges of
non-zero weight)

Ford-Fulkerson max-flow algorithm:
* Initialize f(e) = 0foralle € E
* Construct the residual network Gy

* While there is an augmenting path p in G¢:
* letc= melgl cr(e) (cr(e) is the weight of edge e in the residual network Gr)
e

* Add c units of flow to G based on the augme

* Update the residual network G for the upda We only care about nodes reachable from
the source s (so the number of nodes

Initialization: O (lE D that are “relevant” is at most |E)
Construct residual network: O(|E|)

Finding augmenting path in residual network: O(|E|) using BFS/DFS .

Ford-Fulkerson Running Time

Define an augmenting path to be an s — t path in the residual graph G¢ (using edges of
non-zero weight)

How many iterations are needed?
For integer-valued capacities, min-weight of each augmenting path is 1, so
number of iterations is bounded by |f*|, where |f*| is max-flow in G
For rational-valued capacities, can scale to make capacities integer
For irrational-valued capacities, algorithm may never terminate!

Initialization: O (|E|)
Construct residual network: O(|E|)
Finding augmenting path in residual network: O(|E|) using BFS/DFS

Ford-Fulkerson Running Time

Define an augmenting path to be an s — t path in the residual graph G¢ (using edges of
non-zero weight)

Ford-Fulkerson max-flow algorit e with - . .
- Initialize f(e) = 0 for all ¢ For graphs with integer capacities, running time

. Construct the residual ne RSRECERLLIE S NE
 While there is an augmen 0(|f*| ’ |E|)

* letc=minc(e) (cr Highly undesirable if [f*| > |E| (e.g., graph is
e
e Add c units of flow to IEUER IR EIA - I R Ak

* Update the residual n
Initialization: O(|E|) As described, algorithm is not polynomial-time!

Construct residual network: @
Finding augmenting path in residual network: O(|E|) using BFS/DFS

Worst-Case Ford-Fulkerson

Worst-Case Ford-Fulkerson

Increase flow by 1 unit

17

Worst-Case Ford-Fulkerson

Increase flow by 1 unit

18

Worst-Case Ford-Fulkerson

Worst-Case Ford-Fulkerson

Increase flow by 1 unit

20

Worst-Case Ford-Fulkerson

Increase flow by 1 unit

21

Worst-Case Ford-Fulkerson

22

Worst-Case Ford-Fulkerson

Observation: each iteration increases flow by 1 unit
Total number of iterations: |f*| = 200

23

Can We Avoid this?

 Edmonds-Karp Algorithm: choose augmenting path with

fewest hops
* Running time: ©(min(|E1f|, V]| ") [SNAAAE
Ford-Fulkerson max-flow algorithm:

* Initialize f(e) =0foralle € E Efjm%r;gst"(?_rpdz Ford'F“tl_kerSO't‘h
. usin O TIind augmentin d
e Construct the residual network Gf £ £ 5P

* While there is an augmenting path in Gy, let p be the path with fewest hops:
* letc= melg cr(e) (cr(e) is the weight of edge e in the residual network Gy)
e

* Add c units of flow to G based on the augmenting path p
* Update the residual network G¢ for the updated flow

Proof: See CLRS (Chapter 26.2) 24

Showing Correctness of Ford-Fulkerson

* Consider cuts which separate s and ¢
—Letse S, tel,st.V=5UT

* Costofcut(S,7)=||S,T|
— Sum capacities of edges which go from S to T
— This example: 5

25

Maxtlow<MinCut

 Max flow upper bounded by any cut separating s and

 Why? “Conservation of flow”
— All flow exiting s must eventually get to
— To get from s to ¢, all “tanks” must cross the cut

* Conclusion: If we find the minimum-cost cut, we’ve found the
maximum flow

— < minl|S, T
mJQXIfI_Ingnll , T

26

Maxtlow/Mincut Theorem

e To show Ford-Fulkerson is correct:

— Show that when there are no more augmenting paths, there is a cut
with cost equal to the flow

* Conclusion: the maximum flow through a network matches the
minimum-cost cut

—max|f| = min ||S,T
ax|f| = min |15, 7]

* Duality

— When we’ve maximized max flow, we’ve minimized min cut (and vice-
versa), so we can check when we’ve found one by finding the other

27

Example: Maxflow/Mincut

Flow Graph G Residual Graph Gf

No Augmenting Paths

15, T|| = 4

ldea: When there are no more augmenting paths, there
exists a cut in the graph with cost matching the flow .. 2

Proof: Maxflow/Mincut Theorem

* If |f]is a max flow, then G¢ has no augmenting path
— Otherwise, use that augmenting path to “push” more flow

 Define S = nodes reachable from source node s by positive-weight
edges in the residual graph

—T=V-=5
— S separates s, ¢ (otherwise there’s an augmenting path)

Residual Graph Gf
Flow Graph G

29

Proof: Maxflow/Mincut Theorem

* To show: HS,TH = |f]|

— Weight of the cut matches the flow across the cut
* Consider edge (u,v)withu e S, veT

— f(u,v) = c(u,v), because otherwise w(u, v) > 0 in G¢, which would meanv € S
* Consideredge (v, x)withyeT,x €S

— f(y,x) = 0, because otherwise the back edge w(y,x) > 0 in Gy,

which would meany € §
Residual Graph G¢

Flow Graph G %

Proof Summary

The flow |f| of G is upper-bounded by the sum of capacities of edges crossing
any cut separating source s and sink

When Ford-Fulkerson terminates, there are no more augmenting paths in G¢

When there are no more augmenting paths in G¢ then we can define a cut
S = nodes reachable from source node s by posmve -weight edges in the
residual graph

The sum of edge capacities crossing this cut must match the flow of the graph

Therefore this flow is maximal

31

Divide and Conguer™

:ili=

* Divide:
— Break the problem into multiple subproblems, each smaller instances of
the original

* Conquer:
— |f the suproblems are “large”:
* Solve each subproblem recursively

— |f the subproblems are “small”:
e Solve them directly (base case)

* Combine:
— Merge together solutions to subproblems ﬁ

*CLRS Chapter 4

Dynamic Programming

* Requires Optimal Substructure
— Solution to larger problem contains the solutions to smaller ones
* |dea:

1. Identify recursive structure of the problem
2. Select a good order for solving subproblems

e Usually smallest problem first

33

Greedy Algorithms

* Require Optimal Substructure
— Solution to larger problem contains the solution to a smaller one

— Only one subproblem to consider!

* |dea:
1. Identify a greedy choice property

* How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain

34

* Divide and Conquer, Dynamic Programming, Greedy

— Take an instance of Problem A, relate it to smaller instances of
Problem A

* Next:

— Take an instance of Problem A, relate it to an instance of Problem B

35

Edge-Disjoint Paths

Given a graph G = (V,E), astart node s and a
destination node t, give the maximum number of paths
from s to t which share no edges

36

Edge-Disjoint Paths

Given a graph G = (V,E), astart node s and a
destination node t, give the maximum number of paths
from s to t which share no edges

Set of edge-disjoint paths of size 3

37

Edge-Disjoint Paths

Given a graph G = (V,E), astart node s and a
destination node t, give the maximum number of paths
from s to t which share no edges

Set of edge-disjoint paths of size 4

38

Edge-Disjoint Paths Algorithm

Make s and t the source and sink, give each edge capacity 1, find the max flow.

Set of edge-disjoint paths of size 4

Max flow =4

39

Vertex-Disjoint Paths

Given a graph G = (V,E), astart node s and a
destination node t, give the maximum number of paths
from s to t which share no vertices

40

Vertex-Disjoint Paths

Given a graph ¢ = (V, E), a start node s and a destination node t, give the
maximum number of paths from s to £ which share no vertices

Not a vertex-disjoint path!

41

Vertex-Disjoint Paths Algorithm

Idea: Convert an instance of the vertex-disjoint paths problem into an instance
of edge-disjoint paths
Make two copies of each node, one connected to incoming edges, the other to

outgoing edges
Compute Edge-Disjoint Paths on new graph

Restricts to 1

42

Maximum Bipartite Matching

Dog Lovers Dogs

43

Maximum Bipartite Matching

Dog Lovers Dogs

44

Maximum Bipartite Matching

Dog Lovers Dogs

45

Maximum Bipartite Matching

Given agraph G = (L,R, E)
a set of left nodes, right nodes, and edges between left and right

Find the largest set of edges M € E such that each nodeu € L
or v € R is incident to at most one edge.

46

Maximum Bipartite Matching Using Max Flow

Make G = (L, R, E) a flow network G' = (V',E") by:
 Addingin a source and sink to the set of nodes:
— V' =LURU {s,t}
 Adding an edge from source to L and from R to
sink:
— E'=EuUf{uel](s, u)}U{vErI(v t)}
 Make each edge capacity 1:

— Ve€eE' cle)=1

47

Maximum Bipartite Matching Using Max Flow

, O(E - V)
1. Make G into G O(L + R)

2. Compute Max Flowon G' e v) |fl<L
3. Return M as all “middle” edges with flow 1 ew+r)

48

e Algorithm technique of supreme ultimate power
* Convert instance of problem A to an instance of Problem B
* Convert solution of problem B back to a solution of problem A

49

Shows how two different problems relate to each other

HIS MIND IS THESULTIMATE WEAPON

B
"..l-{

. -

ln»

i’#(
¥ \

-‘ A
m | . ' 50
\ - L

MacGyver's Reduction

Problem we don’t know how to solve

Opening a door

Solution for 4

Keg cannon
battering ram

Aim duct at door,
insert keg

Problem we do know how to solve

B

Lighting a fire

\ ’L r/\r/ ' \)'
Yol i
/,)~<‘ ‘%%Qw'(t)&

Put fire under the Keg

Reduction

Solution for B

Alcohol, wood,
matches

51

Bipartite Matching Reduction

Problem we don’t know how to solve Problem we do know how to solve
Bipartite Matching Max Elow
e

Ford erson

Solution for B
47N

Must show (prove):
1) how to make construction

Reduction
\I\Z) Why it works

52

INn General: Reduction

Problem we don’t know how to solve Problem we do know how to solve
Map Instances of problem A to
Instances of B
» B
\
e I

. : Using any Algorithm
Injective: any instance of A for B

can be mapped to some
instance of B.
o j
Map Solutions of problem B to
Solutions of A

Solution for A _
Solution for B

Y

Reduction

53

Worst-case lower-bound Proofs

Opening a door Lighting a fire
\ ‘ Y {)
reduces to B 'm ﬁ'}/
PRI A
Problem B

Problem A

Alcohol, wood, Keg cannon
matches battering ram
Vv can be used
to make
Y Algorithm for B Algorithm forA £

A is not a harder problem than B
A<B

The name “reduces” is confusing: it is in the opposite direction of the making

Proof of Lower Bound by Reduction

To Show: Y is slow

1. We know X is slow (by a proof)
(e.g., X = some way to open the door)

2. Assume Y is quick [toward contradiction]
(Y = some way to light a fire)

3. Show how to use Y to perform X quickly

4. X'is slow, but Y could be used to perform X quickly
conclusion: Y must not actually be quick

