Network Flow

Question: What is the maximum throughput of the railroad network?

Today's Keywords

- Max Flow, Min Cut
- Reductions
- Bipartite Matching
- Vertex Cover
- Independent Set

• CLRS Chapter 34

Flow Network

Graph G = (V, E)Source node $s \in V$ Sink node $t \in V$ Edge Capacities $c(e) \in Positive Real numbers$

Max flow intuition: If *s* is a faucet, *t* is a drain, and *s* connects to *t* through a network of pipes with given capacities, what is the maximum amount of water which can flow from the faucet to the drain?

Flow

- Assignment of values to edges
 - -f(e)=n
 - Amount of water going through that pipe
- Capacity constraint
 - $f(e) \le c(e)$
 - Flow cannot exceed capacity
- Flow constraint
 - $\forall v \in V \{s, t\}, inflow(v) = outflow(v)$
 - $inflow(v) = \sum_{x \in V} f(x, v)$
 - $outflow(v) = \sum_{x \in V} f(v, x)$
 - Water going in must match water coming out
- Flow of G: |f| = outflow(s) inflow(s)
 - Net outflow of s

3 in example above

• Of all valid flows through the graph, find the one which maximizes:

$$-|f| = outflow(s) - inflow(s)$$

Residual Graph G_f

- Keep track of net available flow along each edge
- Forward edges: weight is equal to available flow along that edge in the flow graph
 Flow I could add

$$-w(e) = c(e) - f(e)$$

- Back edges: weight is equal to flow along that edge in the flow graph
 - -w(e) = f(e) Flow I could remove

6

Residual Graph G_f

Flow Graph G

Add flow of 1 to this path

Residual Graph G_f

Flow Graph G

Add flow of 1 to this path

Residual Graph G_f

Flow Graph G

Add flow of 1 to this path

Residual Graph G_f

Flow Graph G

Define an augmenting path to be an $s \rightarrow t$ path in the residual graph G_f (using edges of non-zero weight)

Ford-Fulkerson max-flow algorithm:

- Initialize f(e) = 0 for all $e \in E$
- Construct the residual network G_f
- While there is an augmenting path p in G_f :
 - Let $c = \min_{e \in E} c_f(e)$ ($c_f(e)$ is the weight of edge e in the residual network G_f)
 - Add *c* units of flow to *G* based on the augmenting path *p*
 - Update the residual network G_f for the updated flow

Initialization: O(|E|)

Define an augmenting path to be an $s \rightarrow t$ path in the residual graph G_f (using edges of non-zero weight)

Ford-Fulkerson max-flow algorithm:

- Initialize f(e) = 0 for all $e \in E$
- Construct the residual network G_f
- While there is an augmenting path p in G_f :
 - Let $c = \min_{e \in E} c_f(e)$ ($c_f(e)$ is the weight of edge e in the residual network G_f)
 - Add *c* units of flow to *G* based on the augmenting path *p*
 - Update the residual network G_f for the updated flow

Initialization: O(|E|)

Construct residual network: O(|E|)

Define an augmenting path to be an $s \rightarrow t$ path in the residual graph G_f (using edges of non-zero weight)

Ford-Fulkerson max-flow algorithm:

- Initialize f(e) = 0 for all $e \in E$
- Construct the residual network G_f
- While there is an augmenting path p in G_f :
 - Let $c = \min_{e \in E} c_f(e) (c_f(e))$ is the weight of edge e in the residual network G_f)
 - Add *c* units of flow to *G* based on the augme
 - Update the residual network G_{f} for the upda

Initialization: O(|E|)

Construct residual network: O(|E|)

Finding augmenting path in residual network: O(|E|) using BFS/DFS

We only care about nodes reachable from the source s (so the number of nodes that are "relevant" is at most |E|)

13

Define an augmenting path to be an $s \rightarrow t$ path in the residual graph G_f (using edges of non-zero weight)

How many iterations are needed?

- For integer-valued capacities, min-weight of each augmenting path is 1, so number of iterations is bounded by $|f^*|$, where $|f^*|$ is max-flow in G
- For rational-valued capacities, can scale to make capacities integer
- For irrational-valued capacities, algorithm may never terminate!

Initialization: O(|E|)

Construct residual network: O(|E|)

Finding augmenting path in residual network: O(|E|) using BFS/DFS

Define an augmenting path to be an $s \rightarrow t$ path in the residual graph G_f (using edges of non-zero weight)

Ford-Fulkerson max-flow algorith

- Initialize f(e) = 0 for all e
- Construct the residual net
- While there is an augmen
 - Let $c = \min_{e \in E} c_f(e)$ (c_f
 - Add *c* units of flow to
 - Update the residual n

Initialization: O(|E|)

Construct residual network:

For graphs with integer capacities, running time of Ford-Fulkerson is

 $O(|f^*| \cdot |E|)$ Highly undesirable if $|f^*| \gg |E|$ (e.g., graph is small, but capacities are $\approx 2^{32}$)

As described, algorithm is <u>not</u> polynomial-time!

Finding augmenting path in residual network: O(|E|) using BFS/DFS

Increase flow by 1 unit

Increase flow by 1 unit

Increase flow by 1 unit

Increase flow by 1 unit

Observation: each iteration increases flow by 1 unit **Total number of iterations:** $|f^*| = 200$

Can We Avoid this?

- Edmonds-Karp Algorithm: choose augmenting path with fewest hops
- Running time: $\Theta(\min(|E||f^*|, |V||E|^2))$

Ford-Fulkerson max-flow algorithm:

- Initialize f(e) = 0 for all $e \in E$
- Construct the residual network G_f
- While there is an augmenting path in G_f , let p be the path with fewest hops:
 - Let $c = \min_{e \in E} c_f(e)$ ($c_f(e)$ is the weight of edge e in the residual network G_f)
 - Add *c* units of flow to *G* based on the augmenting path *p*
 - Update the residual network G_f for the updated flow

Proof: See CLRS (Chapter 26.2)

How to find this? Use breadth-first search (BFS)!

Edmonds-Karp = Ford-Fulkerson using BFS to find augmenting path

Showing Correctness of Ford-Fulkerson

Consider cuts which separate s and t

- Let $s \in S$, $t \in T$, s.t. $V = S \cup T$

- Cost of cut (S, T) = ||S, T||
 - Sum capacities of edges which go from S to T
 - This example: 5

Maxflow < MinCut

- Max flow upper bounded by any cut separating *s* and *t*
- Why? "Conservation of flow"
 - All flow exiting s must eventually get to t
 - To get from s to t, all "tanks" must cross the cut
- Conclusion: If we find the minimum-cost cut, we've found the maximum flow

Maxflow/Mincut Theorem

- To show Ford-Fulkerson is correct:
 - Show that when there are no more augmenting paths, there is a cut with cost equal to the flow
- Conclusion: the maximum flow through a network matches the minimum-cost cut

$$-\max_{f}|f| = \min_{S,T} ||S,T||$$

- Duality
 - When we've maximized max flow, we've minimized min cut (and viceversa), so we can check when we've found one by finding the other

Example: Maxflow/Mincut

Idea: When there are no more augmenting paths, there exists a cut in the graph with cost matching the flow 28

Proof: Maxflow/Mincut Theorem

- If |f| is a max flow, then G_f has no augmenting path
 - Otherwise, use that augmenting path to "push" more flow
- Define S = nodes reachable from source node s by positive-weight edges in the residual graph
 - -T = V S
 - -S separates s, t (otherwise there's an augmenting path)

29

Proof: Maxflow/Mincut Theorem

- To show: ||S, T|| = |f|
 - Weight of the cut matches the flow across the cut
- Consider edge (u, v) with $u \in S$, $v \in T$

- f(u, v) = c(u, v), because otherwise w(u, v) > 0 in G_f , which would mean $v \in S$

- Consider edge (y, x) with $y \in T, x \in S$
 - f(y, x) = 0, because otherwise the back edge w(y, x) > 0 in G_f , which would mean $y \in S$

30

Proof Summary

- 1. The flow |f| of G is upper-bounded by the sum of capacities of edges crossing any cut separating source s and sink t
- 2. When Ford-Fulkerson terminates, there are no more augmenting paths in G_f
- 3. When there are no more augmenting paths in G_f then we can define a cut S = nodes reachable from source node s by positive-weight edges in the residual graph
- 4. The sum of edge capacities crossing this cut must match the flow of the graph
- 5. Therefore this flow is maximal

Divide and Conquer*

Divide: — Break the problem into multiple subproblems, each smaller instances of

the original

• Conquer:

- If the suproblems are "large":
 - Solve each subproblem recursively
- If the subproblems are "small":
 - Solve them directly (base case)
- Combine:
 - Merge together solutions to subproblems

Dynamic Programming

- Requires Optimal Substructure
 - Solution to larger problem contains the solutions to smaller ones
- Idea:
 - 1. Identify recursive structure of the problem
 - 2. Select a good order for solving subproblems
 - Usually smallest problem first

Greedy Algorithms

- Require Optimal Substructure
 - Solution to larger problem contains the solution to a smaller one
 - Only one subproblem to consider!
- Idea:
 - 1. Identify a greedy choice property
 - How to make a choice guaranteed to be included in some optimal solution
 - 2. Repeatedly apply the choice property until no subproblems remain

- Divide and Conquer, Dynamic Programming, Greedy
 - Take an instance of Problem A, relate it to smaller instances of Problem A
- Next:
 - Take an instance of Problem A, relate it to an instance of Problem B

Edge-Disjoint Paths

Given a graph G = (V, E), a start node s and a destination node t, give the maximum number of paths from s to t which share no edges

Edge-Disjoint Paths

Given a graph G = (V, E), a start node s and a destination node t, give the maximum number of paths from s to t which share no edges

Edge-Disjoint Paths

Given a graph G = (V, E), a start node s and a destination node t, give the maximum number of paths from s to t which share no edges

Edge-Disjoint Paths Algorithm

Make *s* and *t* the source and sink, give each edge capacity 1, find the max flow.

Vertex-Disjoint Paths

Given a graph G = (V, E), a start node s and a destination node t, give the maximum number of paths from s to t which share no vertices

Vertex-Disjoint Paths

Given a graph G = (V, E), a start node s and a destination node t, give the maximum number of paths from s to t which share no vertices

Vertex-Disjoint Paths Algorithm

Idea: Convert an instance of the vertex-disjoint paths problem into an instance of edge-disjoint paths

Make two copies of each node, one connected to incoming edges, the other to outgoing edges

Dog Lovers

Dogs

Dog Lovers

Dogs

Dog Lovers

Dogs

Given a graph G = (L, R, E)

a set of left nodes, right nodes, and edges between left and right Find the largest set of edges $M \subseteq E$ such that each node $u \in L$ or $v \in R$ is incident to at most one edge.

Maximum Bipartite Matching Using Max Flow

Make G = (L, R, E) a flow network G' = (V', E') by:

• Adding in a source and sink to the set of nodes:

 $- V' = L \cup R \cup \{s, t\}$

• Adding an edge from source to L and from R to sink:

 $- E' = E \cup \{u \in L \mid (s, u)\} \cup \{v \in r \mid (v, t)\}$

S

- Make each edge capacity 1:
 - $\forall e \in E', c(e) = 1$

Maximum Bipartite Matching Using Max Flow

- 1. Make G into $G' = \Theta(L+R)$
- 2. Compute Max Flow on $G' \quad \Theta(E \cdot V) \quad |f| \leq L$
- 3. Return *M* as all "middle" edges with flow 1 $\Theta(L+R)$

 $\Theta(E \cdot V)$

Reductions

- Algorithm technique of supreme ultimate power
- Convert instance of problem A to an instance of Problem B
- Convert solution of problem B back to a solution of problem A

Reductions

Shows how two different problems relate to each other

MacGyver's Reduction

Bipartite Matching Reduction

In General: Reduction

Problem we don't know how to solve

Solution for **A**

Problem we do know how to solve

Worst-case lower-bound Proofs

 $A \leq B$

The name "reduces" is confusing: it is in the *opposite* direction of the making

Proof of Lower Bound by Reduction

To Show: Y is slow

2. Assume Y is quick [toward contradiction](Y = some way to light a fire)

3. Show how to use *Y* to perform *X* quickly

4. *X* is slow, but *Y* could be used to perform *X* quickly conclusion: *Y* must not actually be quick