
Network Flow

1Railway map of Western USSR, 1955

Question: What is the 
maximum throughput of the 

railroad network?



Today’s Keywords

• Max Flow, Min Cut
• Reductions
• Bipartite Matching
• Vertex Cover
• Independent Set

• CLRS Chapter 34
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Flow Network

Graph 𝐺 = (𝑉, 𝐸)
Source node 𝑠 ∈ 𝑉
Sink node 𝑡 ∈ 𝑉
Edge Capacities 𝑐 𝑒 ∈ Positive Real numbers

Max flow intuition: If 𝑠 is a faucet, 𝑡 is a drain, and 𝑠 connects to 𝑡
through a network of pipes with given capacities, what is the 
maximum amount of water which can flow from the faucet to the 
drain?
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Flow

• Assignment of values to edges
– 𝑓 𝑒 = 𝑛
– Amount of water going through that pipe

• Capacity constraint
– 𝑓 𝑒 ≤ 𝑐(𝑒)
– Flow cannot exceed capacity

• Flow constraint
– ∀𝑣 ∈ 𝑉 − {𝑠, 𝑡}, 𝑖𝑛𝑓𝑙𝑜𝑤 𝑣 = 𝑜𝑢𝑡𝑓𝑙𝑜𝑤(𝑣)
– 𝑖𝑛𝑓𝑙𝑜𝑤 𝑣 = ∑!∈# 𝑓(𝑥, 𝑣)
– 𝑜𝑢𝑡𝑓𝑙𝑜𝑤 𝑣 = ∑!∈# 𝑓(𝑣, 𝑥)
– Water going in must match water coming out

• Flow of 𝐺: |𝑓| = 𝑜𝑢𝑡𝑓𝑙𝑜𝑤 𝑠 − 𝑖𝑛𝑓𝑙𝑜𝑤(𝑠)
– Net outflow of 𝑠
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Max Flow

• Of all valid flows through the graph, find the one which 
maximizes:
– 𝑓 = 𝑜𝑢𝑡𝑓𝑙𝑜𝑤 𝑠 − 𝑖𝑛𝑓𝑙𝑜𝑤(𝑠)
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Residual Graph 𝐺!
• Keep track of net available flow along each edge
• Forward edges: weight is equal to available flow along that edge in the flow 

graph 
– 𝑤 𝑒 = 𝑐 𝑒 − 𝑓(𝑒)

• Back edges: weight is equal to flow along that edge in the flow graph
– 𝑤 𝑒 = 𝑓(𝑒)
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Ford Fulkerson: example
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Ford Fulkerson: example
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Ford Fulkerson: example
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Ford Fulkerson: example
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Ford-Fulkerson Running Time
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Define an augmenting path to be an 𝑠 → 𝑡 path in the residual graph 𝐺$ (using edges of 
non-zero weight)

Ford-Fulkerson max-flow algorithm:
• Initialize 𝑓 𝑒 = 0 for all 𝑒 ∈ 𝐸
• Construct the residual network 𝐺$
• While there is an augmenting path 𝑝 in 𝐺$:

• Let 𝑐 = min
%∈'

𝑐$(𝑒) (𝑐$(𝑒) is the weight of edge 𝑒 in the residual network 𝐺$)
• Add 𝑐 units of flow to 𝐺 based on the augmenting path 𝑝
• Update the residual network 𝐺$ for the updated flow

Initialization: 𝑂 𝐸



Ford-Fulkerson Running Time
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Define an augmenting path to be an 𝑠 → 𝑡 path in the residual graph 𝐺$ (using edges of 
non-zero weight)

Ford-Fulkerson max-flow algorithm:
• Initialize 𝑓 𝑒 = 0 for all 𝑒 ∈ 𝐸
• Construct the residual network 𝐺$
• While there is an augmenting path 𝑝 in 𝐺$:

• Let 𝑐 = min
%∈'

𝑐$(𝑒) (𝑐$(𝑒) is the weight of edge 𝑒 in the residual network 𝐺$)
• Add 𝑐 units of flow to 𝐺 based on the augmenting path 𝑝
• Update the residual network 𝐺$ for the updated flow

Initialization: 𝑂 𝐸
Construct residual network: 𝑂 𝐸



Ford-Fulkerson Running Time
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Define an augmenting path to be an 𝑠 → 𝑡 path in the residual graph 𝐺$ (using edges of 
non-zero weight)

Ford-Fulkerson max-flow algorithm:
• Initialize 𝑓 𝑒 = 0 for all 𝑒 ∈ 𝐸
• Construct the residual network 𝐺$
• While there is an augmenting path 𝑝 in 𝐺$:

• Let 𝑐 = min
%∈'

𝑐$(𝑒) (𝑐$(𝑒) is the weight of edge 𝑒 in the residual network 𝐺$)
• Add 𝑐 units of flow to 𝐺 based on the augmenting path 𝑝
• Update the residual network 𝐺$ for the updated flow

Initialization: 𝑂 𝐸
Construct residual network: 𝑂 𝐸
Finding augmenting path in residual network: 𝑂 𝐸 using BFS/DFS

We only care about nodes reachable from 
the source 𝑠 (so the number of nodes 

that are “relevant” is at most 𝐸 )



Ford-Fulkerson Running Time
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Define an augmenting path to be an 𝑠 → 𝑡 path in the residual graph 𝐺$ (using edges of 
non-zero weight)

Ford-Fulkerson max-flow algorithm:
• Initialize 𝑓 𝑒 = 0 for all 𝑒 ∈ 𝐸
• Construct the residual network 𝐺$
• While there is an augmenting path 𝑝 in 𝐺$:

• Let 𝑐 = min
%∈'

𝑐$(𝑒) (𝑐$(𝑒) is the weight of edge 𝑒 in the residual network 𝐺$)
• Add 𝑐 units of flow to 𝐺 based on the augmenting path 𝑝
• Update the residual network 𝐺$ for the updated flow

Initialization: 𝑂 𝐸
Construct residual network: 𝑂 𝐸
Finding augmenting path in residual network: 𝑂 𝐸 using BFS/DFS

How many iterations are needed?
• For integer-valued capacities, min-weight of each augmenting path is 1, so 

number of iterations is bounded by 𝑓∗ , where 𝑓∗ is max-flow in 𝐺
• For rational-valued capacities, can scale to make capacities integer
• For irrational-valued capacities, algorithm may never terminate!



Ford-Fulkerson Running Time
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Define an augmenting path to be an 𝑠 → 𝑡 path in the residual graph 𝐺$ (using edges of 
non-zero weight)

Ford-Fulkerson max-flow algorithm:
• Initialize 𝑓 𝑒 = 0 for all 𝑒 ∈ 𝐸
• Construct the residual network 𝐺$
• While there is an augmenting path 𝑝 in 𝐺$:

• Let 𝑐 = min
%∈'

𝑐$(𝑒) (𝑐$(𝑒) is the weight of edge 𝑒 in the residual network 𝐺$)
• Add 𝑐 units of flow to 𝐺 based on the augmenting path 𝑝
• Update the residual network 𝐺$ for the updated flow

Initialization: 𝑂 𝐸
Construct residual network: 𝑂 𝐸
Finding augmenting path in residual network: 𝑂 𝐸 using BFS/DFS

For graphs with integer capacities, running time 
of Ford-Fulkerson is

𝑂 𝑓∗ ⋅ 𝐸
Highly undesirable if 𝑓∗ ≫ |𝐸| (e.g., graph is 
small, but capacities are ≈ 2<=)

As described, algorithm is not polynomial-time!



Worst-Case Ford-Fulkerson
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Worst-Case Ford-Fulkerson
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Worst-Case Ford-Fulkerson
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Worst-Case Ford-Fulkerson
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Worst-Case Ford-Fulkerson
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Worst-Case Ford-Fulkerson
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Worst-Case Ford-Fulkerson
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Worst-Case Ford-Fulkerson
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Can We Avoid this?

• Edmonds-Karp Algorithm: choose augmenting path with 
fewest hops

• Running time: Θ min 𝐸 𝑓∗ , 𝑉 𝐸 " = 𝑂 𝑉 𝐸 "

24

Ford-Fulkerson max-flow algorithm:
• Initialize 𝑓 𝑒 = 0 for all 𝑒 ∈ 𝐸
• Construct the residual network 𝐺$
• While there is an augmenting path in 𝐺$, let 𝑝 be the path with fewest hops:
• Let 𝑐 = min

%∈'
𝑐$(𝑒) (𝑐$(𝑒) is the weight of edge 𝑒 in the residual network 𝐺$)

• Add 𝑐 units of flow to 𝐺 based on the augmenting path 𝑝
• Update the residual network 𝐺$ for the updated flow

How to find this? 
Use breadth-first search (BFS)!

Edmonds-Karp = Ford-Fulkerson 
using BFS to find augmenting path

Proof: See CLRS (Chapter 26.2)



Showing Correctness of Ford-Fulkerson

• Consider cuts which separate 𝑠 and 𝑡
– Let 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇, s.t. 𝑉 = 𝑆 ∪ 𝑇

• Cost of cut 𝑆, 𝑇 = | 𝑆, 𝑇 |
– Sum capacities of edges which go from 𝑆 to 𝑇
– This example: 5
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Maxflow≤MinCut

• Max flow upper bounded by any cut separating 𝑠 and 𝑡
• Why? “Conservation of flow”
– All flow exiting 𝑠 must eventually get to 𝑡
– To get from 𝑠 to 𝑡, all “tanks” must cross the cut

• Conclusion: If we find the minimum-cost cut, we’ve found the 
maximum flow
– max

!
𝑓 ≤ min

",$
| 𝑆, 𝑇 |
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Maxflow/Mincut Theorem

• To show Ford-Fulkerson is correct:
– Show that when there are no more augmenting paths, there is a cut 

with cost equal to the flow
• Conclusion: the maximum flow through a network matches the 

minimum-cost cut
–max

>
𝑓 = min

?,@
| 𝑆, 𝑇 |

• Duality
– When we’ve maximized max flow, we’ve minimized min cut (and vice-

versa), so we can check when we’ve found one by finding the other
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Example: Maxflow/Mincut
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Proof: Maxflow/Mincut Theorem
• If |𝑓| is a max flow, then 𝐺> has no augmenting path
– Otherwise, use that augmenting path to “push” more flow

• Define 𝑆 = nodes reachable from source node 𝑠 by positive-weight 
edges in the residual graph
– 𝑇 = 𝑉 − 𝑆
– 𝑆 separates 𝑠 , 𝑡 (otherwise there’s an augmenting path)
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Proof: Maxflow/Mincut Theorem
• To show: 𝑆, 𝑇 = |𝑓|

– Weight of the cut matches the flow across the cut
• Consider edge (𝑢, 𝑣) with 𝑢 ∈ 𝑆, 𝑣 ∈ 𝑇

– 𝑓 𝑢, 𝑣 = 𝑐(𝑢, 𝑣), because otherwise 𝑤 𝑢, 𝑣 > 0 in 𝐺!, which would mean 𝑣 ∈ 𝑆
• Consider edge (𝑦, 𝑥) with 𝑦 ∈ 𝑇, 𝑥 ∈ 𝑆

– 𝑓 𝑦, 𝑥 = 0, because otherwise the back edge 𝑤 𝑦, 𝑥 > 0 in 𝐺!, 
which would mean y ∈ 𝑆
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Proof Summary
1. The flow |𝑓| of 𝐺 is upper-bounded by the sum of capacities of edges crossing 

any cut separating source 𝑠 and sink 𝑡

2. When Ford-Fulkerson terminates, there are no more augmenting paths in 𝐺$

3. When there are no more augmenting paths in 𝐺$ then we can define a cut 
𝑆 = nodes reachable from source node 𝑠 by positive-weight edges in the 
residual graph

4. The sum of edge capacities crossing this cut must match the flow of the graph

5. Therefore this flow is maximal
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Divide and Conquer*

• Divide: 
– Break the problem into multiple subproblems, each smaller instances of 

the original
• Conquer:
– If the suproblems are “large”:

• Solve each subproblem recursively
– If the subproblems are “small”:

• Solve them directly (base case)

• Combine:
– Merge together solutions to subproblems

*CLRS Chapter 4



Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify recursive structure of the problem
2. Select a good order for solving subproblems
• Usually smallest problem first
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Greedy Algorithms

• Require Optimal Substructure
– Solution to larger problem contains the solution to a smaller one
– Only one subproblem to consider!

• Idea:
1. Identify a greedy choice property
• How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain
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So far

• Divide and Conquer, Dynamic Programming, Greedy
– Take an instance of Problem A, relate it to smaller instances of 

Problem A

• Next:
– Take an instance of Problem A, relate it to an instance of Problem B
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Roadmap: Where We’re Going and Why

• Reductions between problems
– Why?  Can be a practical way of solving a new problem
– Also: A proof about one problem’s complexity can be applied to 

another
– Formal definition of a reduction

• Examples
– Bipartite graphs, matching
– Vertex cover and independent set
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Using One Solution to Solve Something Else

• Sometimes we can solve a “new” problem using a solution to 
another problem
– We need to “re-cast” the “new” problem as an instance of the other 

problem
– We may need to relate how the answer found for the other problem gives 

the answer for the “new” problem
• Some examples coming in this lecture:
– We’ll see how to solve edge-disjoint path problem.

Use that to solve vertex-disjoint path problem.
– We know how to find max network flow.

Use that to solve bi-partite matching.
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Edge-Disjoint Paths

38

Given a graph 𝐺 = (𝑉, 𝐸), a start node 𝑢 and a 
destination node 𝑣, give the maximum number of paths 
from 𝑢 to 𝑣 which share no edges
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Note this is an 
optimization problem.



Edge-Disjoint Paths

39

Given a graph 𝐺 = (𝑉, 𝐸), a start node 𝑢 and a 
destination node 𝑣, give the maximum number of paths 
from 𝑢 to 𝑣 which share no edges
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Set of edge-disjoint paths of size 3
(the red, blue, magenta paths)

Is this the max number?



Edge-Disjoint Paths
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Given a graph 𝐺 = (𝑉, 𝐸), a start node 𝑢 and a 
destination node 𝑣, give the maximum number of paths 
from 𝑢 to 𝑣 which share no edges
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g
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a
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Set of edge-disjoint paths of size 4

Is this the max number?



Edge-Disjoint Paths Algorithm
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Use a problem we know how to solve, max network flow, to solve this!

Make 𝑢 and 𝑣 the source and sink, give each edge capacity 1, find the max flow.
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Max flow = 4

Why does this work?
We need to be able to 
make a valid argument 
that it always does.



What’s the situation?
• Given an input I1 for the max network flow problem (graph G 

with edge capacities), we can find the max flow for that input 
• Given an input I2 for edge-disjoint path problem, we can:
– Convert that input I2 to make a valid input I1 for network flow 

problem, by using same graph G but adding capacity=1 for each edge
– Solve max network flow problem for I1 and get result R1

– Use R1 to give the solution R2 for edge-disjoint path for input I2
• In this case, |f| = the number of paths

• Next, let’s solve another problem using our new edge-disjoint 
path solution
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Vertex-Disjoint Paths
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Given a graph 𝐺 = (𝑉, 𝐸), a start node 𝑢 and a destination node 𝑣, give the 
maximum number of paths from 𝑢 to 𝑣 which share no vertices
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Vertex-Disjoint Paths

44

𝑢

𝑣

g

h

b
e
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c

This shows 3 edge-disjoint paths.
Note these aren’t vertex-disjoint paths!

Given a graph 𝐺 = (𝑉, 𝐸), a start node 𝑢 and a destination node 𝑣, give the 
maximum number of paths from 𝑢 to 𝑣 which share no vertices



Vertex-Disjoint Paths Algorithm
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Idea: Convert an instance of the vertex-disjoint paths problem into an instance 
of edge-disjoint paths

𝑢
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g

h
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e

f
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c

g in

Make two copies of each node, one connected to incoming edges, the other to 
outgoing edges

g 
out

Restricts to 1 
edge

Compute Edge-Disjoint Paths on new graph

Why does this work?
We need to be able to 
make a valid argument 
that it always does.



What’s the situation now?

• Given an input I1 for the max network flow problem (graph G with 
edge capacities), we can find max flow for that input 

• Given an input I2 for edge-disjoint path problem, we can:
– Convert that input I2 to make a valid input I1 for network flow problem,  

and solve that to find number of edge-disjoint paths
• Given an input I3 for vertex-disjoint path problem, we can:
– Convert that input I3 to make a valid input I2 for edge-disjoint path problem
– See above! Convert I2 to I1 and solve max network flow problem

• This chain of “problem conversions” finds lets us solve vertex-
disjoint path problem
– Time complexity? Cost of solving max network flow plus two conversions
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Bipartite Graphs
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• A graph is bipartite if node-set V can be split into sets X and Y 
such that every edge has one end in X and one end in Y
– X and Y could be colored red and blue
– Or Boolean true/false How to determine if G is bipartite?

The numbers and arrows on edges 
may give you a clue….

BFS or DFS, and label nodes by levels
in tree.
Non-tree edge to node with same
label means NOT bipartite.



Notes and assumptions
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• We assume the graph is connected
– Otherwise we will only look at each connected component 

individually

• A triangle cannot be bipartite
– In fact, any graph with an odd 

length cycle cannot be bipartite



Bipartite Determination Algorithm 
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• Pick a starting vertex, color it red
• Color all adjacent nodes blue
– And all nodes adjacent to that red
– Etc.

• If you ever need to color an already red-node to be blue (or 
vice versa), then the graph is not bipartite

• Does this algorithm sound familiar?



Maximum Bipartite Matching
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Dog Lovers Adoptable Dogs



Maximum Bipartite Matching
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Dog Lovers Dogs

Is this the best possible?
The largest possible set 
of edges?



Maximum Bipartite Matching
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Dog Lovers Dogs

Better! In fact, the 
maximum possible!
How can we tell?

A perfect bipartite match:
Equal-sized left and right 
subsets, and all nodes 
have a matching edge



Maximum Bipartite Matching

Given a graph 𝐺 = 𝐿, 𝑅, 𝐸
a set of left nodes, right nodes, and edges between left and right

Find the largest set of edges 𝑀 ⊆ 𝐸 such that each node 𝑢 ∈ 𝐿
or 𝑣 ∈ 𝑅 is incident to at most one edge.
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Maximum Bipartite Matching Using Max Flow

Make 𝐺 = (𝐿, 𝑅, 𝐸) a flow network 𝐺% = (𝑉%, 𝐸%) by:
• Adding in a source and sink to the set of nodes: 
– 𝑉% = 𝐿 ∪ 𝑅 ∪ {𝑠, 𝑡}

• Adding an edge from source to 𝐿 and from 𝑅 to 
sink:
– 𝐸% = 𝐸 ∪ 𝑢 ∈ 𝐿 𝑠, 𝑢 } ∪ 𝑣 ∈ 𝑅 𝑣, 𝑡 }

• Make each edge capacity 1:
– ∀𝑒 ∈ 𝐸%, 𝑐 𝑒 = 1
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𝑠
𝑡

1

11

1
1

1

1
11

1

1

1

1

1

1

1

1



Maximum Bipartite Matching Using Max Flow
1. Make 𝐺 into 𝐺′
2. Compute Max Flow on 𝐺′
3. Return 𝑀 as all “middle” edges with flow 1
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Θ(𝐿 + 𝑅)

Θ(𝐸 ⋅ 𝑉) 𝑓 ≤ 𝐿

Θ(𝐿 + 𝑅)

Overall: Θ(𝐸 ⋅ 𝑉)

𝑠
𝑡

0/1

0/11/1

1/1
0/1
0/1

1/1
1/1

0/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1



Why does this work?

56

• Each node on the left can be in at most one matching
– This is enforced by the edge of capacity one leading into it

• Likewise for each node on the right
• The bottleneck will be how it flows across the bipartite 

“barrier”



Running time
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• Max flow runs in O(E*f)
– But the max flow is (at most) V/2    (where V = 𝐿 ∪ 𝑅)
• If every node in the graph has flow through it, then there are V/2 units of flow 

moving through the graph

– So the running time is equivalent to O(E*V)


