Network Flow

Question: What is the maximum throughput of the railroad network?

Today's Keywords

- Max Flow, Min Cut
- Reductions
- Bipartite Matching
- Vertex Cover
- Independent Set
- CLRS Chapter 34

Flow Network

Graph $G=(V, E)$
Source node $s \in V$
Sink node $t \in V$
Edge Capacities $c(e) \in$ Positive Real numbers

Max flow intuition: If s is a faucet, t is a drain, and s connects to t through a network of pipes with given capacities, what is the maximum amount of water which can flow from the faucet to the drain?

Flow

- Assignment of values to edges
$-f(e)=n$
- Amount of water going through that pipe
- Capacity constraint
$-f(e) \leq c(e)$
- Flow cannot exceed capacity
- Flow constraint
$-\forall v \in V-\{s, t\}, \operatorname{inflow}(v)=\operatorname{outflow}(v)$

$-\operatorname{inflow}(v)=\sum_{x \in V} f(x, v)$
$-\operatorname{outflow}(v)=\sum_{x \in V} f(v, x)$
- Water going in must match water coming out
- Flow of $G:|f|=\operatorname{outflow}(s)-\operatorname{inflow}(s)$
- Net outflow of s

Max Flow

- Of all valid flows through the graph, find the one which maximizes:
$-|f|=\operatorname{outflow}(s)-\operatorname{inflow}(s)$

Residual Graph G_{f}

- Keep track of net available flow along each edge
- Forward edges: weight is equal to available flow along that edge in the flow graph

$$
-w(e)=c(e)-f(e)
$$

- Back edges: weight is equal to flow along that edge in the flow graph

$$
-w(e)=f(e)
$$

Residual Graph $\boldsymbol{G}_{\boldsymbol{f}}$

Ford Fulkerson: example

Flow Graph G

Residual Graph \boldsymbol{G}_{f}

Add flow of 1 to this path

Ford Fulkerson: example

Flow Graph G

Residual Graph \boldsymbol{G}_{f}

Add flow of 1 to this path

Ford Fulkerson: example

Flow Graph G

Residual Graph $\boldsymbol{G}_{\boldsymbol{f}}$

Add flow of 1 to this path

Ford Fulkerson: example

Flow Graph G

Residual Graph $\boldsymbol{G}_{\boldsymbol{f}}$

Ford-Fulkerson Running Time

Define an augmenting path to be an $s \rightarrow t$ path in the residual graph G_{f} (using edges of non-zero weight)

Ford-Fulkerson max-flow algorithm:

- Initialize $f(e)=0$ for all $e \in E$
- Construct the residual network G_{f}
- While there is an augmenting path p in G_{f} :
- Let $c=\min _{e \in E} c_{f}(e)\left(c_{f}(e)\right.$ is the weight of edge e in the residual network $\left.G_{f}\right)$
- Add c units of flow to G based on the augmenting path p
- Update the residual network G_{f} for the updated flow

Initialization: $O(|E|)$

Ford-Fulkerson Running Time

Define an augmenting path to be an $s \rightarrow t$ path in the residual graph G_{f} (using edges of non-zero weight)

Ford-Fulkerson max-flow algorithm:

- Initialize $f(e)=0$ for all $e \in E$
- Construct the residual network G_{f}
- While there is an augmenting path p in G_{f} :
- Let $c=\min _{e \in E} c_{f}(e)\left(c_{f}(e)\right.$ is the weight of edge e in the residual network $\left.G_{f}\right)$
- Add c units of flow to G based on the augmenting path p
- Update the residual network G_{f} for the updated flow

Initialization: $O(|E|)$
Construct residual network: $O(|E|)$

Ford-Fulkerson Running Time

Define an augmenting path to be an $s \rightarrow t$ path in the residual graph G_{f} (using edges of non-zero weight)

Ford-Fulkerson max-flow algorithm:

- Initialize $f(e)=0$ for all $e \in E$
- Construct the residual network G_{f}
- While there is an augmenting path p in G_{f} :
- Let $c=\min _{e \in E} c_{f}(e)\left(c_{f}(e)\right.$ is the weight of edge e in the residual network $\left.G_{f}\right)$
- Add c units of flow to G based on the augme
- Update the residual network G_{f} for the upda Initialization: $O(|E|)$

We only care about nodes reachable from the source s (so the number of nodes that are "relevant" is at most $|E|$)

Construct residual network: $O(|E|)$
Finding augmenting path in residual network: $O(|E|)$ using BFS/DFS

Ford-Fulkerson Running Time

Define an augmenting path to be an $s \rightarrow t$ path in the residual graph G_{f} (using edges of non-zero weight)

How many iterations are needed?

- For integer-valued capacities, min-weight of each augmenting path is 1 , so number of iterations is bounded by $\left|f^{*}\right|$, where $\left|f^{*}\right|$ is max-flow in G
- For rational-valued capacities, can scale to make capacities integer
- For irrational-valued capacities, algorithm may never terminate!

Initialization: $O(|E|)$
Construct residual network: $O(|E|)$
Finding augmenting path in residual network: $O(|E|)$ using BFS/DFS

Ford-Fulkerson Running Time

Define an augmenting path to be an $s \rightarrow t$ path in the residual graph G_{f} (using edges of non-zero weight)

Ford-Fulkerson max-flow algorith

- Initialize $f(e)=0$ for all
- Construct the residual net
- While there is an augmen
- Let $c=\min _{e \in E} c_{f}(e)\left(c_{f}\right.$
- Add c units of flow to

For graphs with integer capacities, running time of Ford-Fulkerson is

$$
O\left(\left|f^{*}\right| \cdot|E|\right)
$$

Highly undesirable if $\left|f^{*}\right| \gg|E|$ (e.g., graph is
small, but capacities are $\approx 2^{32}$)

- Update the residual n

Initialization: $O(|E|)$
As described, algorithm is not polynomial-time!
Construct residual network: ©
Finding augmenting path in residual network: $O(|E|)$ using BFS/DFS

Worst-Case Ford-Fulkerson

Worst-Case Ford-Fulkerson

Increase flow by 1 unit

Worst-Case Ford-Fulkerson

Increase flow by 1 unit

Worst-Case Ford-Fulkerson

Worst-Case Ford-Fulkerson

Increase flow by 1 unit

Worst-Case Ford-Fulkerson

Increase flow by 1 unit

Worst-Case Ford-Fulkerson

Worst-Case Ford-Fulkerson

Observation: each iteration increases flow by 1 unit Total number of iterations: $\left|f^{*}\right|=200$

Can We Avoid this?

- Edmonds-Karp Algorithm: choose augmenting path with

 fewest hops- Running time: $\Theta\left(\min \left(|E|\left|f^{*}\right||V||E|^{2}\right) \quad\right.$ How to find this? Use breadth-first search (BFS)! Ford-Fulkerson max-flow algorithm:
- Initialize $f(e)=0$ for all $e \in E$
- Construct the residual network G_{f}

Edmonds-Karp = Ford-Fulkerson using BFS to find augmenting path

- While there is an augmenting path in G_{f}, let p be the path with fewest hops:
- Let $c=\min _{e \in E} c_{f}(e)\left(c_{f}(e)\right.$ is the weight of edge e in the residual network $\left.G_{f}\right)$
- Add c units of flow to G based on the augmenting path p
- Update the residual network G_{f} for the updated flow

Showing Correctness of Ford-Fulkerson

- Consider cuts which separate s and t
- Let $s \in S, t \in T$, s.t. $V=S \cup T$
- Cost of cut $(S, T)=\|S, T\|$
- Sum capacities of edges which go from S to T
- This example: 5

Maxflow \leq MinCut

- Max flow upper bounded by any cut separating s and t
- Why? "Conservation of flow"
- All flow exiting s must eventually get to t
- To get from s to t, all "tanks" must cross the cut
- Conclusion: If we find the minimum-cost cut, we've found the maximum flow

$$
-\max _{f}|f| \leq \min _{S, T}\|S, T\|
$$

Maxflow/Mincut Theorem

- To show Ford-Fulkerson is correct:
- Show that when there are no more augmenting paths, there is a cut with cost equal to the flow
- Conclusion: the maximum flow through a network matches the minimum-cost cut

$$
-\max _{f}|f|=\min _{S, T}\|S, T\|
$$

- Duality
- When we've maximized max flow, we've minimized min cut (and viceversa), so we can check when we've found one by finding the other

Example: Maxflow/Mincut

Flow Graph \boldsymbol{G}

$|f|=4$
$||S, T||=4$

No Augmenting Paths

Idea: When there are no more augmenting paths, there exists a cut in the graph with cost matching the flow ${ }_{28}$

Proof: Maxflow/Mincut Theorem

- If $|f|$ is a max flow, then G_{f} has no augmenting path
- Otherwise, use that augmenting path to "push" more flow
- Define $S=$ nodes reachable from source node s by positive-weight edges in the residual graph
$-T=V-S$
- S separates s, t (otherwise there's an augmenting path)

Proof: Maxflow/Mincut Theorem

- To show: $||S, T||=|f|$
- Weight of the cut matches the flow across the cut
- Consider edge (u, v) with $u \in S, v \in T$
- $f(u, v)=c(u, v)$, because otherwise $w(u, v)>0$ in G_{f}, which would mean $v \in S$
- Consider edge (y, x) with $y \in T, x \in S$
- $f(y, x)=0$, because otherwise the back edge $w(y, x)>0$ in G_{f}, which would mean $\mathrm{y} \in S$

Residual Graph $\boldsymbol{G}_{\boldsymbol{f}}$

Proof Summary

1. The flow $|f|$ of G is upper-bounded by the sum of capacities of edges crossing any cut separating source s and $\operatorname{sink} t$
2. When Ford-Fulkerson terminates, there are no more augmenting paths in G_{f}
3. When there are no more augmenting paths in G_{f} then we can define a cut $S=$ nodes reachable from source node s by positive-weight edges in the residual graph
4. The sum of edge capacities crossing this cut must match the flow of the graph
5. Therefore this flow is maximal

Divide and Conquer*

- Divide:

貫瞳

- Break the problem into multiple subproblems, each smaller instances of the original
- Conquer:
- If the suproblems are "large":
- Solve each subproblem recursively
- If the subproblems are "small":
- Solve them directly (base case)
- Combine:
- Merge together solutions to subproblems

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Idea:

1. Identify recursive structure of the problem
2. Select a good order for solving subproblems

- Usually smallest problem first

Greedy Algorithms

- Require Optimal Substructure
- Solution to larger problem contains the solution to a smaller one
- Only one subproblem to consider!
- Idea:

1. Identify a greedy choice property

- How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain

So far

- Divide and Conquer, Dynamic Programming, Greedy
- Take an instance of Problem A, relate it to smaller instances of Problem A
- Next:
- Take an instance of Problem A, relate it to an instance of Problem B

Roadmap: Where We're Going and Why

- Reductions between problems
- Why? Can be a practical way of solving a new problem
- Also: A proof about one problem's complexity can be applied to another
- Formal definition of a reduction
- Examples
- Bipartite graphs, matching
- Vertex cover and independent set

Using One Solution to Solve Something Else

- Sometimes we can solve a "new" problem using a solution to another problem
- We need to "re-cast" the "new" problem as an instance of the other problem
- We may need to relate how the answer found for the other problem gives the answer for the "new" problem
- Some examples coming in this lecture:
- We'll see how to solve edge-disjoint path problem. Use that to solve vertex-disjoint path problem.
- We know how to find max network flow. Use that to solve bi-partite matching.

Edge-Disjoint Paths

Given a graph $G=(V, E)$, a start node u and a destination node v, give the maximum number of paths from u to v which share no edges

Note this is an optimization problem.

Edge-Disjoint Paths

Given a graph $G=(V, E)$, a start node u and a destination node v, give the maximum number of paths from u to v which share no edges

Set of edge-disjoint paths of size 3 (the red, blue, magenta paths)

Is this the max number?

Edge-Disjoint Paths

Given a graph $G=(V, E)$, a start node u and a destination node v, give the maximum number of paths from u to v which share no edges

Edge-Disjoint Paths Algorithm

Use a problem we know how to solve, max network flow, to solve this!

Make u and v the source and sink, give each edge capacity 1 , find the max flow.

Why does this work? We need to be able to make a valid argument that it always does.
Set of edge-disjoint paths of size 4
Max flow = 4

What's the situation?

- Given an input I_{1} for the max network flow problem (graph G with edge capacities), we can find the max flow for that input
- Given an input I_{2} for edge-disjoint path problem, we can:
- Convert that input I_{2} to make a valid input I_{1} for network flow problem, by using same graph G but adding capacity=1 for each edge
- Solve max network flow problem for I_{1} and get result R_{1}
- Use R_{1} to give the solution R_{2} for edge-disjoint path for input I_{2}
- In this case, $|\mathrm{ff}|=$ the number of paths
- Next, let's solve another problem using our new edge-disjoint path solution

Vertex-Disjoint Paths

Given a graph $G=(V, E)$, a start node u and a destination node v, give the maximum number of paths from u to v which share no vertices

Vertex-Disjoint Paths

Given a graph $G=(V, E)$, a start node u and a destination node v, give the maximum number of paths from u to v which share no vertices

This shows 3 edge-disjoint paths.

Vertex-Disjoint Paths Algorithm

Idea: Convert an instance of the vertex-disjoint paths problem into an instance of edge-disjoint paths
Make two copies of each node, one connected to incoming edges, the other to outgoing edges

Compute Edge-Disjoint Paths on new graph

Why does this work? We need to be able to make a valid argument that it always does.

What's the situation now?

- Given an input I_{1} for the max network flow problem (graph G with edge capacities), we can find max flow for that input
- Given an input I_{2} for edge-disjoint path problem, we can:
- Convert that input I_{2} to make a valid input I_{1} for network flow problem, and solve that to find number of edge-disjoint paths
- Given an input I_{3} for vertex-disjoint path problem, we can:
- Convert that input I_{3} to make a valid input I_{2} for edge-disjoint path problem
- See above! Convert I_{2} to I_{1} and solve max network flow problem
- This chain of "problem conversions" finds lets us solve vertexdisjoint path problem
- Time complexity? Cost of solving max network flow plus two conversions

Bipartite Graphs

- A graph is bipartite if node-set V can be split into sets X and Y such that every edge has one end in X and one end in Y
$-X$ and Y could be colored red and blue
- Or Boolean true/false

How to determine if G is bipartite?
The numbers and arrows on edges may give you a clue....

BFS or DFS, and label nodes by levels in tree.
Non-tree edge to node with same label means NOT bipartite.

Notes and assumptions

- We assume the graph is connected
- Otherwise we will only look at each connected component individually
- A triangle cannot be bipartite
- In fact, any graph with an odd length cycle cannot be bipartite

Bipartite Determination Algorithm

- Pick a starting vertex, color it red
- Color all adjacent nodes blue
- And all nodes adjacent to that red
- Etc.
- If you ever need to color an already red-node to be blue (or vice versa), then the graph is not bipartite
- Does this algorithm sound familiar?

Maximum Bipartite Matching

Dog Lovers

Adoptable Dogs

Maximum Bipartite Matching

Is this the best possible? The largest possible set of edges?

Maximum Bipartite Matching

Better! In fact, the maximum possible! How can we tell?

A perfect bipartite match: Equal-sized left and right subsets, and all nodes have a matching edge

Maximum Bipartite Matching

Given a graph $G=(L, R, E)$
a set of left nodes, right nodes, and edges between left and right Find the largest set of edges $M \subseteq E$ such that each node $u \in L$ or $v \in R$ is incident to at most one edge.

Maximum Bipartite Matching Using Max Flow

Make $G=(L, R, E)$ a flow network $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ by:

- Adding in a source and sink to the set of nodes:
$-V^{\prime}=L \cup R \cup\{s, t\}$
- Adding an edge from source to L and from R to sink:
$-E^{\prime}=E \cup\{u \in L \mid(s, u)\} \cup\{v \in R \mid(v, t)\}$
- Make each edge capacity 1 :
$-\forall e \in E^{\prime}, c(e)=1$

Maximum Bipartite Matching Using Max Flow

1. Make G into $G^{\prime} \quad \Theta(L+R)$
2. Compute Max Flow on $G^{\prime} \quad \Theta(E \cdot V)|f| \leq L$
3. Return M as all "middle" edges with flow $1 \quad \Theta(L+R)$

Overall: $\Theta(E \cdot V)$

Why does this work?

- Each node on the left can be in at most one matching - This is enforced by the edge of capacity one leading into it
- Likewise for each node on the right
- The bottleneck will be how it flows across the bipartite "barrier"

Running time

- Max flow runs in O(E*f)
- But the max flow is (at most) $\mathrm{V} / 2 \quad$ (where $\mathrm{V}=L \cup R$)
- If every node in the graph has flow through it, then there are $\mathrm{V} / 2$ units of flow moving through the graph
- So the running time is equivalent to $O\left(\mathrm{E}^{*} \mathrm{~V}\right)$

