
Network Flow

1Railway map of Western USSR, 1955

Question: What is the
maximum throughput of the

railroad network?

Today’s Keywords

• Max Flow, Min Cut
• Reductions
• Bipartite Matching
• Vertex Cover
• Independent Set

• CLRS Chapter 34

2

Flow Network

Graph 𝐺 = (𝑉, 𝐸)
Source node 𝑠 ∈ 𝑉
Sink node 𝑡 ∈ 𝑉
Edge Capacities 𝑐 𝑒 ∈ Positive Real numbers

Max flow intuition: If 𝑠 is a faucet, 𝑡 is a drain, and 𝑠 connects to 𝑡
through a network of pipes with given capacities, what is the
maximum amount of water which can flow from the faucet to the
drain?

3

3

3

3

2

𝑠
𝑡

1

2

1 3 2

2

3

Flow

• Assignment of values to edges
– 𝑓 𝑒 = 𝑛
– Amount of water going through that pipe

• Capacity constraint
– 𝑓 𝑒 ≤ 𝑐(𝑒)
– Flow cannot exceed capacity

• Flow constraint
– ∀𝑣 ∈ 𝑉 − {𝑠, 𝑡}, 𝑖𝑛𝑓𝑙𝑜𝑤 𝑣 = 𝑜𝑢𝑡𝑓𝑙𝑜𝑤(𝑣)
– 𝑖𝑛𝑓𝑙𝑜𝑤 𝑣 = ∑!∈# 𝑓(𝑥, 𝑣)
– 𝑜𝑢𝑡𝑓𝑙𝑜𝑤 𝑣 = ∑!∈# 𝑓(𝑣, 𝑥)
– Water going in must match water coming out

• Flow of 𝐺: |𝑓| = 𝑜𝑢𝑡𝑓𝑙𝑜𝑤 𝑠 − 𝑖𝑛𝑓𝑙𝑜𝑤(𝑠)
– Net outflow of 𝑠

4

1/3

1/3

2/3

0/1

𝑠
𝑡2/2

2/2

1/1

2/3 1/2

1/2

2/3

Flow/Capacity

3 in example above

Max Flow

• Of all valid flows through the graph, find the one which
maximizes:
– 𝑓 = 𝑜𝑢𝑡𝑓𝑙𝑜𝑤 𝑠 − 𝑖𝑛𝑓𝑙𝑜𝑤(𝑠)

5

Residual Graph 𝐺!
• Keep track of net available flow along each edge
• Forward edges: weight is equal to available flow along that edge in the flow

graph
– 𝑤 𝑒 = 𝑐 𝑒 − 𝑓(𝑒)

• Back edges: weight is equal to flow along that edge in the flow graph
– 𝑤 𝑒 = 𝑓(𝑒)

6

1/3

1/3

2/3
0/1

𝑠

a

b

𝑡2/2

2/2

1/1

2/3 1/2

1/2

2/3
𝑠

a

b

𝑡2

2

1
3

0

0

0 2 3

1

1

Flow Graph 𝑮
1 2

2

1

2

1

Residual Graph 𝑮𝒇

1

Flow I could add

Flow I could remove

Ford Fulkerson: example

7

0/3

0/3

0/3
0/1

𝑠
𝑡0/2

0/2

0/1

0/3 0/2

0/2

0/3

Flow Graph 𝑮
Residual Graph 𝑮𝒇

𝑠
𝑡3

3

3
1

2

2

1 3 2

2

3

0

0

0

0

0
0

0

Add flow of 1 to this path

Ford Fulkerson: example

8

0/3

1/3

1/3
0/1

𝑠
𝑡0/2

1/2

1/1

0/3 0/2

1/2

0/3

Flow Graph 𝑮
Residual Graph 𝑮𝒇

𝑠
𝑡3

2

2
1

2

1

0 3 2

1

3

1

0

1

1

1
0

1

Add flow of 1 to this path

Ford Fulkerson: example

9

0/3

1/3

1/3
0/1

𝑠
𝑡1/2

1/2

0/1

0/3 0/2

1/2

1/3

Flow Graph 𝑮
Residual Graph 𝑮𝒇

𝑠
𝑡3

2

2
2

1

1

1 3 2

1

2

1

1

1

1

0
0

1

Add flow of 1 to this path

Ford Fulkerson: example

10

0/3

2/3

1/3
0/1

𝑠
𝑡1/2

2/2

0/1

0/3 0/2

1/2

2/3

Flow Graph 𝑮
Residual Graph 𝑮𝒇

𝑠
𝑡3

1

2
2

1

0

1 3 2

1

1

2

2

1

1

0
0

2

Ford-Fulkerson Running Time

11

Define an augmenting path to be an 𝑠 → 𝑡 path in the residual graph 𝐺$ (using edges of
non-zero weight)

Ford-Fulkerson max-flow algorithm:
• Initialize 𝑓 𝑒 = 0 for all 𝑒 ∈ 𝐸
• Construct the residual network 𝐺$
• While there is an augmenting path 𝑝 in 𝐺$:

• Let 𝑐 = min
%∈'

𝑐$(𝑒) (𝑐$(𝑒) is the weight of edge 𝑒 in the residual network 𝐺$)
• Add 𝑐 units of flow to 𝐺 based on the augmenting path 𝑝
• Update the residual network 𝐺$ for the updated flow

Initialization: 𝑂 𝐸

Ford-Fulkerson Running Time

12

Define an augmenting path to be an 𝑠 → 𝑡 path in the residual graph 𝐺$ (using edges of
non-zero weight)

Ford-Fulkerson max-flow algorithm:
• Initialize 𝑓 𝑒 = 0 for all 𝑒 ∈ 𝐸
• Construct the residual network 𝐺$
• While there is an augmenting path 𝑝 in 𝐺$:

• Let 𝑐 = min
%∈'

𝑐$(𝑒) (𝑐$(𝑒) is the weight of edge 𝑒 in the residual network 𝐺$)
• Add 𝑐 units of flow to 𝐺 based on the augmenting path 𝑝
• Update the residual network 𝐺$ for the updated flow

Initialization: 𝑂 𝐸
Construct residual network: 𝑂 𝐸

Ford-Fulkerson Running Time

13

Define an augmenting path to be an 𝑠 → 𝑡 path in the residual graph 𝐺$ (using edges of
non-zero weight)

Ford-Fulkerson max-flow algorithm:
• Initialize 𝑓 𝑒 = 0 for all 𝑒 ∈ 𝐸
• Construct the residual network 𝐺$
• While there is an augmenting path 𝑝 in 𝐺$:

• Let 𝑐 = min
%∈'

𝑐$(𝑒) (𝑐$(𝑒) is the weight of edge 𝑒 in the residual network 𝐺$)
• Add 𝑐 units of flow to 𝐺 based on the augmenting path 𝑝
• Update the residual network 𝐺$ for the updated flow

Initialization: 𝑂 𝐸
Construct residual network: 𝑂 𝐸
Finding augmenting path in residual network: 𝑂 𝐸 using BFS/DFS

We only care about nodes reachable from
the source 𝑠 (so the number of nodes

that are “relevant” is at most 𝐸)

Ford-Fulkerson Running Time

14

Define an augmenting path to be an 𝑠 → 𝑡 path in the residual graph 𝐺$ (using edges of
non-zero weight)

Ford-Fulkerson max-flow algorithm:
• Initialize 𝑓 𝑒 = 0 for all 𝑒 ∈ 𝐸
• Construct the residual network 𝐺$
• While there is an augmenting path 𝑝 in 𝐺$:

• Let 𝑐 = min
%∈'

𝑐$(𝑒) (𝑐$(𝑒) is the weight of edge 𝑒 in the residual network 𝐺$)
• Add 𝑐 units of flow to 𝐺 based on the augmenting path 𝑝
• Update the residual network 𝐺$ for the updated flow

Initialization: 𝑂 𝐸
Construct residual network: 𝑂 𝐸
Finding augmenting path in residual network: 𝑂 𝐸 using BFS/DFS

How many iterations are needed?
• For integer-valued capacities, min-weight of each augmenting path is 1, so

number of iterations is bounded by 𝑓∗ , where 𝑓∗ is max-flow in 𝐺
• For rational-valued capacities, can scale to make capacities integer
• For irrational-valued capacities, algorithm may never terminate!

Ford-Fulkerson Running Time

15

Define an augmenting path to be an 𝑠 → 𝑡 path in the residual graph 𝐺$ (using edges of
non-zero weight)

Ford-Fulkerson max-flow algorithm:
• Initialize 𝑓 𝑒 = 0 for all 𝑒 ∈ 𝐸
• Construct the residual network 𝐺$
• While there is an augmenting path 𝑝 in 𝐺$:

• Let 𝑐 = min
%∈'

𝑐$(𝑒) (𝑐$(𝑒) is the weight of edge 𝑒 in the residual network 𝐺$)
• Add 𝑐 units of flow to 𝐺 based on the augmenting path 𝑝
• Update the residual network 𝐺$ for the updated flow

Initialization: 𝑂 𝐸
Construct residual network: 𝑂 𝐸
Finding augmenting path in residual network: 𝑂 𝐸 using BFS/DFS

For graphs with integer capacities, running time
of Ford-Fulkerson is

𝑂 𝑓∗ ⋅ 𝐸
Highly undesirable if 𝑓∗ ≫ |𝐸| (e.g., graph is
small, but capacities are ≈ 2<=)

As described, algorithm is not polynomial-time!

Worst-Case Ford-Fulkerson

16

0/1

0/100

𝑠 𝑡

0/100 0/100

0/100

1

100

𝑠 𝑡

100 100

100

Worst-Case Ford-Fulkerson

17

0/1

0/100

𝑠 𝑡

0/100 0/100

0/100

1

100

𝑠 𝑡

100 100

100

Increase flow by 1 unit

Worst-Case Ford-Fulkerson

18

1/1

1/100

𝑠 𝑡

0/100 1/100

0/100

1

100

𝑠 𝑡

100 100

100

Increase flow by 1 unit

Worst-Case Ford-Fulkerson

19

1/1

1/100

𝑠 𝑡

0/100 1/100

0/100

1

99

𝑠 𝑡

100 99

100

1
1

Worst-Case Ford-Fulkerson

20

1/1

1/100

𝑠 𝑡

0/100 1/100

0/100

1

99

𝑠 𝑡

100 99

100

1
1

Increase flow by 1 unit

Worst-Case Ford-Fulkerson

21

0/1

1/100

𝑠 𝑡

1/100 1/100

1/100

1

99

𝑠 𝑡

100 99

100

1
1

Increase flow by 1 unit

Worst-Case Ford-Fulkerson

22

0/1

1/100

𝑠 𝑡

1/100 1/100

1/100

1

99

𝑠 𝑡

99 99

99

1
1

1

1

Worst-Case Ford-Fulkerson

23

0/1

1/100

𝑠 𝑡

1/100 1/100

1/100

1

99

𝑠 𝑡

99 99

99

1
1

1

1

Observation: each iteration increases flow by 1 unit
Total number of iterations: 𝑓∗ = 200

Can We Avoid this?

• Edmonds-Karp Algorithm: choose augmenting path with
fewest hops

• Running time: Θ min 𝐸 𝑓∗ , 𝑉 𝐸 " = 𝑂 𝑉 𝐸 "

24

Ford-Fulkerson max-flow algorithm:
• Initialize 𝑓 𝑒 = 0 for all 𝑒 ∈ 𝐸
• Construct the residual network 𝐺$
• While there is an augmenting path in 𝐺$, let 𝑝 be the path with fewest hops:
• Let 𝑐 = min

%∈'
𝑐$(𝑒) (𝑐$(𝑒) is the weight of edge 𝑒 in the residual network 𝐺$)

• Add 𝑐 units of flow to 𝐺 based on the augmenting path 𝑝
• Update the residual network 𝐺$ for the updated flow

How to find this?
Use breadth-first search (BFS)!

Edmonds-Karp = Ford-Fulkerson
using BFS to find augmenting path

Proof: See CLRS (Chapter 26.2)

Showing Correctness of Ford-Fulkerson

• Consider cuts which separate 𝑠 and 𝑡
– Let 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇, s.t. 𝑉 = 𝑆 ∪ 𝑇

• Cost of cut 𝑆, 𝑇 = | 𝑆, 𝑇 |
– Sum capacities of edges which go from 𝑆 to 𝑇
– This example: 5

25

3

3

3

2

𝑠
𝑡

1

2

1 3 2

2

3

𝑆 𝑇

Maxflow≤MinCut

• Max flow upper bounded by any cut separating 𝑠 and 𝑡
• Why? “Conservation of flow”
– All flow exiting 𝑠 must eventually get to 𝑡
– To get from 𝑠 to 𝑡, all “tanks” must cross the cut

• Conclusion: If we find the minimum-cost cut, we’ve found the
maximum flow
– max

!
𝑓 ≤ min

",$
| 𝑆, 𝑇 |

26

3

3

3

2

𝑠
𝑡

1

2

1 3 2

2

3

𝑆 𝑇

Maxflow/Mincut Theorem

• To show Ford-Fulkerson is correct:
– Show that when there are no more augmenting paths, there is a cut

with cost equal to the flow
• Conclusion: the maximum flow through a network matches the

minimum-cost cut
–max

>
𝑓 = min

?,@
| 𝑆, 𝑇 |

• Duality
– When we’ve maximized max flow, we’ve minimized min cut (and vice-

versa), so we can check when we’ve found one by finding the other

27

Example: Maxflow/Mincut

2828

Residual Graph 𝑮𝒇

0/3

2/3

3/3
0/1

𝑠
𝑡2/2

2/2

1/1

2/3 1/2

2/2

2/3

Flow Graph 𝑮

𝑠
𝑡3

1

0
3

0

0

0 2 3

0

1

2 2

2

2

1
0

3

No Augmenting Paths
|𝑓| = 4

𝑆, 𝑇 = 4

Idea: When there are no more augmenting paths, there
exists a cut in the graph with cost matching the flow

Proof: Maxflow/Mincut Theorem
• If |𝑓| is a max flow, then 𝐺> has no augmenting path
– Otherwise, use that augmenting path to “push” more flow

• Define 𝑆 = nodes reachable from source node 𝑠 by positive-weight
edges in the residual graph
– 𝑇 = 𝑉 − 𝑆
– 𝑆 separates 𝑠 , 𝑡 (otherwise there’s an augmenting path)

29

Residual Graph 𝑮𝒇

𝑠
𝑡3

1

0
3

0

0

0 2 3

0

1

2 2

2

2

1
0

3

0/3

2/3

3/3
0/1

𝑠
𝑡2/2

2/2

1/1

2/3 1/2

2/2

2/3

Flow Graph 𝑮

Proof: Maxflow/Mincut Theorem
• To show: 𝑆, 𝑇 = |𝑓|

– Weight of the cut matches the flow across the cut
• Consider edge (𝑢, 𝑣) with 𝑢 ∈ 𝑆, 𝑣 ∈ 𝑇

– 𝑓 𝑢, 𝑣 = 𝑐(𝑢, 𝑣), because otherwise 𝑤 𝑢, 𝑣 > 0 in 𝐺!, which would mean 𝑣 ∈ 𝑆
• Consider edge (𝑦, 𝑥) with 𝑦 ∈ 𝑇, 𝑥 ∈ 𝑆

– 𝑓 𝑦, 𝑥 = 0, because otherwise the back edge 𝑤 𝑦, 𝑥 > 0 in 𝐺!,
which would mean y ∈ 𝑆

30

Residual Graph 𝑮𝒇

𝑠
𝑡3

1

0
3

0

0

0 2 3

0

1

2 2

2

2

1
0

3

0/3

2/3

3/3
0/1

𝑠
𝑡2/2

2/2

1/1

2/3 1/2

2/2

2/3

Flow Graph 𝑮

Proof Summary
1. The flow |𝑓| of 𝐺 is upper-bounded by the sum of capacities of edges crossing

any cut separating source 𝑠 and sink 𝑡

2. When Ford-Fulkerson terminates, there are no more augmenting paths in 𝐺$

3. When there are no more augmenting paths in 𝐺$ then we can define a cut
𝑆 = nodes reachable from source node 𝑠 by positive-weight edges in the
residual graph

4. The sum of edge capacities crossing this cut must match the flow of the graph

5. Therefore this flow is maximal

31

Divide and Conquer*

• Divide:
– Break the problem into multiple subproblems, each smaller instances of

the original
• Conquer:
– If the suproblems are “large”:

• Solve each subproblem recursively
– If the subproblems are “small”:

• Solve them directly (base case)

• Combine:
– Merge together solutions to subproblems

*CLRS Chapter 4

Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify recursive structure of the problem
2. Select a good order for solving subproblems
• Usually smallest problem first

33

Greedy Algorithms

• Require Optimal Substructure
– Solution to larger problem contains the solution to a smaller one
– Only one subproblem to consider!

• Idea:
1. Identify a greedy choice property
• How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain

34

So far

• Divide and Conquer, Dynamic Programming, Greedy
– Take an instance of Problem A, relate it to smaller instances of

Problem A

• Next:
– Take an instance of Problem A, relate it to an instance of Problem B

35

Roadmap: Where We’re Going and Why

• Reductions between problems
– Why? Can be a practical way of solving a new problem
– Also: A proof about one problem’s complexity can be applied to

another
– Formal definition of a reduction

• Examples
– Bipartite graphs, matching
– Vertex cover and independent set

36

Using One Solution to Solve Something Else

• Sometimes we can solve a “new” problem using a solution to
another problem
– We need to “re-cast” the “new” problem as an instance of the other

problem
– We may need to relate how the answer found for the other problem gives

the answer for the “new” problem
• Some examples coming in this lecture:
– We’ll see how to solve edge-disjoint path problem.

Use that to solve vertex-disjoint path problem.
– We know how to find max network flow.

Use that to solve bi-partite matching.

37

Edge-Disjoint Paths

38

Given a graph 𝐺 = (𝑉, 𝐸), a start node 𝑢 and a
destination node 𝑣, give the maximum number of paths
from 𝑢 to 𝑣 which share no edges

𝑢

𝑣

g

h

b
e

f

a
c

Note this is an
optimization problem.

Edge-Disjoint Paths

39

Given a graph 𝐺 = (𝑉, 𝐸), a start node 𝑢 and a
destination node 𝑣, give the maximum number of paths
from 𝑢 to 𝑣 which share no edges

𝑢

𝑣

g

h

b
e

f

a
c

Set of edge-disjoint paths of size 3
(the red, blue, magenta paths)

Is this the max number?

Edge-Disjoint Paths

40

Given a graph 𝐺 = (𝑉, 𝐸), a start node 𝑢 and a
destination node 𝑣, give the maximum number of paths
from 𝑢 to 𝑣 which share no edges

𝑢

𝑣

g

h

b
e

f

a
c

Set of edge-disjoint paths of size 4

Is this the max number?

Edge-Disjoint Paths Algorithm

41

Use a problem we know how to solve, max network flow, to solve this!

Make 𝑢 and 𝑣 the source and sink, give each edge capacity 1, find the max flow.

𝑠

𝑡

g

h

b
e

f

a
c

Set of edge-disjoint paths of size 4
1/1

1/1

1/1

1/1

1/1

1/1
1/1

1/1

1/1
1/1

0/1

0/1

0/1

0/1
0/1

Max flow = 4

Why does this work?
We need to be able to
make a valid argument
that it always does.

What’s the situation?
• Given an input I1 for the max network flow problem (graph G

with edge capacities), we can find the max flow for that input
• Given an input I2 for edge-disjoint path problem, we can:
– Convert that input I2 to make a valid input I1 for network flow

problem, by using same graph G but adding capacity=1 for each edge
– Solve max network flow problem for I1 and get result R1

– Use R1 to give the solution R2 for edge-disjoint path for input I2
• In this case, |f| = the number of paths

• Next, let’s solve another problem using our new edge-disjoint
path solution

42

Vertex-Disjoint Paths

43

Given a graph 𝐺 = (𝑉, 𝐸), a start node 𝑢 and a destination node 𝑣, give the
maximum number of paths from 𝑢 to 𝑣 which share no vertices

𝑢

𝑣

g

h

b
e

f

a
c

Vertex-Disjoint Paths

44

𝑢

𝑣

g

h

b
e

f

a
c

This shows 3 edge-disjoint paths.
Note these aren’t vertex-disjoint paths!

Given a graph 𝐺 = (𝑉, 𝐸), a start node 𝑢 and a destination node 𝑣, give the
maximum number of paths from 𝑢 to 𝑣 which share no vertices

Vertex-Disjoint Paths Algorithm

45

Idea: Convert an instance of the vertex-disjoint paths problem into an instance
of edge-disjoint paths

𝑢

𝑣

g

h

b
e

f

a
c

g in

Make two copies of each node, one connected to incoming edges, the other to
outgoing edges

g
out

Restricts to 1
edge

Compute Edge-Disjoint Paths on new graph

Why does this work?
We need to be able to
make a valid argument
that it always does.

What’s the situation now?

• Given an input I1 for the max network flow problem (graph G with
edge capacities), we can find max flow for that input

• Given an input I2 for edge-disjoint path problem, we can:
– Convert that input I2 to make a valid input I1 for network flow problem,

and solve that to find number of edge-disjoint paths
• Given an input I3 for vertex-disjoint path problem, we can:
– Convert that input I3 to make a valid input I2 for edge-disjoint path problem
– See above! Convert I2 to I1 and solve max network flow problem

• This chain of “problem conversions” finds lets us solve vertex-
disjoint path problem
– Time complexity? Cost of solving max network flow plus two conversions

46

Bipartite Graphs

47

• A graph is bipartite if node-set V can be split into sets X and Y
such that every edge has one end in X and one end in Y
– X and Y could be colored red and blue
– Or Boolean true/false How to determine if G is bipartite?

The numbers and arrows on edges
may give you a clue….

BFS or DFS, and label nodes by levels
in tree.
Non-tree edge to node with same
label means NOT bipartite.

Notes and assumptions

48

• We assume the graph is connected
– Otherwise we will only look at each connected component

individually

• A triangle cannot be bipartite
– In fact, any graph with an odd

length cycle cannot be bipartite

Bipartite Determination Algorithm

49

• Pick a starting vertex, color it red
• Color all adjacent nodes blue
– And all nodes adjacent to that red
– Etc.

• If you ever need to color an already red-node to be blue (or
vice versa), then the graph is not bipartite

• Does this algorithm sound familiar?

Maximum Bipartite Matching

50

Dog Lovers Adoptable Dogs

Maximum Bipartite Matching

51

Dog Lovers Dogs

Is this the best possible?
The largest possible set
of edges?

Maximum Bipartite Matching

52

Dog Lovers Dogs

Better! In fact, the
maximum possible!
How can we tell?

A perfect bipartite match:
Equal-sized left and right
subsets, and all nodes
have a matching edge

Maximum Bipartite Matching

Given a graph 𝐺 = 𝐿, 𝑅, 𝐸
a set of left nodes, right nodes, and edges between left and right

Find the largest set of edges 𝑀 ⊆ 𝐸 such that each node 𝑢 ∈ 𝐿
or 𝑣 ∈ 𝑅 is incident to at most one edge.

53

Maximum Bipartite Matching Using Max Flow

Make 𝐺 = (𝐿, 𝑅, 𝐸) a flow network 𝐺% = (𝑉%, 𝐸%) by:
• Adding in a source and sink to the set of nodes:
– 𝑉% = 𝐿 ∪ 𝑅 ∪ {𝑠, 𝑡}

• Adding an edge from source to 𝐿 and from 𝑅 to
sink:
– 𝐸% = 𝐸 ∪ 𝑢 ∈ 𝐿 𝑠, 𝑢 } ∪ 𝑣 ∈ 𝑅 𝑣, 𝑡 }

• Make each edge capacity 1:
– ∀𝑒 ∈ 𝐸%, 𝑐 𝑒 = 1

54

𝑠
𝑡

1

11

1
1

1

1
11

1

1

1

1

1

1

1

1

Maximum Bipartite Matching Using Max Flow
1. Make 𝐺 into 𝐺′
2. Compute Max Flow on 𝐺′
3. Return 𝑀 as all “middle” edges with flow 1

55

Θ(𝐿 + 𝑅)

Θ(𝐸 ⋅ 𝑉) 𝑓 ≤ 𝐿

Θ(𝐿 + 𝑅)

Overall: Θ(𝐸 ⋅ 𝑉)

𝑠
𝑡

0/1

0/11/1

1/1
0/1
0/1

1/1
1/1

0/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

Why does this work?

56

• Each node on the left can be in at most one matching
– This is enforced by the edge of capacity one leading into it

• Likewise for each node on the right
• The bottleneck will be how it flows across the bipartite

“barrier”

Running time

57

• Max flow runs in O(E*f)
– But the max flow is (at most) V/2 (where V = 𝐿 ∪ 𝑅)
• If every node in the graph has flow through it, then there are V/2 units of flow

moving through the graph

– So the running time is equivalent to O(E*V)

