
Network Flow

1Railway map of Western USSR, 1955

Question: What is the
maximum throughput of the

railroad network?

Announcements

Unit B
• Programming due Friday, 4/15, 11:30pm

Unit C
• Basic 1 + 2 due Friday, 4/15, 11:30pm
• Advanced due Friday, 4/22
• Programming due Friday 4/22 – Seam carving!

2

Kruskal’s Algorithm

3

Start with an empty tree 𝐴
Add to 𝐴 the lowest-weight edge that does not
create a cycle

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Greedy Algorithms

Require Optimal Substructure
• Solution to larger problem contains the solution to a smaller one
• Only one subproblem to consider!

Idea:
1. Identify a greedy choice property

• How to make a choice guaranteed to be included in some optimal solution
2. Repeatedly apply the choice property until no subproblems remain

4

Kruskal’s Algorithm

5

Start with an empty tree 𝐴
Add to 𝐴 the lowest-weight edge that does not
create a cycle

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Kruskal’s Algorithm

6

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Start with an empty tree 𝐴
Add to 𝐴 the lowest-weight edge that does not
create a cycle

Kruskal’s Algorithm

7

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Start with an empty tree 𝐴
Add to 𝐴 the lowest-weight edge that does not
create a cycle

Kruskal’s Algorithm

8

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Start with an empty tree 𝐴
Add to 𝐴 the lowest-weight edge that does not
create a cycle

Kruskal’s Algorithm

9

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Start with an empty tree 𝐴
Add to 𝐴 the lowest-weight edge that does not
create a cycle

Definition: Cut

10

A Cut of graph 𝐺 = (𝑉, 𝐸) is a partition of the
nodes into two sets, 𝑆 and 𝑉 − 𝑆

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

𝑆

Edge 𝑣!, 𝑣" ∈ 𝐸 crosses a
cut if 𝑣! ∈ 𝑆 and 𝑣" ∈ 𝑉 − 𝑆
(or opposite), e.g. (𝐴, 𝐶)

A set of edges 𝑅 Respects a cut
if no edges cross the cut
e.g. 𝑅 = { 𝐴, 𝐵 , 𝐸, 𝐺 , 𝐹, 𝐺 }

Exchange argument

Shows correctness of a greedy algorithm
Idea:
• Show exchanging an item from an arbitrary optimal solution with

your greedy choice makes the new solution no worse
• How to show my sandwich is at least as good as yours:
• Show: “I can remove any item from your sandwich, and it would be no

worse by replacing it with the same item from my sandwich”

11

Cut Theorem

If a set of edges 𝐴 is a subset of a minimum spanning tree 𝑇,
let (𝑆, 𝑉 − 𝑆) be any cut which 𝐴 respects. Let 𝑒 be the least-
weight edge which crosses (𝑆, 𝑉 − 𝑆). 𝐴 ∪ {𝑒} is also a subset
of a minimum spanning tree.

12

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Proof of Cut Theorem

13

Claim: If 𝐴 is a subset of a MST 𝑇, and 𝑒 is the least-
weight edge which crosses cut (𝑆, 𝑉 − 𝑆) (which 𝐴
respects) then 𝐴 ∪ {𝑒} is also a subset of a MST.

𝑆

𝑉 − 𝑆

𝑇

𝐴 ⊆ 𝑇

𝑒

Consider some MST 𝑇,
Case 1: (the easy case)

If 𝑒 ∈ 𝑇 Then claim holds

Proof of Cut Theorem

14

Claim: If 𝐴 is a subset of a MST 𝑇, and 𝑒 is the least-
weight edge which crosses cut (𝑆, 𝑉 − 𝑆) (which 𝐴
respects) then 𝐴 ∪ {𝑒} is also a subset of a MST.

𝑇

𝐴 ⊆ 𝑇

Consider some MST 𝑇,
Case 2:

Consider if 𝑒 = (𝑣$, 𝑣%) ∉ 𝑇
Since 𝑇 is a MST, there is some path
from 𝑣$ to 𝑣%.

Let 𝑒′ be the first edge on this path
which crosses the cut

Build tree 𝑇& by exchanging 𝑒& for 𝑒

𝑣!

𝑣"

𝑆

𝑉 − 𝑆

𝑒𝑒′

Proof of Cut Theorem

15

Claim: If 𝐴 is a subset of a MST 𝑇, and 𝑒 is the least-
weight edge which crosses cut (𝑆, 𝑉 − 𝑆) (which 𝐴
respects) then 𝐴 ∪ {𝑒} is also a subset of a MST.

𝑇

𝐴 ⊆ 𝑇

Consider some MST 𝑇,
Case 2:

Consider if 𝑒 = (𝑣$, 𝑣%) ∉ 𝑇

𝑣!

𝑣"

𝑆

𝑉 − 𝑆

𝑒𝑒′
We assumed 𝑤 𝑒 ≤ 𝑤(𝑒&)
𝑤 𝑇& = 𝑤 𝑇 − 𝑤 𝑒& +𝑤(𝑒)
𝑤 𝑇& ≤ 𝑤 𝑇
So 𝑇& is also a MST!
Thus the claim holds

𝑇& = 𝑇 with edge 𝑒 instead of 𝑒&

Kruskal’s Algorithm

16

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Start with an empty tree 𝐴
Repeat 𝑉 − 1 times:

Add the min-weight edge that doesn’t
cause a cycle

𝑆
𝑒

Keep edges in a Disjoint-set
data structure (very fancy)

𝑂 𝐸 log 𝑉

General MST Algorithm

17

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Start with an empty tree 𝐴
Repeat 𝑉 − 1 times:

Pick a cut (𝑆, 𝑉 − 𝑆) which 𝐴 respects
Add the min-weight edge which crosses (𝑆, 𝑉 − 𝑆)

Prim’s Algorithm

18

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Start with an empty tree 𝐴
Repeat 𝑉 − 1 times:

Pick a cut (𝑆, 𝑉 − 𝑆) which 𝐴 respects
Add the min-weight edge which crosses (𝑆, 𝑉 − 𝑆)

𝑆 is all endpoint of edges in 𝐴
𝑒 is the min-weight edge that grows the tree

Prim’s Algorithm

19

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:

Add the min-weight edge which connects to node
in 𝐴 with a node not in 𝐴

Prim’s Algorithm

20

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:

Add the min-weight edge which connects to node
in 𝐴 with a node not in 𝐴

Prim’s Algorithm

21

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:

Add the min-weight edge which connects to node
in 𝐴 with a node not in 𝐴

Prim’s Algorithm

22

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:

Add the min-weight edge which connects to node
in 𝐴 with a node not in 𝐴

Prim’s Algorithm

23

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:

Add the min-weight edge which connects to node
in 𝐴 with a node not in 𝐴

Keep edges in a Heap
𝑂 𝐸 log 𝑉

Flow Networks

Graph 𝐺 = (𝑉, 𝐸)
Source node 𝑠 ∈ 𝑉
Sink node 𝑡 ∈ 𝑉
Edge capacities 𝑐 𝑒 ∈ ℝ#

Max flow intuition: If 𝑠 is a faucet, 𝑡 is a drain, and 𝑠 connects to 𝑡 through
a network of pipes 𝐸 with capacities 𝑐(𝑒), what is the maximum amount
of water which can flow from the faucet to the drain?

24

3

3

3

2

𝑠
𝑡

1

2

1 3 2

2

3

Assignment of values 𝑓 𝑒 to edges
• “Amount of water going through that pipe”

Capacity constraint
• 𝑓 𝑒 ≤ 𝑐(𝑒)
• “Flow cannot exceed capacity”

Flow constraint
• ∀𝑣 ∈ 𝑉 − {𝑠, 𝑡}, inAlow 𝑣 = outAlow(𝑣)
• inAlow 𝑣 = ∑*∈, 𝑓(𝑥, 𝑣)
• outAlow 𝑣 = ∑*∈, 𝑓(𝑣, 𝑥)
• Water going in must match water coming out

Flow of 𝐺: |𝑓| = out?low 𝑠 − in?low(𝑠)
• Net outflow of 𝑠

25

flow / capacity

3 in this example

Network Flow

1/3

1/3

2/3

2/2

𝑠
𝑡

0/1

2/2

1/1

2/3
1/2

1/2

2/3

Maximum Flow Problem

Of all valid flows through the graph, find the one that maximizes:

𝑓 = out?low 𝑠 − in?low(𝑠)

26

3

3

3

2

𝑠
𝑡

1

2

1

3
2

2

3
0/3

2/3

2/3

2/2

𝑠
𝑡

0/1

2/2

0/1

0/3
0/2

2/2

2/3

Greedy Approach

27

30

20

𝑠 𝑡

10 20

10

Greedy choice: saturate highest capacity path first

Greedy Approach

28

30

20

𝑠 𝑡

10 20

10

Greedy choice: saturate highest capacity path first

Greedy Approach

29

20/30

20/20

𝑠 𝑡

10 20/20

10

Greedy choice: saturate highest capacity path first

Flow: 20

Greedy Approach

30

10/30

20/20

𝑠 𝑡

10/10 20/20

10/10

Greedy choice: saturate highest capacity path first

Maximum Flow: 30

Observe: highest capacity path is not saturated in optimal solution

Residual Graphs

31

1/3

1/3

2/3

2/2

𝑠
𝑡

0/1

2/2

1/1

2/3
1/2

1/2

2/3

Flow 𝑓 in 𝐺

Given a flow 𝑓 in graph 𝐺, the residual graph 𝐺- models additional flow that is possible
• Forward edge for each edge in 𝐺 with weight set to remaining capacity 𝑐 𝑒 − 𝑓(𝑒)

• Models additional flow that can be sent along the edge

Residual graph 𝐺-

𝑠
𝑡

2
1

1

11
2

1
1

Residual Graphs

32

1/3

1/3

2/3

2/2

𝑠
𝑡

0/1

2/2

1/1

2/3
1/2

1/2

2/3

Flow 𝑓 in 𝐺 Residual graph 𝐺-

𝑠
𝑡

2
1

1

11
2

1
1

1

2
1

2

1

2

21
2

1

Given a flow 𝑓 in graph 𝐺, the residual graph 𝐺- models additional flow that is possible
• Forward edge for each edge in 𝐺 with weight set to remaining capacity 𝑐 𝑒 − 𝑓(𝑒)

• Models additional flow that can be sent along the edge
• Backward edge by flipping each edge 𝑒 in 𝐺 with weight set to flow 𝑓(𝑒)

• Models amount of flow that can be removed from the edge

Residual Graphs Example

33

20/30

20/20

𝑠 𝑡

0/10 20/20

0/10

Flow Graph

𝑠 𝑡

Residual Graph

10

0

0

10

10

20
0

200

20

10/30

20/20

𝑠 𝑡

10/10 20/20

10/10

𝑠 𝑡

0

0

0

0

20
10

2010

1020

Residual Graphs

34

1/3

1/3

2/3

2/2

𝑠
𝑡

0/1

2/2

1/1

2/3
1/2

1/2

2/3

Flow 𝑓 in 𝐺

Consider a path from 𝑠 → 𝑡 in 𝐺- using only edges with positive (non-zero) weight
Consider the minimum-weight edge 𝑒 along the path: we can increase the flow by 𝑤(𝑒)
• Send 𝑤(𝑒) flow along all forward edges (these have at least 𝑤(𝑒) capacity)

Residual graph 𝐺-

𝑠
𝑡

2
1

1

11
2

1
1

1

2
1

2

1

2

21
2

1

Residual Graphs

35

1/3

1/3

2/3

2/2

𝑠
𝑡

0/1

2/2

1/1

2/3
1/2

1/2

2/3

Flow 𝑓 in 𝐺

Consider a path from 𝑠 → 𝑡 in 𝐺- using only edges with positive (non-zero) weight
Consider the minimum-weight edge 𝑒 along the path: we can increase the flow by 𝑤(𝑒)
• Send 𝑤(𝑒) flow along all forward edges (these have at least 𝑤(𝑒) capacity)
• Remove 𝑤(𝑒) flow along all backward edges (these contain at least 𝑤(𝑒) units of flow)

Residual graph 𝐺-

𝑠
𝑡

2
1

1

11
2

1
1

1

2
1

2

1

2

21
2

1

Residual Graphs

36

0/3

2/3

2/3

2/2

𝑠
𝑡

0/1

2/2

0/1

2/3
1/2

1/2

3/3

Flow 𝑓 in 𝐺 Residual graph 𝐺-

𝑠
𝑡

2
1

1

11
2

1
1

1

2
1

2

1

2

21
2

1

Observe: Flow has increased by 𝑤(𝑒)

Consider a path from 𝑠 → 𝑡 in 𝐺- using only edges with positive (non-zero) weight
Consider the minimum-weight edge 𝑒 along the path: we can increase the flow by 𝑤(𝑒)
• Send 𝑤 𝑒 flow along all forward edges (these have at least 𝑤(𝑒) capacity)
• Remove 𝑤(𝑒) flow along all backward edges (these contain at least 𝑤(𝑒) units of flow)

Residual Graphs

37

Consider a path from 𝑠 → 𝑡 in 𝐺- using only edges with positive (non-zero) weight
Consider the minimum-weight edge 𝑒 along the path: we can increase the flow by 𝑤(𝑒)
• Send 𝑤(𝑒) flow along all forward edges (these have at least 𝑤(𝑒) capacity)
• Remove 𝑤(𝑒) flow along all backward edges (these contain at least 𝑤(𝑒) units of flow)

Residual graph 𝐺-

𝑠
𝑡

2
1

1

11
2

1
1

1

2
1

2

1

2

21
2

1

Observe: Flow has increased by 𝑤(𝑒)

Why does this respect flow constraints?
• Incoming edge to a node always

corresponds to increased flow to the node
(more incoming flow from forward edge or
less outgoing flow from backward edge)

• Outgoing edge to a node always
corresponds to decreased flow to the
node

Residual Graphs

38

Consider a path from 𝑠 → 𝑡 in 𝐺- using only edges with positive (non-zero) weight
Consider the minimum-weight edge 𝑒 along the path: we can increase the flow by 𝑤(𝑒)
• Send 𝑤(𝑒) flow along all forward edges (these have at least 𝑤(𝑒) capacity)
• Remove 𝑤(𝑒) flow along all backward edges (these contain at least 𝑤(𝑒) units of flow)

Residual graph 𝐺-

𝑠
𝑡

2
1

1

11
2

1
1

1

2
1

2

1

2

21
2

1

Observe: Flow has increased by 𝑤(𝑒)

Why does this respect flow constraints?
• Incoming edge to a node always

corresponds to increased flow to the node
(more incoming flow from forward edge or
less outgoing flow from backward edge)

• Outgoing edge to a node always
corresponds to decreased flow to the
node

Capacity constraints satisfied by construction
of the residual network

Ford-Fulkerson Algorithm

Define an augmenting path to be an 𝑠 → 𝑡 path in the residual graph 𝐺- (using edges of
non-zero weight)

Ford-Fulkerson max-flow algorithm:
• Initialize 𝑓 𝑒 = 0 for all 𝑒 ∈ 𝐸
• Construct the residual network 𝐺-
• While there is an augmenting path 𝑝 in 𝐺-:

• Let 𝑐 = min
.∈/

𝑐-(𝑒) (𝑐-(𝑒) is the weight of edge 𝑒 in the residual network 𝐺-)
• Add 𝑐 units of flow to 𝐺 based on the augmenting path 𝑝
• Update the residual network 𝐺- for the updated flow

39

Ford-Fulkerson approach: take
any augmenting path
(will revisit this later)

Ford-Fulkerson Example

40

0/3

0/3

0/3

0/2

𝑠
𝑡

0/1

0/2

0/1

0/3
0/2

0/2

0/3

Initially: 𝑓 𝑒 = 0 for all 𝑒 ∈ 𝐸

3

3

3

𝑠
𝑡

1

2

1

3
2

2

Residual graph 𝐺$

3

2

Ford-Fulkerson Example

41

0/3

0/3

0/3

0/2

𝑠
𝑡

0/1

0/2

0/1

0/3
0/2

0/2

0/3
3

3

𝑠
𝑡

1

2

1

3
2

2

Residual graph 𝐺$

Increase flow by 1 unit

33

2

Ford-Fulkerson Example

42

0/3

1/3

1/3

0/2

𝑠
𝑡

0/1

1/2

1/1

0/3
0/2

1/2

0/3
3

3

𝑠
𝑡

1

2

1

3
2

2

Residual graph 𝐺$

Increase flow by 1 unit

33

2

Ford-Fulkerson Example

43

0/3

1/3

1/3

0/2

𝑠
𝑡

0/1

1/2

1/1

0/3
0/2

1/2

0/3
2

2

𝑠
𝑡

1

1

3
2

1

1
1

1

1

1

Residual graph 𝐺$

33

2

Ford-Fulkerson Example

44

0/3

1/3

1/3

0/2

𝑠
𝑡

0/1

1/2

1/1

0/3
0/2

1/2

0/3
2

2

𝑠
𝑡

1

1

3
2

1

1
1

1

1

1

Residual graph 𝐺$

Increase flow by 1 unit

33

2

Ford-Fulkerson Example

45

0/3

2/3

1/3

0/2

𝑠
𝑡

0/1

2/2

1/1

0/3
0/2

1/2

1/3
2

2

𝑠
𝑡

1

1

3
2

1

1
1

1

1

1

Residual graph 𝐺$

Increase flow by 1 unit

33

2

Ford-Fulkerson Example

46

0/3

2/3

1/3

0/2

𝑠
𝑡

0/1

2/2

1/1

0/3
0/2

1/2

1/3
1

2

𝑠
𝑡

1

3
2

1

22
1

1

1

2 1

Residual graph 𝐺$

Increase flow by 1 unit

3

2

Ford-Fulkerson Example

47

0/3

2/3

1/3

0/2

𝑠
𝑡

0/1

2/2

1/1

0/3
0/2

1/2

1/3

Residual graph 𝐺$

1

2

𝑠
𝑡

1

3
2

1

22
1

1

1

2 1
3

2

Ford-Fulkerson Example

48

0/3

2/3

1/3

1/2

𝑠
𝑡

0/1

2/2

0/1

0/3
0/2

1/2

2/3

Residual graph 𝐺$

1

2

𝑠
𝑡

1

3
2

1

22
1

1

1

2 1

Increase flow by 1 unit

3

2

Ford-Fulkerson Example

49

0/3

2/3

1/3

1/2

𝑠
𝑡

0/1

2/2

0/1

0/3
0/2

1/2

2/3

Residual graph 𝐺$

1

2

𝑠
𝑡

1

3
2

1

12
1

1

1

2 2

Increase flow by 1 unit

3

1
1

Ford-Fulkerson Example

50

0/3

2/3

1/3

1/2

𝑠
𝑡

0/1

2/2

0/1

0/3
0/2

1/2

2/3

Residual graph 𝐺$

1

2

𝑠
𝑡

1

3
2

1

12
1

1

1

2 2
3

1
1

Ford-Fulkerson Example

51

0/3

2/3

2/3

2/2

𝑠
𝑡

0/1

2/2

0/1

0/3
0/2

2/2

2/3

Residual graph 𝐺$

1

2

𝑠
𝑡

1

3
2

1

12
1

1

1

2 2

Increase flow by 1 unit

3

1
1

Ford-Fulkerson Example

52

0/3

2/3

2/3

2/2

𝑠
𝑡

0/1

2/2

0/1

0/3
0/2

2/2

2/3

Residual graph 𝐺$

No more augmenting paths

1

1

𝑠
𝑡

1

3
2
12

1

2

2

2 2
3

2

Maximum flow: 4

Ford-Fulkerson Running Time

Define an augmenting path to be an 𝑠 → 𝑡 path in the residual graph 𝐺- (using edges of
non-zero weight)

Ford-Fulkerson max-flow algorithm:
• Initialize 𝑓 𝑒 = 0 for all 𝑒 ∈ 𝐸
• Construct the residual network 𝐺-
• While there is an augmenting path 𝑝 in 𝐺-:

• Let 𝑐 = min
.∈/

𝑐-(𝑒) (𝑐-(𝑒) is the weight of edge 𝑒 in the residual network 𝐺-)
• Add 𝑐 units of flow to 𝐺 based on the augmenting path 𝑝
• Update the residual network 𝐺- for the updated flow

53

Initialization: 𝑂 𝐸

Ford-Fulkerson Running Time

Define an augmenting path to be an 𝑠 → 𝑡 path in the residual graph 𝐺- (using edges of
non-zero weight)

Ford-Fulkerson max-flow algorithm:
• Initialize 𝑓 𝑒 = 0 for all 𝑒 ∈ 𝐸
• Construct the residual network 𝐺-
• While there is an augmenting path 𝑝 in 𝐺-:

• Let 𝑐 = min
.∈/

𝑐-(𝑒) (𝑐-(𝑒) is the weight of edge 𝑒 in the residual network 𝐺-)
• Add 𝑐 units of flow to 𝐺 based on the augmenting path 𝑝
• Update the residual network 𝐺- for the updated flow

54

Initialization: 𝑂 𝐸
Construct residual network: 𝑂 𝐸

Ford-Fulkerson Running Time

Define an augmenting path to be an 𝑠 → 𝑡 path in the residual graph 𝐺- (using edges of
non-zero weight)

Ford-Fulkerson max-flow algorithm:
• Initialize 𝑓 𝑒 = 0 for all 𝑒 ∈ 𝐸
• Construct the residual network 𝐺-
• While there is an augmenting path 𝑝 in 𝐺-:

• Let 𝑐 = min
.∈/

𝑐-(𝑒) (𝑐-(𝑒) is the weight of edge 𝑒 in the residual network 𝐺-)
• Add 𝑐 units of flow to 𝐺 based on the augmenting path 𝑝
• Update the residual network 𝐺- for the updated flow

55

Initialization: 𝑂 𝐸
Construct residual network: 𝑂 𝐸
Finding augmenting path in residual network: 𝑂 𝐸 using BFS/DFS

We only care about nodes reachable from
the source 𝑠 (so the number of nodes

that are “relevant” is at most 𝐸)

Ford-Fulkerson Running Time

Define an augmenting path to be an 𝑠 → 𝑡 path in the residual graph 𝐺- (using edges of
non-zero weight)

Ford-Fulkerson max-flow algorithm:
• Initialize 𝑓 𝑒 = 0 for all 𝑒 ∈ 𝐸
• Construct the residual network 𝐺-
• While there is an augmenting path 𝑝 in 𝐺-:

• Let 𝑐 = min
.∈/

𝑐-(𝑒) (𝑐-(𝑒) is the weight of edge 𝑒 in the residual network 𝐺-)
• Add 𝑐 units of flow to 𝐺 based on the augmenting path 𝑝
• Update the residual network 𝐺- for the updated flow

56

Initialization: 𝑂 𝐸
Construct residual network: 𝑂 𝐸
Finding augmenting path in residual network: 𝑂 𝐸 using BFS/DFS

How many iterations are needed?
• For integer-valued capacities, min-weight of each augmenting path is 1, so

number of iterations is bounded by 𝑓∗ , where 𝑓∗ is max-flow in 𝐺
• For rational-valued capacities, can scale to make capacities integer
• For irrational-valued capacities, algorithm may never terminate!

Ford-Fulkerson Running Time

Define an augmenting path to be an 𝑠 → 𝑡 path in the residual graph 𝐺- (using edges of
non-zero weight)

Ford-Fulkerson max-flow algorithm:
• Initialize 𝑓 𝑒 = 0 for all 𝑒 ∈ 𝐸
• Construct the residual network 𝐺-
• While there is an augmenting path 𝑝 in 𝐺-:

• Let 𝑐 = min
.∈/

𝑐-(𝑒) (𝑐-(𝑒) is the weight of edge 𝑒 in the residual network 𝐺-)
• Add 𝑐 units of flow to 𝐺 based on the augmenting path 𝑝
• Update the residual network 𝐺- for the updated flow

57

Initialization: 𝑂 𝐸
Construct residual network: 𝑂 𝐸
Finding augmenting path in residual network: 𝑂 𝐸 using BFS/DFS

For graphs with integer capacities, running time
of Ford-Fulkerson is

𝑂 𝑓∗ ⋅ 𝐸
Highly undesirable if 𝑓∗ ≫ |𝐸| (e.g., graph is
small, but capacities are ≈ 2(")

As described, algorithm is not polynomial-time!

Worst-Case Ford-Fulkerson

58

0/1

0/100

𝑠 𝑡

0/100 0/100

0/100

1

100

𝑠 𝑡

100 100

100

Worst-Case Ford-Fulkerson

59

0/1

0/100

𝑠 𝑡

0/100 0/100

0/100

1

100

𝑠 𝑡

100 100

100

Increase flow by 1 unit

Worst-Case Ford-Fulkerson

60

1/1

1/100

𝑠 𝑡

0/100 1/100

0/100

1

100

𝑠 𝑡

100 100

100

Increase flow by 1 unit

Worst-Case Ford-Fulkerson

61

1/1

1/100

𝑠 𝑡

0/100 1/100

0/100

1

99

𝑠 𝑡

100 99

100

1
1

Worst-Case Ford-Fulkerson

62

1/1

1/100

𝑠 𝑡

0/100 1/100

0/100

1

99

𝑠 𝑡

100 99

100

1
1

Increase flow by 1 unit

Worst-Case Ford-Fulkerson

63

0/1

1/100

𝑠 𝑡

1/100 1/100

1/100

1

99

𝑠 𝑡

100 99

100

1
1

Increase flow by 1 unit

Worst-Case Ford-Fulkerson

64

0/1

1/100

𝑠 𝑡

1/100 1/100

1/100

1

99

𝑠 𝑡

99 99

99

1
1

1

1

Worst-Case Ford-Fulkerson

65

0/1

1/100

𝑠 𝑡

1/100 1/100

1/100

1

99

𝑠 𝑡

99 99

99

1
1

1

1

Observation: each iteration increases flow by 1 unit
Total number of iterations: 𝑓∗ = 200

Can We Avoid this?

Edmonds-Karp Algorithm: choose augmenting path with fewest hops
Running time: Θ min 𝐸 𝑓∗ , 𝑉 𝐸 " = 𝑂 𝑉 𝐸 "

66

Ford-Fulkerson max-flow algorithm:
• Initialize 𝑓 𝑒 = 0 for all 𝑒 ∈ 𝐸
• Construct the residual network 𝐺-
• While there is an augmenting path in 𝐺-, let 𝑝 be the path with fewest hops:
• Let 𝑐 = min

.∈/
𝑐-(𝑒) (𝑐-(𝑒) is the weight of edge 𝑒 in the residual network 𝐺-)

• Add 𝑐 units of flow to 𝐺 based on the augmenting path 𝑝
• Update the residual network 𝐺- for the updated flow

How to find this?
Use breadth-first search (BFS)!

Edmonds-Karp = Ford-Fulkerson
using BFS to find augmenting path

Proof: See CLRS (Chapter 26.2)

Correctness of Ford-Fulkerson

Consider cuts which separate 𝑠 and 𝑡
• Let 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇, such that 𝑉 = 𝑆 ∪ 𝑇

Cost 𝑆, 𝑇 of cut 𝑆, 𝑇 : sum of the capacities of edges from 𝑆 to 𝑇

67

3

3

3

2

𝑠
𝑡

1

2

1

3
2

2

3

𝑆 𝑇𝑆, 𝑇 = 5

Max-Flow / Min-Cut
Claim: Maximum flow in a flow network 𝐺 always upper-bounded by the cost any
cut that separates 𝑠 and 𝑡
Proof: “Conservation of flow”

• All flow from 𝑠 must eventually get to 𝑡
• To get from 𝑠 to 𝑡, all flow must cross the cut somewhere

Conclusion: Max-flow in 𝐺 is at most the cost of the min-cut in 𝐺
• max

!
𝑓 ≤ min

",$
𝑆, 𝑇

68

3

3

3

2

𝑠
𝑡

1

2

1

3
2

2

3

𝑆 𝑇

Max-Flow Min-Cut Theorem

Let 𝑓 be a flow in a graph 𝐺

69

𝑓 is a maximum
flow in 𝐺

there are no
augmenting paths in the

residual graph 𝐺-

there exists a cut
(𝑆, 𝑇) of 𝐺 where

𝑓 = ‖𝑆, 𝑇‖

Statements are equivalent!

Implications:
• Correctness of Ford-Fulkerson: Ford-Fulkerson terminates when there are no more

augmenting paths in the residual graph 𝐺!, which means that 𝑓 is a maximum flow
• Max-flow min-cut duality: the maximum flow in a network coincides with the minimum cut

of the graph (max
!

𝑓 = min
",$

𝑆, 𝑇)

• Finding either the minimum cut or the maximum flow yields solution to the other
• Special case of more general principle (duality in linear programming)

Max-Flow Min-Cut Duality Example

70

0/3

2/3

2/3

2/2

𝑠
𝑡

0/1

2/2

0/1

0/3
0/2

2/2

2/3
1

1

𝑠
𝑡

1

3
2
12

1

2

2

2 2
3

2

Flow graph Residual graph

no more augmenting paths

Max flow: 4

𝑆

𝑇

Max-Flow Min-Cut Duality Example

71

0/3

2/3

2/3

2/2

𝑠
𝑡

0/1

2/2

0/1

0/3
0/2

2/2

2/3
1

1

𝑠
𝑡

1

3
2
12

1

2

2

2 2
3

2

Flow graph Residual graph

no more augmenting paths
𝑆

𝑇

Max flow: 4
Min cut: 4

When there are no more augmenting paths in the graph,
there is a cut whose cost matches the flow

Max-Flow Min-Cut Theorem Proof

Let 𝑓 be a flow in a graph 𝐺

72

𝑓 is a maximum
flow in 𝐺

there are no
augmenting paths in the

residual graph 𝐺-

there exists a cut
(𝑆, 𝑇) of 𝐺 where

𝑓 = ‖𝑆, 𝑇‖

Proof:
• Suppose 𝑓 is a max flow in 𝐺 and there is an augmenting path in 𝐺-
• If there is an augmenting path in 𝐺-, then we can send additional units of flow though

the network along the augmenting path
• This contradicts optimality of 𝑓

Max-Flow Min-Cut Theorem Proof

Let 𝑓 be a flow in a graph 𝐺

73

𝑓 is a maximum
flow in 𝐺

there are no
augmenting paths in the

residual graph 𝐺-

there exists a cut
(𝑆, 𝑇) of 𝐺 where

𝑓 = ‖𝑆, 𝑇‖

Proof:
• Take any flow 𝑓&
• Consider the cut 𝑆, 𝑇 of 𝐺; then, 𝑓& ≤ 𝑆, 𝑇 = 𝑓
• Thus, 𝑓& ≤ 𝑓 , so 𝑓 must be a maximum flow

Max-Flow Min-Cut Theorem Proof

Let 𝑓 be a flow in a graph 𝐺

74

𝑓 is a maximum
flow in 𝐺

there are no
augmenting paths in the

residual graph 𝐺-

there exists a cut
(𝑆, 𝑇) of 𝐺 where

𝑓 = ‖𝑆, 𝑇‖

Max-Flow Min-Cut Theorem Proof

75

0/3

2/3

2/3

2/2

𝑠
𝑡

0/1

2/2

0/1

0/3
0/2

2/2

2/3
1

1

𝑠
𝑡

1

3
2
12

1

2

2

2 2
3

2

no more augmenting paths
𝑆

𝑇
Flow graph Residual graph

No augmenting paths means there is no path from 𝑠 to 𝑡 in 𝐺-
• Let 𝑆 be set of nodes reachable from 𝑠 in 𝐺-
• Let 𝑇 = 𝑉 − 𝑆

Max-Flow Min-Cut Theorem Proof

76

0/3

2/3

2/3

2/2

𝑠
𝑡

0/1

2/2

0/1

0/3
0/2

2/2

2/3
1

1

𝑠
𝑡

1

3
2
12

1

2

2

2 2
3

2

no more augmenting paths
𝑆

𝑇
Claim: 𝑆, 𝑇 = 𝑓
• Total flow 𝑓 is amount of outgoing flow from 𝑆 to 𝑇 minus the amount of incoming flow from 𝑇 to 𝑆

Max-Flow Min-Cut Theorem Proof

77

0/3

2/3

2/3

2/2

𝑠

𝑢
𝑣

𝑡

0/1

2/2

0/1

0/3
0/2

2/2

2/3
1

1

𝑠

𝑢
𝑣

𝑡

1

3
2
12

1

2

2

2 2
3

2

no more augmenting paths
𝑆

𝑇
Claim: 𝑆, 𝑇 = 𝑓
• Total flow 𝑓 is amount of outgoing flow from 𝑆 to 𝑇 minus the amount of incoming flow from 𝑇 to 𝑆
• Outgoing flow: Consider edge 𝑢, 𝑣 where 𝑢 ∈ 𝑆 and 𝑣 ∈ 𝑇

• Then, 𝑓 𝑢, 𝑣 = 𝑐 𝑢, 𝑣 . Otherwise, there is a forward edge 𝑢, 𝑣 with positive weight in 𝐺! and 𝑣 ∈ 𝑆

Max-Flow Min-Cut Theorem Proof

78

0/3

2/3

2/3

2/2

𝑠

𝑥

𝑦

𝑡

0/1

2/2

0/1

0/3
0/2

2/2

2/3
1

1

𝑠

𝑥

𝑦

𝑡

1

3
2
12

1

2

2

2 2
3

2

no more augmenting paths
𝑆

𝑇
Claim: 𝑆, 𝑇 = 𝑓
• Total flow 𝑓 is amount of outgoing flow from 𝑆 to 𝑇 minus the amount of incoming flow from 𝑇 to 𝑆
• Outgoing flow: Consider edge 𝑢, 𝑣 where 𝑢 ∈ 𝑆 and 𝑣 ∈ 𝑇

• Then, 𝑓 𝑢, 𝑣 = 𝑐 𝑢, 𝑣 . Otherwise, there is a forward edge 𝑢, 𝑣 with positive weight in 𝐺! and 𝑣 ∈ 𝑆
• Incoming flow: Consider edge 𝑦, 𝑥 where 𝑦 ∈ 𝑇 and 𝑥 ∈ 𝑆

• Then, 𝑓 𝑦, 𝑥 = 0. Otherwise, there is a backward edge 𝑥, 𝑦 with positive weight in 𝐺! and 𝑦 ∈ 𝑆

Max-Flow Min-Cut Theorem Proof

79

0/3

2/3

2/3

2/2

𝑠
𝑡

0/1

2/2

0/1

0/3
0/2

2/2

2/3
𝑆

𝑇
Claim: 𝑆, 𝑇 = 𝑓
• Total flow 𝑓 is amount of outgoing flow from 𝑆 to 𝑇 minus the amount of incoming flow from 𝑇 to 𝑆
• Outgoing flow: Consider edge 𝑢, 𝑣 where 𝑢 ∈ 𝑆 and 𝑣 ∈ 𝑇

• Then, 𝑓 𝑢, 𝑣 = 𝑐 𝑢, 𝑣 . Otherwise, there is a forward edge 𝑢, 𝑣 with positive weight in 𝐺! and 𝑣 ∈ 𝑆
• Incoming flow: Consider edge 𝑦, 𝑥 where 𝑦 ∈ 𝑇 and 𝑥 ∈ 𝑆

• Then, 𝑓 𝑦, 𝑥 = 0. Otherwise, there is a backward edge 𝑥, 𝑦 with positive weight in 𝐺! and 𝑦 ∈ 𝑆

𝑓 = O
4∈5,7∈8

𝑓 𝑢, 𝑣 − O
9∈8,*∈5

𝑓 𝑦, 𝑥

= 𝑆, 𝑇

= O
4∈5,7∈8

𝑐 𝑢, 𝑣

Max-Flow Min-Cut Theorem

Let 𝑓 be a flow in a graph 𝐺

80

𝑓 is a maximum
flow in 𝐺

there are no
augmenting paths in the

residual graph 𝐺-

there exists a cut
(𝑆, 𝑇) of 𝐺 where

𝑓 = ‖𝑆, 𝑇‖

Statements are equivalent!

Implications:
• Correctness of Ford-Fulkerson: Ford-Fulkerson terminates when there are no more

augmenting paths in the residual graph 𝐺!, which means that 𝑓 is a maximum flow
• Max-flow min-cut duality: the maximum flow in a network coincides with the minimum cut

of the graph (max
!

𝑓 = min
",$

𝑆, 𝑇)

Other Max Flow Algorithms

Ford-Fulkerson
• Θ 𝐸 𝑓∗

Edmonds-Karp (Ford-Fulkerson using BFS to choose augmenting path)
• Θ(𝐸 % 𝑉)

Push-Relabel (Tarjan)
• Θ(𝐸 𝑉 %)

Faster Push-Relabel (also Tarjan)
• Θ(𝑉 :)

81

Minimum-Cost Maximum-Flow Problem

Not all paths are created equal!

82

3

3

3

2

𝑠
𝑡

1

2

1

3
2

2

3

2 5

21
1

3 4

7

1 2

1

A cost is associated with each unit of flow sent along an edge
Goal: Maximize flow while minimizing cost

Much harder problem!
Can solve using linear programming

