
Network Flow

1Railway map of Western USSR, 1955

Question: What is the 
maximum throughput of the 

railroad network?



Announcements

Unit B
• Programming due Friday, 4/15, 11:30pm

Unit C
• Basic 1 + 2 due Friday, 4/15, 11:30pm
• Advanced due Friday, 4/22
• Programming due Friday 4/22 – Seam carving!
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Kruskal’s Algorithm
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Start with an empty tree 𝐴
Add to 𝐴 the lowest-weight edge that does not 
create a cycle
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Greedy Algorithms

Require Optimal Substructure
• Solution to larger problem contains the solution to a smaller one
• Only one subproblem to consider!

Idea:
1. Identify a greedy choice property

• How to make a choice guaranteed to be included in some optimal solution
2. Repeatedly apply the choice property until no subproblems remain
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Kruskal’s Algorithm
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Start with an empty tree 𝐴
Add to 𝐴 the lowest-weight edge that does not 
create a cycle
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Add to 𝐴 the lowest-weight edge that does not 
create a cycle
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Kruskal’s Algorithm
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Start with an empty tree 𝐴
Add to 𝐴 the lowest-weight edge that does not 
create a cycle



Definition: Cut
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A Cut of graph 𝐺 = (𝑉, 𝐸) is a partition of the 
nodes into two sets,  𝑆 and 𝑉 − 𝑆
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𝑆

Edge 𝑣!, 𝑣" ∈ 𝐸 crosses a 
cut if 𝑣! ∈ 𝑆 and 𝑣" ∈ 𝑉 − 𝑆
(or opposite), e.g. (𝐴, 𝐶)

A set of edges 𝑅 Respects a cut
if no edges cross the cut
e.g. 𝑅 = { 𝐴, 𝐵 , 𝐸, 𝐺 , 𝐹, 𝐺 }



Exchange argument

Shows correctness of a greedy algorithm
Idea:
• Show exchanging an item from an arbitrary optimal solution with 

your greedy choice makes the new solution no worse
• How to show my sandwich is at least as good as yours:
• Show: “I can remove any item from your sandwich, and it would be no 

worse by replacing it with the same item from my sandwich”
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Cut Theorem

If a set of edges 𝐴 is a subset of a minimum spanning tree 𝑇, 
let (𝑆, 𝑉 − 𝑆) be any cut which 𝐴 respects. Let 𝑒 be the least-
weight edge which crosses (𝑆, 𝑉 − 𝑆). 𝐴 ∪ {𝑒} is also a subset 
of a minimum spanning tree.

12

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H



Proof of Cut Theorem
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Claim: If 𝐴 is a subset of a MST 𝑇, and 𝑒 is the least-
weight edge which crosses cut (𝑆, 𝑉 − 𝑆) (which 𝐴
respects) then 𝐴 ∪ {𝑒} is also a subset of a MST.

𝑆

𝑉 − 𝑆

𝑇

𝐴 ⊆ 𝑇

𝑒

Consider some MST 𝑇, 
Case 1: (the easy case)

If 𝑒 ∈ 𝑇 Then claim holds 



Proof of Cut Theorem

14

Claim: If 𝐴 is a subset of a MST 𝑇, and 𝑒 is the least-
weight edge which crosses cut (𝑆, 𝑉 − 𝑆) (which 𝐴
respects) then 𝐴 ∪ {𝑒} is also a subset of a MST.

𝑇

𝐴 ⊆ 𝑇

Consider some MST 𝑇, 
Case 2:

Consider if 𝑒 = (𝑣$, 𝑣%) ∉ 𝑇
Since 𝑇 is a MST, there is some path 
from 𝑣$ to 𝑣%.

Let 𝑒′ be the first edge on this path 
which crosses the cut

Build tree 𝑇& by exchanging 𝑒& for 𝑒

𝑣!

𝑣"

𝑆

𝑉 − 𝑆

𝑒𝑒′



Proof of Cut Theorem

15

Claim: If 𝐴 is a subset of a MST 𝑇, and 𝑒 is the least-
weight edge which crosses cut (𝑆, 𝑉 − 𝑆) (which 𝐴
respects) then 𝐴 ∪ {𝑒} is also a subset of a MST.

𝑇

𝐴 ⊆ 𝑇

Consider some MST 𝑇, 
Case 2:

Consider if 𝑒 = (𝑣$, 𝑣%) ∉ 𝑇

𝑣!

𝑣"

𝑆

𝑉 − 𝑆

𝑒𝑒′
We assumed 𝑤 𝑒 ≤ 𝑤(𝑒&)
𝑤 𝑇& = 𝑤 𝑇 − 𝑤 𝑒& +𝑤(𝑒)
𝑤 𝑇& ≤ 𝑤 𝑇
So 𝑇& is also a MST!
Thus the claim holds

𝑇& = 𝑇 with edge 𝑒 instead of 𝑒&



Kruskal’s Algorithm
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Start with an empty tree 𝐴
Repeat 𝑉 − 1 times:

Add the min-weight edge that doesn’t 
cause a cycle

𝑆
𝑒

Keep edges in a Disjoint-set 
data structure (very fancy)

𝑂 𝐸 log 𝑉



General MST Algorithm
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Start with an empty tree 𝐴
Repeat 𝑉 − 1 times:

Pick a cut (𝑆, 𝑉 − 𝑆) which 𝐴 respects
Add the min-weight edge which crosses (𝑆, 𝑉 − 𝑆)



Prim’s Algorithm
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Start with an empty tree 𝐴
Repeat 𝑉 − 1 times:

Pick a cut (𝑆, 𝑉 − 𝑆) which 𝐴 respects
Add the min-weight edge which crosses (𝑆, 𝑉 − 𝑆)

𝑆 is all endpoint of edges in 𝐴
𝑒 is the min-weight edge that grows the tree



Prim’s Algorithm
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Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:

Add the min-weight edge which connects to node 
in 𝐴 with a node not in 𝐴



Prim’s Algorithm
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Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:

Add the min-weight edge which connects to node 
in 𝐴 with a node not in 𝐴



Prim’s Algorithm
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Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:

Add the min-weight edge which connects to node 
in 𝐴 with a node not in 𝐴



Prim’s Algorithm
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Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:

Add the min-weight edge which connects to node 
in 𝐴 with a node not in 𝐴



Prim’s Algorithm
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Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:

Add the min-weight edge which connects to node 
in 𝐴 with a node not in 𝐴

Keep edges in a Heap
𝑂 𝐸 log 𝑉



Flow Networks

Graph 𝐺 = (𝑉, 𝐸)
Source node 𝑠 ∈ 𝑉
Sink node 𝑡 ∈ 𝑉
Edge capacities 𝑐 𝑒 ∈ ℝ#

Max flow intuition: If 𝑠 is a faucet, 𝑡 is a drain, and 𝑠 connects to 𝑡 through 
a network of pipes 𝐸 with capacities 𝑐(𝑒), what is the maximum amount 
of water which can flow from the faucet to the drain?
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Assignment of values 𝑓 𝑒 to edges
• “Amount of water going through that pipe”

Capacity constraint
• 𝑓 𝑒 ≤ 𝑐(𝑒)
• “Flow cannot exceed capacity”

Flow constraint
• ∀𝑣 ∈ 𝑉 − {𝑠, 𝑡}, inAlow 𝑣 = outAlow(𝑣)
• inAlow 𝑣 = ∑*∈, 𝑓(𝑥, 𝑣)
• outAlow 𝑣 = ∑*∈, 𝑓(𝑣, 𝑥)
• Water going in must match water coming out

Flow of 𝐺: |𝑓| = out?low 𝑠 − in?low(𝑠)
• Net outflow of 𝑠
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Maximum Flow Problem

Of all valid flows through the graph, find the one that maximizes:

𝑓 = out?low 𝑠 − in?low(𝑠)
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Greedy Approach
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Greedy choice: saturate highest capacity path first
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Greedy Approach
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Greedy choice: saturate highest capacity path first

Flow: 20



Greedy Approach
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Greedy choice: saturate highest capacity path first

Maximum Flow: 30

Observe: highest capacity path is not saturated in optimal solution



Residual Graphs
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Flow 𝑓 in 𝐺

Given a flow 𝑓 in graph 𝐺, the residual graph 𝐺- models additional flow that is possible
• Forward edge for each edge in 𝐺 with weight set to remaining capacity 𝑐 𝑒 − 𝑓(𝑒)

• Models additional flow that can be sent along the edge

Residual graph 𝐺-
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Residual Graphs
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Given a flow 𝑓 in graph 𝐺, the residual graph 𝐺- models additional flow that is possible
• Forward edge for each edge in 𝐺 with weight set to remaining capacity 𝑐 𝑒 − 𝑓(𝑒)

• Models additional flow that can be sent along the edge
• Backward edge by flipping each edge 𝑒 in 𝐺 with weight set to flow 𝑓(𝑒)

• Models amount of flow that can be removed from the edge



Residual Graphs Example
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Residual Graphs
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Flow 𝑓 in 𝐺

Consider a path from 𝑠 → 𝑡 in 𝐺- using only edges with positive (non-zero) weight
Consider the minimum-weight edge 𝑒 along the path: we can increase the flow by 𝑤(𝑒)
• Send 𝑤(𝑒) flow along all forward edges (these have at least 𝑤(𝑒) capacity)
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Residual Graphs
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Consider a path from 𝑠 → 𝑡 in 𝐺- using only edges with positive (non-zero) weight
Consider the minimum-weight edge 𝑒 along the path: we can increase the flow by 𝑤(𝑒)
• Send 𝑤(𝑒) flow along all forward edges (these have at least 𝑤(𝑒) capacity)
• Remove 𝑤(𝑒) flow along all backward edges (these contain at least 𝑤(𝑒) units of flow)
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Residual Graphs
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Observe: Flow has increased by 𝑤(𝑒)

Consider a path from 𝑠 → 𝑡 in 𝐺- using only edges with positive (non-zero) weight
Consider the minimum-weight edge 𝑒 along the path: we can increase the flow by 𝑤(𝑒)
• Send 𝑤 𝑒 flow along all forward edges (these have at least 𝑤(𝑒) capacity)
• Remove 𝑤(𝑒) flow along all backward edges (these contain at least 𝑤(𝑒) units of flow)



Residual Graphs
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Consider a path from 𝑠 → 𝑡 in 𝐺- using only edges with positive (non-zero) weight
Consider the minimum-weight edge 𝑒 along the path: we can increase the flow by 𝑤(𝑒)
• Send 𝑤(𝑒) flow along all forward edges (these have at least 𝑤(𝑒) capacity)
• Remove 𝑤(𝑒) flow along all backward edges (these contain at least 𝑤(𝑒) units of flow)
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Observe: Flow has increased by 𝑤(𝑒)

Why does this respect flow constraints?
• Incoming edge to a node always 

corresponds to increased flow to the node 
(more incoming flow from forward edge or 
less outgoing flow from backward edge)

• Outgoing edge to a node always 
corresponds to decreased flow to the 
node



Residual Graphs
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Consider a path from 𝑠 → 𝑡 in 𝐺- using only edges with positive (non-zero) weight
Consider the minimum-weight edge 𝑒 along the path: we can increase the flow by 𝑤(𝑒)
• Send 𝑤(𝑒) flow along all forward edges (these have at least 𝑤(𝑒) capacity)
• Remove 𝑤(𝑒) flow along all backward edges (these contain at least 𝑤(𝑒) units of flow)

Residual graph 𝐺-
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Observe: Flow has increased by 𝑤(𝑒)

Why does this respect flow constraints?
• Incoming edge to a node always 

corresponds to increased flow to the node 
(more incoming flow from forward edge or 
less outgoing flow from backward edge)

• Outgoing edge to a node always 
corresponds to decreased flow to the 
node

Capacity constraints satisfied by construction 
of the residual network



Ford-Fulkerson Algorithm

Define an augmenting path to be an 𝑠 → 𝑡 path in the residual graph 𝐺- (using edges of 
non-zero weight)

Ford-Fulkerson max-flow algorithm:
• Initialize 𝑓 𝑒 = 0 for all 𝑒 ∈ 𝐸
• Construct the residual network 𝐺-
• While there is an augmenting path 𝑝 in 𝐺-:

• Let 𝑐 = min
.∈/

𝑐-(𝑒) (𝑐-(𝑒) is the weight of edge 𝑒 in the residual network 𝐺-)
• Add 𝑐 units of flow to 𝐺 based on the augmenting path 𝑝
• Update the residual network 𝐺- for the updated flow
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Ford-Fulkerson approach: take 
any augmenting path
(will revisit this later)



Ford-Fulkerson Example
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Ford-Fulkerson Example
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Ford-Fulkerson Example
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Ford-Fulkerson Example
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Ford-Fulkerson Example
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Ford-Fulkerson Example
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Ford-Fulkerson Example
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Ford-Fulkerson Example
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Ford-Fulkerson Example
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Ford-Fulkerson Example
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Ford-Fulkerson Running Time

Define an augmenting path to be an 𝑠 → 𝑡 path in the residual graph 𝐺- (using edges of 
non-zero weight)

Ford-Fulkerson max-flow algorithm:
• Initialize 𝑓 𝑒 = 0 for all 𝑒 ∈ 𝐸
• Construct the residual network 𝐺-
• While there is an augmenting path 𝑝 in 𝐺-:

• Let 𝑐 = min
.∈/

𝑐-(𝑒) (𝑐-(𝑒) is the weight of edge 𝑒 in the residual network 𝐺-)
• Add 𝑐 units of flow to 𝐺 based on the augmenting path 𝑝
• Update the residual network 𝐺- for the updated flow

53

Initialization: 𝑂 𝐸



Ford-Fulkerson Running Time

Define an augmenting path to be an 𝑠 → 𝑡 path in the residual graph 𝐺- (using edges of 
non-zero weight)

Ford-Fulkerson max-flow algorithm:
• Initialize 𝑓 𝑒 = 0 for all 𝑒 ∈ 𝐸
• Construct the residual network 𝐺-
• While there is an augmenting path 𝑝 in 𝐺-:

• Let 𝑐 = min
.∈/

𝑐-(𝑒) (𝑐-(𝑒) is the weight of edge 𝑒 in the residual network 𝐺-)
• Add 𝑐 units of flow to 𝐺 based on the augmenting path 𝑝
• Update the residual network 𝐺- for the updated flow
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Initialization: 𝑂 𝐸
Construct residual network: 𝑂 𝐸



Ford-Fulkerson Running Time

Define an augmenting path to be an 𝑠 → 𝑡 path in the residual graph 𝐺- (using edges of 
non-zero weight)

Ford-Fulkerson max-flow algorithm:
• Initialize 𝑓 𝑒 = 0 for all 𝑒 ∈ 𝐸
• Construct the residual network 𝐺-
• While there is an augmenting path 𝑝 in 𝐺-:

• Let 𝑐 = min
.∈/

𝑐-(𝑒) (𝑐-(𝑒) is the weight of edge 𝑒 in the residual network 𝐺-)
• Add 𝑐 units of flow to 𝐺 based on the augmenting path 𝑝
• Update the residual network 𝐺- for the updated flow
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Initialization: 𝑂 𝐸
Construct residual network: 𝑂 𝐸
Finding augmenting path in residual network: 𝑂 𝐸 using BFS/DFS

We only care about nodes reachable from 
the source 𝑠 (so the number of nodes 

that are “relevant” is at most 𝐸 )



Ford-Fulkerson Running Time

Define an augmenting path to be an 𝑠 → 𝑡 path in the residual graph 𝐺- (using edges of 
non-zero weight)

Ford-Fulkerson max-flow algorithm:
• Initialize 𝑓 𝑒 = 0 for all 𝑒 ∈ 𝐸
• Construct the residual network 𝐺-
• While there is an augmenting path 𝑝 in 𝐺-:

• Let 𝑐 = min
.∈/

𝑐-(𝑒) (𝑐-(𝑒) is the weight of edge 𝑒 in the residual network 𝐺-)
• Add 𝑐 units of flow to 𝐺 based on the augmenting path 𝑝
• Update the residual network 𝐺- for the updated flow
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Initialization: 𝑂 𝐸
Construct residual network: 𝑂 𝐸
Finding augmenting path in residual network: 𝑂 𝐸 using BFS/DFS

How many iterations are needed?
• For integer-valued capacities, min-weight of each augmenting path is 1, so 

number of iterations is bounded by 𝑓∗ , where 𝑓∗ is max-flow in 𝐺
• For rational-valued capacities, can scale to make capacities integer
• For irrational-valued capacities, algorithm may never terminate!



Ford-Fulkerson Running Time

Define an augmenting path to be an 𝑠 → 𝑡 path in the residual graph 𝐺- (using edges of 
non-zero weight)

Ford-Fulkerson max-flow algorithm:
• Initialize 𝑓 𝑒 = 0 for all 𝑒 ∈ 𝐸
• Construct the residual network 𝐺-
• While there is an augmenting path 𝑝 in 𝐺-:

• Let 𝑐 = min
.∈/

𝑐-(𝑒) (𝑐-(𝑒) is the weight of edge 𝑒 in the residual network 𝐺-)
• Add 𝑐 units of flow to 𝐺 based on the augmenting path 𝑝
• Update the residual network 𝐺- for the updated flow

57

Initialization: 𝑂 𝐸
Construct residual network: 𝑂 𝐸
Finding augmenting path in residual network: 𝑂 𝐸 using BFS/DFS

For graphs with integer capacities, running time 
of Ford-Fulkerson is

𝑂 𝑓∗ ⋅ 𝐸
Highly undesirable if 𝑓∗ ≫ |𝐸| (e.g., graph is 
small, but capacities are ≈ 2(")

As described, algorithm is not polynomial-time!



Worst-Case Ford-Fulkerson
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Worst-Case Ford-Fulkerson
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Worst-Case Ford-Fulkerson
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Worst-Case Ford-Fulkerson
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Worst-Case Ford-Fulkerson
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Worst-Case Ford-Fulkerson
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Worst-Case Ford-Fulkerson
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Worst-Case Ford-Fulkerson
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Observation: each iteration increases flow by 1 unit
Total number of iterations: 𝑓∗ = 200



Can We Avoid this?

Edmonds-Karp Algorithm: choose augmenting path with fewest hops
Running time: Θ min 𝐸 𝑓∗ , 𝑉 𝐸 " = 𝑂 𝑉 𝐸 "

66

Ford-Fulkerson max-flow algorithm:
• Initialize 𝑓 𝑒 = 0 for all 𝑒 ∈ 𝐸
• Construct the residual network 𝐺-
• While there is an augmenting path in 𝐺-, let 𝑝 be the path with fewest hops:
• Let 𝑐 = min

.∈/
𝑐-(𝑒) (𝑐-(𝑒) is the weight of edge 𝑒 in the residual network 𝐺-)

• Add 𝑐 units of flow to 𝐺 based on the augmenting path 𝑝
• Update the residual network 𝐺- for the updated flow

How to find this? 
Use breadth-first search (BFS)!

Edmonds-Karp = Ford-Fulkerson 
using BFS to find augmenting path

Proof: See CLRS (Chapter 26.2)



Correctness of Ford-Fulkerson

Consider cuts which separate 𝑠 and 𝑡
• Let 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇, such that 𝑉 = 𝑆 ∪ 𝑇

Cost 𝑆, 𝑇 of cut 𝑆, 𝑇 : sum of the capacities of edges from 𝑆 to 𝑇
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Max-Flow / Min-Cut
Claim: Maximum flow in a flow network 𝐺 always upper-bounded by the cost any 
cut that separates 𝑠 and 𝑡
Proof: “Conservation of flow”

• All flow from 𝑠 must eventually get to 𝑡
• To get from 𝑠 to 𝑡, all flow must cross the cut somewhere

Conclusion: Max-flow in 𝐺 is at most the cost of the min-cut in 𝐺
• max

!
𝑓 ≤ min

",$
𝑆, 𝑇
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Max-Flow Min-Cut Theorem

Let 𝑓 be a flow in a graph 𝐺

69

𝑓 is a maximum 
flow in 𝐺

there are no 
augmenting paths in the 

residual graph 𝐺-

there exists a cut 
(𝑆, 𝑇) of 𝐺 where 

𝑓 = ‖𝑆, 𝑇‖

Statements are equivalent!

Implications:
• Correctness of Ford-Fulkerson: Ford-Fulkerson terminates when there are no more 

augmenting paths in the residual graph 𝐺!, which means that 𝑓 is a maximum flow
• Max-flow min-cut duality: the maximum flow in a network coincides with the minimum cut 

of the graph (max
!

𝑓 = min
",$

𝑆, 𝑇 )

• Finding either the minimum cut or the maximum flow yields solution to the other
• Special case of more general principle (duality in linear programming)



Max-Flow Min-Cut Duality Example
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Max-Flow Min-Cut Duality Example
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Max flow: 4
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When there are no more augmenting paths in the graph, 
there is a cut whose cost matches the flow



Max-Flow Min-Cut Theorem Proof

Let 𝑓 be a flow in a graph 𝐺

72

𝑓 is a maximum 
flow in 𝐺

there are no 
augmenting paths in the 

residual graph 𝐺-

there exists a cut 
(𝑆, 𝑇) of 𝐺 where 

𝑓 = ‖𝑆, 𝑇‖

Proof:
• Suppose 𝑓 is a max flow in 𝐺 and there is an augmenting path in 𝐺-
• If there is an augmenting path in 𝐺-, then we can send additional units of flow though 

the network along the augmenting path
• This contradicts optimality of 𝑓



Max-Flow Min-Cut Theorem Proof

Let 𝑓 be a flow in a graph 𝐺

73

𝑓 is a maximum 
flow in 𝐺

there are no 
augmenting paths in the 

residual graph 𝐺-

there exists a cut 
(𝑆, 𝑇) of 𝐺 where 

𝑓 = ‖𝑆, 𝑇‖

Proof:
• Take any flow 𝑓&
• Consider the cut 𝑆, 𝑇 of 𝐺; then, 𝑓& ≤ 𝑆, 𝑇 = 𝑓
• Thus, 𝑓& ≤ 𝑓 , so 𝑓 must be a maximum flow



Max-Flow Min-Cut Theorem Proof

Let 𝑓 be a flow in a graph 𝐺
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𝑓 is a maximum 
flow in 𝐺

there are no 
augmenting paths in the 

residual graph 𝐺-

there exists a cut 
(𝑆, 𝑇) of 𝐺 where 

𝑓 = ‖𝑆, 𝑇‖



Max-Flow Min-Cut Theorem Proof
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No augmenting paths means there is no path from 𝑠 to 𝑡 in 𝐺-
• Let 𝑆 be set of nodes reachable from 𝑠 in 𝐺-
• Let 𝑇 = 𝑉 − 𝑆



Max-Flow Min-Cut Theorem Proof
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Claim: 𝑆, 𝑇 = 𝑓
• Total flow 𝑓 is amount of outgoing flow from 𝑆 to 𝑇 minus the amount of incoming flow from 𝑇 to 𝑆



Max-Flow Min-Cut Theorem Proof
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Claim: 𝑆, 𝑇 = 𝑓
• Total flow 𝑓 is amount of outgoing flow from 𝑆 to 𝑇 minus the amount of incoming flow from 𝑇 to 𝑆
• Outgoing flow: Consider edge 𝑢, 𝑣 where 𝑢 ∈ 𝑆 and 𝑣 ∈ 𝑇

• Then, 𝑓 𝑢, 𝑣 = 𝑐 𝑢, 𝑣 . Otherwise, there is a forward edge 𝑢, 𝑣 with positive weight in 𝐺! and 𝑣 ∈ 𝑆



Max-Flow Min-Cut Theorem Proof
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Claim: 𝑆, 𝑇 = 𝑓
• Total flow 𝑓 is amount of outgoing flow from 𝑆 to 𝑇 minus the amount of incoming flow from 𝑇 to 𝑆
• Outgoing flow: Consider edge 𝑢, 𝑣 where 𝑢 ∈ 𝑆 and 𝑣 ∈ 𝑇

• Then, 𝑓 𝑢, 𝑣 = 𝑐 𝑢, 𝑣 . Otherwise, there is a forward edge 𝑢, 𝑣 with positive weight in 𝐺! and 𝑣 ∈ 𝑆
• Incoming flow: Consider edge 𝑦, 𝑥 where 𝑦 ∈ 𝑇 and 𝑥 ∈ 𝑆

• Then, 𝑓 𝑦, 𝑥 = 0. Otherwise, there is a backward edge 𝑥, 𝑦 with positive weight in 𝐺! and 𝑦 ∈ 𝑆



Max-Flow Min-Cut Theorem Proof
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Claim: 𝑆, 𝑇 = 𝑓
• Total flow 𝑓 is amount of outgoing flow from 𝑆 to 𝑇 minus the amount of incoming flow from 𝑇 to 𝑆
• Outgoing flow: Consider edge 𝑢, 𝑣 where 𝑢 ∈ 𝑆 and 𝑣 ∈ 𝑇

• Then, 𝑓 𝑢, 𝑣 = 𝑐 𝑢, 𝑣 . Otherwise, there is a forward edge 𝑢, 𝑣 with positive weight in 𝐺! and 𝑣 ∈ 𝑆
• Incoming flow: Consider edge 𝑦, 𝑥 where 𝑦 ∈ 𝑇 and 𝑥 ∈ 𝑆

• Then, 𝑓 𝑦, 𝑥 = 0. Otherwise, there is a backward edge 𝑥, 𝑦 with positive weight in 𝐺! and 𝑦 ∈ 𝑆

𝑓 = O
4∈5,7∈8

𝑓 𝑢, 𝑣 − O
9∈8,*∈5

𝑓 𝑦, 𝑥

= 𝑆, 𝑇

= O
4∈5,7∈8

𝑐 𝑢, 𝑣



Max-Flow Min-Cut Theorem

Let 𝑓 be a flow in a graph 𝐺

80

𝑓 is a maximum 
flow in 𝐺

there are no 
augmenting paths in the 

residual graph 𝐺-

there exists a cut 
(𝑆, 𝑇) of 𝐺 where 

𝑓 = ‖𝑆, 𝑇‖

Statements are equivalent!

Implications:
• Correctness of Ford-Fulkerson: Ford-Fulkerson terminates when there are no more 

augmenting paths in the residual graph 𝐺!, which means that 𝑓 is a maximum flow
• Max-flow min-cut duality: the maximum flow in a network coincides with the minimum cut 

of the graph (max
!

𝑓 = min
",$

𝑆, 𝑇 )



Other Max Flow Algorithms

Ford-Fulkerson
• Θ 𝐸 𝑓∗

Edmonds-Karp (Ford-Fulkerson using BFS to choose augmenting path)
• Θ( 𝐸 % 𝑉 )

Push-Relabel (Tarjan)
• Θ( 𝐸 𝑉 %)

Faster Push-Relabel (also Tarjan)
• Θ( 𝑉 :)
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Minimum-Cost Maximum-Flow Problem

Not all paths are created equal!
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A cost is associated with each unit of flow sent along an edge
Goal: Maximize flow while minimizing cost

Much harder problem!
Can solve using linear programming


