Railway map of Western USSR, 1955

Question: What is the
maximum throughput of the
railroad network?

Announcements

Unit B

* Programming due Friday, 4/15, 11:30pm
Unit C

e Basic 1 + 2 due Friday, 4/15, 11:30pm

* Advanced due Friday, 4/22
* Programming due Friday 4/22 — Seam carving!

Kruskal’s Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not
create a cycle

Greedy Algorithms

Require Optimal Substructure
 Solution to larger problem contains the solution to a smaller one
* Only one subproblem to consider!

|dea:

1. Identify a greedy choice property
. How to make a choice guaranteed to be included in some optimal solution
2. Repeatedly apply the choice property until no subproblems remain

Kruskal’s Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not
create a cycle

Kruskal’s Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not
create a cycle

Kruskal’s Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not
create a cycle

Kruskal’s Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not
create a cycle

Kruskal’s Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not
create a cycle

Definition: Cut

A Cut of graph G = (V, E) is a partition of the
nodes into two sets, Sand !/ — S

Edge (v,,v,) € E crosses a A set of edges R Respects a cut

cutifvyeSandv, eV —-S if no edges cross the cut
(or opposite), e.g. (4, C) eg.R={(4,B) (EG) F,G)} .

Exchange argument

Shows correctness of a greedy algorithm

ldea:

* Show exchanging an item from an arbitrary optimal solution with
your greedy choice makes the new solution no worse
* How to show my sandwich is at least as good as yours:

* Show: “l can remove any item from your sandwich, and it would be no
worse by replacing it with the same item from my sandwich”

Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T,
let (S,V — S) be any cut which A respects. Let ¢ be the least-
weight edge which crosses (S, — S5). A U {e} is also a subset

of a minimum spanning tree.

12

Proof of Cut Theorem

Claim: If A is a subset of a MST T', and ¢ is the least-
weight edge which crosses cut (S, — S5) (which A
respects) then A U {e} is also a subset of a MST.

::73':. Consider some MST T,
ACT Case 1: (the easy case)
----- If e € T Then claim holds

13

Proof of Cut Theorem

Claim: If A is a subset of a MST T', and ¢ is the least-
weight edge which crosses cut (S, — S5) (which A
respects) then A U {e} is also a subset of a MST.

Consider some MST T,
----- Case 2:

Considerife = (v, v,) & T

Since T is a MST, there is some path
from v, to v,.

Let e’ be the first edge on this path
which crosses the cut

Build tree T' by exchanging e’ for e

14

Proof of Cut Theorem

Claim: If A is a subset of a MST T', and ¢ is the least-
weight edge which crosses cut (S, — S5) (which A
respects) then A U {e} is also a subset of a MST.

Consider some MST T,
""" Case 2:

Considerife = (v, v,) & T
T' = T with edge ¢ instead of e’

We assumed w(e) < w(e’)
w(T") =w(T) —w(e') +w(e)
w(T") < w(T)

So T'is also a MST!

Thus the claim holds

15

Kruskal’s Algorithm

Start with an empty tree A Keep edges in a Disjoint-set
Repeat V — 1 times: data structure (very fancy)
Add the min-weight edge that doesn’t O(E logV)

cause a cycle

16

General MST Algorithm

Start with an empty tree A
Repeat IV — 1 times:
Pick a cut (5,V — 5) which A respects
Add the min-weight edge which crosses (S,V — S)

17

Prim’s Algorithm

Start with an empty tree A
Repeat IV — 1 times:
Pick a cut (5, —5) which A respects

Add the min-weight edge which crosses (5,V — S5)

S is all endpoint of edges in A

e is the min-weight edge that grows the tree
. E

18

Prim’s Algorithm

Start with an empty tree A
Pick a start node
Repeat IV — 1 times:
Add the min-weight edge which connects to node
in A with a node notin A4

19

Prim’s Algorithm

Start with an empty tree A
Pick a start node
Repeat IV — 1 times:
Add the min-weight edge which connects to node
in A with a node notin 4

20

Prim’s Algorithm

Start with an empty tree A
Pick a start node
Repeat IV — 1 times:
Add the min-weight edge which connects to node
in A with a node notin 4

21

Prim’s Algorithm

Start with an empty tree A
Pick a start node
Repeat IV — 1 times:
Add the min-weight edge which connects to node
in A with a node notin 4

22

Prim’s Algorithm

Start with an empty tree A Keep edges in a Heap
Pick a start node O(E logV)
Repeat IV — 1 times:
Add the min-weight edge which connects to node
in A with anode notin A

23

Graph ¢ = (V,E)

Source nodes € V

Sink nodet € V

Edge capacities c(e) € R*

Max flow intuition: If s is a faucet, t is a drain, and s connects to t through
a network of pipes E with capacities c(e), what is the maximum amount
of water which can flow from the faucet to the drain?

24

Assignment of values f(e) to edges

- b s AP
* “Amount of water going through that pipe
Capacity constraint . s 2/3
* fle) = c(e) 1/1 "

* “Flow cannot exceed capacity” 2/2

2/3

Flow constraint
* Yv €V —{s,t}, inflow(v) = outflow(v)
* inflow(v) = Yyev f(x, V)
* outflow(v) = Xy f (v,) flow / capacity
* Water going in must match water coming out

Flow of G: |f| = outflow(s) — inflow(s)
* Net outflow of s 3 in this example

0/1 1/2

2/3

25

Maximum Flow Problem

Of all valid flows through the graph, find the one that maximizes:

|f| = outflow(s) — inflow(s)

2/3 2/2

0/3 0/1

2/2 0/3

0/1 2/2
3 2/3

26

Greedy Approach

Greedy choice: saturate highest capacity path first

27

Greedy Approach

Greedy choice: saturate highest capacity path first

28

Greedy Approach

Greedy choice: saturate highest capacity path first

Flow: 20

29

Greedy Approach

Greedy choice: saturate highest capacity path first

20/20

Maximum Flow: 30

Observe: highest capacity path is not saturated in optimal solution 30

Residual Graphs

Given a flow f in graph G, the residual graph G models additional flow that is possible

» Forward edge for each edge in G with weight set to remaining capacity c(e) — f(e)
* Models additional flow that can be sent along the edge

31

Flow f in G Residual graph Gy

Residual Graphs

Given a flow f in graph G, the residual graph G models additional flow that is possible
» Forward edge for each edge in G with weight set to remaining capacity c(e) — f(e)
* Models additional flow that can be sent along the edge
* Backward edge by flipping each edge e in G with weight set to flow f (e)
* Models amount of flow that can be removed from the edge

2/2

1/3
2/3

S 1/3
2/2

v 1/2

2/3

0/1 1/2
2/3
Flow f in G Residual graph Gy

32

Residual Graphs Example

Flow Graph Residual Graph

Residual Graphs

Consider a path from s — t in G¢ using only edges with positive (non-zero) weight

Consider the minimum-weight edge e along the path: we can increase the flow by w(e)
* Send w(e) flow along all forward edges (these have at least w(e) capacity)

2/2

2/3

0/1 1/2
2/3
Flow f in G Residual graph Gy

34

Residual Graphs

Consider a path from s — t in G¢ using only edges with positive (non-zero) weight

Consider the minimum-weight edge e along the path: we can increase the flow by w(e)
* Send w(e) flow along all forward edges (these have at least w(e) capacity)
* Remove w(e) flow along all backward edges (these contain at least w(e) units of flow)

1/55,;’%

-

-

1/1 ,7
s
y

’
/

1
1/3, 4
22 1
I

| 4

2/3
Flow f in G Residual graph Gy

35

Residual Graphs

Consider a path from s — t in G¢ using only edges with positive (non-zero) weight

Consider the minimum-weight edge e along the path: we can increase the flow by w(e)
« Send w(e) flow along all forward edges (these have at least w(e) capacity)
* Remove w(e) flow along all backward edges (these contain at least w(e) units of flow)

Observe: Flow has increased by w(e)

2/3”1%

- y

~3/3

~

-

0/1/,
V4
V4

4 2/3

1
0/3] 4
22 1
I

| 4

2/3
Flow f in G Residual graph Gy

36

Residual Graphs

Consider a path from s — t in G¢ using only edges with positive (non-zero) weight
Consider the minimum-weight edge e along the path: we can increase the flow by w(e)

* Send w(e) flow along all edges (these have at least w(e) capacity)
* Remove w(e) flow along all backward edges (these contain at least w(e) units of flow)

Observe: Flow has increased by w(e)

Why does this respect flow constraints?

Incoming edge to a node always

corresponds to increased flow to the node Q
(more incoming flow from edge or

less outgoing flow from backward edge)
Outgoing edge to a node always

corresponds to decreased flow to the

node

37

Residual graph Gy

Residual Graphs

Consider a path from s — t in G¢ using only edges with positive (non-zero) weight

Consider the minimum-weight edge e along the path: we can increase the flow by w(e)
* Send w(e) flow along all edges (these have at least w(e) capacity)
* Remove w(e) flow along all backward edges (these contain at least w(e) units of flow)

Observe: Flow has increased by w(e)

Capacity constraints satisfied by construction

of the residual network
Why does this respect flow constraints?

* Incoming edge to a node always
corresponds to increased flow to the node Q
(more incoming flow from edge or
less outgoing flow from backward edge)
* Qutgoing edge to a node always
corresponds to decreased flow to the
node

38

Residual graph Gy

Ford-Fulkerson Algorithm

Define an augmenting path to be an s — t path in the residual graph G¢ (using edges of
non-zero weight)

Ford-Fulkerson approach: take

Ford-Fulkerson max-flow algorithm: ,
any augmenting path

* Initialize f(e) = 0foralle € E
e Construct the residual network Gf

* While there is an augmenting path p in Gy:
* letc= melgl cr(e) (cr(e) is the weight of edge e in the residual network Gr)
e

(will revisit this later)

* Add c units of flow to G based on the augmenting path p
* Update the residual network Gy for the updated flow

39

Ford-Fulkerson Example

0/3 0/2

0/3
. 0/3 0/1

0/2 0/2 ¢

0/3
0/1

0/3

Initially: f(e) = Oforalle € E Residual graph G,

40

Ford-Fulkerson Example

Increase flow by 1 unit

0/3

. 0/3
0/2

0/1

Residual graph G

41

Ford-Fulkerson Example

Increase flow by 1 unit

Residual graph G

42

Ford-Fulkerson Example

1/3

. 0/3
0/2

0/1

Residual graph G

43

Ford-Fulkerson Example

Increase flow by 1 unit

-
S 0/3 1 3
t
0/2

0/1

Residual graph G

44

Ford-Fulkerson Example

Increase flow by 1 unit

¢2,¢” ——
-

1 3

2

Residual graph G

45

Ford-Fulkerson Example

Increase flow by 1 unit

2/3

. 0/3
0/2

0/1

Residual graph G

46

Ford-Fulkerson Example

2/3

. 0/3
0/2

0/1

Residual graph G

47

Ford-Fulkerson Example

Increase flow by 1 unit

Residual graph G

48

Ford-Fulkerson Example

Increase flow by 1 unit

2/3

. 0/3
1/2

0/1

Residual graph G

49

Ford-Fulkerson Example

2/3

. 0/3
1/2

0/1

Residual graph G

50

Ford-Fulkerson Example

Increase flow by 1 unit

Residual graph G

51

Ford-Fulkerson Example

No more augmenting paths

2/3

. 0/3
2/2

0/1

Residual graph G

Maximum flow: 4

52

Ford-Fulkerson Running Time

Define an augmenting path to be an s — t path in the residual graph G¢ (using edges of
non-zero weight)

Ford-Fulkerson max-flow algorithm:
* |nitialize f(e) = 0foralle € E
* Construct the residual network Gy

* While there is an augmenting path p in G¢:
* letc= melgl cr(e) (cr(e) is the weight of edge e in the residual network Gr)
e

* Add c units of flow to G based on the augmenting path p
* Update the residual network G¢ for the updated flow

Initialization: O (|E|)

53

Ford-Fulkerson Running Time

Define an augmenting path to be an s — t path in the residual graph G¢ (using edges of
non-zero weight)

Ford-Fulkerson max-flow algorithm:
* |Initialize f(e) = 0foralle € E
* Construct the residual network Gy

* While there is an augmenting path p in G¢:
* letc= melgl cr(e) (cr(e) is the weight of edge e in the residual network Gr)
e

* Add c units of flow to G based on the augmenting path p
* Update the residual network G¢ for the updated flow

Initialization: O (|E|)
Construct residual network: O(|E|)

54

Ford-Fulkerson Running Time

Define an augmenting path to be an s — t path in the residual graph G¢ (using edges of
non-zero weight)

Ford-Fulkerson max-flow algorithm:
* Initialize f(e) = 0foralle € E
* Construct the residual network Gy

* While there is an augmenting path p in G¢:
* letc= melgl cr(e) (cr(e) is the weight of edge e in the residual network Gr)
e

* Add c units of flow to G based on the augme

* Update the residual network G for the upda We only care about nodes reachable from
the source s (so the number of nodes

Initialization: O (lE D that are “relevant” is at most |E)
Construct residual network: O(|E|)

Finding augmenting path in residual network: O(|E|) using BFS/DFS .

Ford-Fulkerson Running Time

Define an augmenting path to be an s — t path in the residual graph G¢ (using edges of
non-zero weight)

How many iterations are needed?
For integer-valued capacities, min-weight of each augmenting path is 1, so
number of iterations is bounded by |f*|, where |f*| is max-flow in G
For rational-valued capacities, can scale to make capacities integer
For irrational-valued capacities, algorithm may never terminate!

Initialization: O (|E|)
Construct residual network: O(|E|)
Finding augmenting path in residual network: O(|E|) using BFS/DFS

Ford-Fulkerson Running Time

Define an augmenting path to be an s — t path in the residual graph G¢ (using edges of
non-zero weight)

Ford-Fulkerson max-flow algorit e with - . .
- Initialize f(e) = 0 for all ¢ For graphs with integer capacities, running time

. Construct the residual ne RSRECERLLIE S NE
 While there is an augmen 0(|f*| ’ |E|)

* letc=minc(e) (cr Highly undesirable if [f*| > |E| (e.g., graph is
e
e Add c units of flow to IEUER IR EIA - I R Ak

* Update the residual n
Initialization: O(|E|) As described, algorithm is not polynomial-time!

Construct residual network: @
Finding augmenting path in residual network: O(|E|) using BFS/DFS

Worst-Case Ford-Fulkerson

58

Worst-Case Ford-Fulkerson

Increase flow by 1 unit

59

Worst-Case Ford-Fulkerson

Increase flow by 1 unit

60

Worst-Case Ford-Fulkerson

61

Worst-Case Ford-Fulkerson

Increase flow by 1 unit

62

Worst-Case Ford-Fulkerson

Increase flow by 1 unit

63

Worst-Case Ford-Fulkerson

64

Worst-Case Ford-Fulkerson

Observation: each iteration increases flow by 1 unit
Total number of iterations: |f*| = 200

65

Can We Avoid this?

Edmonds-Karp Algorithm: choose augmenting path with fewest hops
Running time: @(min(|E||f*|, [V||E|?)) = O([V]|E|?)

How to find this?
Use breadth-first search (BFS)!

Ford-Fulkerson max-flow algorithm:
e |nitialize f(e) — Oforalle € E Edmonds-Karp = Ford-Fulkerson

: using BFS to find augmenting path
* Construct the residual network G 8 5 gp

* While there is an augmenting path in Gy, let p be the path with fewest hops:
* letc= melg cr(e) (cr(e) is the weight of edge e in the residual network Gy)
e

* Add c units of flow to G based on the augmenting path p
* Update the residual network G¢ for the updated flow

Proof: See CLRS (Chapter 26.2) 66

Correctness of Ford-Fulkerson

Consider cuts which separate s and ¢
e letse€ S,t€T,suchthatV =S5SUT

Cost ||S, T|| of cut (S, T): sum of the capacities of edges from Sto T

67

Max-Flow / Min-Cut

Claim: Maximum flow in a flow network G always upper-bounded by the cost any
cut that separates s and ¢
Proof: “Conservation of flow”

* All flow from s must eventually getto ¢t

* To get from s to ¢, all flow must cross the cut somewhere

Conclusion: Max-flow in G is at most the cost of the min-cutin G
. m]g:lXIfI < min|lS, T

T 68

Max-Flow Min-Cut Theorem

Let f be aflow in agraph G

. _ there are no there exists a cut
f |sf?0r\:1/a;>:r(r;\um augmenting paths in the (S5, T) of G where
residual graph G If| =||S,T|
t Statements are equivalent! I
Implications:

* Correctness of Ford-Fulkerson: Ford-Fulkerson terminates when there are no more
augmenting paths in the residual graph G¢, which means that f is a maximum flow

e Max-flow min-cut duality: the maximum flow in a network coincides with the minimum cut
of the graph (m}gxlfl = n;iTnllS,Tll)

* Finding either the minimum cut or the maximum flow yields solution to the other

. 69
» Special case of more general principle (duality in linear programming)

Max-Flow Min-Cut Duality Example

no more augmenting paths

Flow graph Residual graph

Max flow: 4

70

Max-Flow Min-Cut Duality Example

no more augmenting paths

Flow graph Residual graph

Max flow: 4 When there are no more augmenting paths in the graph,
Min cut: 4 there is a cut whose cost matches the flow b

Max-Flow Min-Cut Theorem Proof

Let f be aflow in agraph G

, _ there are no
f is a maximum

flow in G

augmenting paths in the
residual graph Gy

Proof:
* Suppose f is a max flow in G and there is an augmenting path in Gy

* If there is an augmenting path in G, then we can send additional units of flow though

the network along the augmenting path
* This contradicts optimality of f 7

Max-Flow Min-Cut Theorem Proof

Let f be aflow in agraph G

there exists a cut

AUl (S5, T) of G where

flow in G

F1=1S.T]

eeee————

Proof:

* Take any flow f’

« Considerthe cut (S§,T) of G; then, |[f'| < |IS, T|| = |f]
* Thus, |f'] < |f], so f must be a maximum flow

73

Max-Flow Min-Cut Theorem Proof

Let f be aflow in agraph G

there are no there exists a cut

augmenting paths in the (S5, T) of G where
residual graph G If| =||S,T|

74

Max-Flow Min-Cut Theorem Proof

no more augmenting paths
/‘ >
1
3
2
1
T 1

Flow graph Residual graph

No augmenting paths means there is no path from s to t in G¢

e Let S be set of nodes reachable from s in Gf
e letT =V -39S 75

Max-Flow Min-Cut Theorem Proof

no more augmenting paths

& .| /1
1; v

Claim: ||S, T|| = |f]
* Total flow |f| is amount of outgoing flow from S to T minus the amount of incoming flow from T to S

76

Max-Flow Min-Cut Theorem Proof

no more augmenting paths

1%

u
/‘ >
1
3

2
1

1

Claim: ||S,T|| = |f]

* Total flow |f| is amount of outgoing flow from S to T minus the amount of incoming flow from T to S
* Outgoing flow: Consider edge (1, V) whereu € Sandv € T
* Then, f(u,v) = c(u, v). Otherwise, there is a forward edge (1, V) with positive weight in Grandv € S

T

77

Max-Flow Min-Cut Theorem Proof

no more augmenting paths

Claim: |[S,T|| = |f]
* Total flow |f| is amount of outgoing flow from S to T minus the amount of incoming flow from T to S
* Outgoing flow: Consider edge (1, V) whereu € Sandv € T
* Then, f(u,v) = c(u, v). Otherwise, there is a forward edge (1, V) with positive weight in Grandv € S

* Incoming flow: Consider edge (y,x) wherey € T andx € S
* Then, f(y,x) = 0. Otherwise, there is a backward edge (x, y) with positive weight in G and y €s

Max-Flow Min-Cut Theorem Proof

-

|f]

_

T

> fawn-)

UES, VET

z c(u,v)

UuesS,veT

IS, Tl

YET,XES

~

f,x)

/

Claim: ||S,T|| = |f]

* Total flow |f| is amount of outgoing flow from S to T minus the amount of incoming flow from T to S

* Outgoing flow: Consider edge (1, V) whereu € Sandv € T
* Then, f(u,v) = c(u, v). Otherwise, there is a

* Incoming flow: Consider edge (y,x) wherey € T andx € S

with positive weightin Gy and v € §

* Then, f(y,x) = 0. Otherwise, there is a backward edge (x, y) with positive weight in G and y €s

Max-Flow Min-Cut Theorem

Let f be aflow in agraph G

. _ there are no there exists a cut
f |sf?0r\:1/a;>:r(r;\um augmenting paths in the (S5, T) of G where
residual graph G If| =||S,T|
t Statements are equivalent! I
Implications:

* Correctness of Ford-Fulkerson: Ford-Fulkerson terminates when there are no more
augmenting paths in the residual graph G, which means that f is a maximum flow

e Max-flow min-cut duality: the maximum flow in a network coincides with the minimum cut
of the graph (m}gxlfl = n;iTnllS,Tll)

80

Other Max Flow Algorithms

Ford-Fulkerson
* O(IEIIfD

Edmonds-Karp (Ford-Fulkerson using BFS to choose augmenting path)
* O(|EI?V])

Push-Relabel (Tarjan)
* O(|E||V]?)

Faster Push-Relabel (also Tarjan)
- 0(IVI®)

81

Minimum-Cost Maximum-Flow Problem

Not all paths are created equal!

A is associated with each unit of flow sent along an edge Much harder problem!

Goal: Maximize flow while minimizing cost Can solve using linear programming
82

