Network Flow

Question: What is the maximum throughput of the railroad network?

Announcements

Unit B

- Programming due Friday, 4/15, 11:30pm

Unit C

- Basic 1 + 2 due Friday, 4/15, 11:30pm
- Advanced due Friday, 4/22
- Programming due Friday 4/22 - Seam carving!

Kruskal's Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not create a cycle

Greedy Algorithms

Require Optimal Substructure

- Solution to larger problem contains the solution to a smaller one
- Only one subproblem to consider!

Idea:

1. Identify a greedy choice property

- How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain

Kruskal's Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not create a cycle

Kruskal's Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not create a cycle

Kruskal's Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not create a cycle

Kruskal's Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not create a cycle

Kruskal's Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not create a cycle

Definition: Cut

A Cut of graph $G=(V, E)$ is a partition of the nodes into two sets, S and $V-S$

Edge $\left(v_{1}, v_{2}\right) \in E$ crosses a cut if $v_{1} \in S$ and $v_{2} \in V-S$ (or opposite), e.g. (A, C)

A set of edges R Respects a cut if no edges cross the cut e.g. $R=\{(A, B),(E, G),(F, G)\}$

Exchange argument

Shows correctness of a greedy algorithm Idea:

- Show exchanging an item from an arbitrary optimal solution with your greedy choice makes the new solution no worse
- How to show my sandwich is at least as good as yours:
- Show: "I can remove any item from your sandwich, and it would be no worse by replacing it with the same item from my sandwich"

Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T, let $(S, V-S)$ be any cut which A respects. Let e be the leastweight edge which crosses $(S, V-S) . A \cup\{e\}$ is also a subset of a minimum spanning tree.

Proof of Cut Theorem

Claim: If A is a subset of a MST T, and e is the leastweight edge which crosses cut $(S, V-S)$ (which A respects) then $A \cup\{e\}$ is also a subset of a MST.

$A \subseteq T$

Consider some MST T, Case 1: (the easy case) If $e \in T$ Then claim holds

Proof of Cut Theorem

Claim: If A is a subset of a MST T, and e is the leastweight edge which crosses cut $(S, V-S)$ (which A respects) then $A \cup\{e\}$ is also a subset of a MST.

$A \subseteq T$

Consider some MST T, Case 2:

Consider if $e=\left(v_{1}, v_{2}\right) \notin T$
Since T is a MST, there is some path from v_{1} to v_{2}.

Let e^{\prime} be the first edge on this path which crosses the cut

Build tree T^{\prime} by exchanging e^{\prime} for e

Proof of Cut Theorem

Claim: If A is a subset of a MST T, and e is the leastweight edge which crosses cut $(S, V-S)$ (which A respects) then $A \cup\{e\}$ is also a subset of a MST.

Kruskal's Algorithm

Start with an empty tree A
Repeat $V-1$ times:
Add the min-weight edge that doesn't
Keep edges in a Disjoint-set data structure (very fancy)
$O(E \log V)$ cause a cycle

General MST Algorithm

Start with an empty tree A
Repeat $V-1$ times:
Pick a cut $(S, V-S)$ which A respects
Add the min-weight edge which crosses $(S, V-S)$

Prim's Algorithm

Start with an empty tree A
Repeat $V-1$ times:
Pick a cut $(S, V-S)$ which A respects
Add the min-weight edge which crosses $(S, V-S)$
S is all endpoint of edges in A
e is the min-weight edge that grows the tree

Prim's Algorithm

Start with an empty tree A
Pick a start node
Repeat $V-1$ times:
Add the min-weight edge which connects to node in A with a node not in A

Prim's Algorithm

Start with an empty tree A

Pick a start node
Repeat $V-1$ times:
Add the min-weight edge which connects to node in A with a node not in A

Prim's Algorithm

Start with an empty tree A

Pick a start node
Repeat $V-1$ times:
Add the min-weight edge which connects to node in A with a node not in A

Prim's Algorithm

Start with an empty tree A

Pick a start node
Repeat $V-1$ times:
Add the min-weight edge which connects to node in A with a node not in A

Prim's Algorithm

Start with an empty tree A
Pick a start node

Keep edges in a Heap $O(E \log V)$

Repeat $V-1$ times:
Add the min-weight edge which connects to node in A with a node not in A

Flow Networks

Graph $G=(V, E)$
Source node $s \in V$
Sink node $t \in V$
Edge capacities $c(e) \in \mathbb{R}^{+}$

Max flow intuition: If s is a faucet, t is a drain, and s connects to t through a network of pipes E with capacities $c(e)$, what is the maximum amount of water which can flow from the faucet to the drain?

Network Flow

Assignment of values $f(e)$ to edges

- "Amount of water going through that pipe"

Capacity constraint

- $f(e) \leq c(e)$
- "Flow cannot exceed capacity"

Flow constraint

- $\forall v \in V-\{s, t\}, \operatorname{inflow}(v)=\operatorname{outflow}(v)$
- $\operatorname{inflow}(v)=\sum_{x \in V} f(x, v)$
- outflow $(v)=\sum_{x \in V} f(v, x)$

flow / capacity
- Water going in must match water coming out

Flow of $G:|f|=$ outflow $(s)-\operatorname{inflow}(s)$

- Net outflow of S

Maximum Flow Problem

Of all valid flows through the graph, find the one that maximizes:

$$
|f|=\operatorname{outflow}(s)-\operatorname{inflow}(s)
$$

Greedy Approach

Greedy choice: saturate highest capacity path first

Greedy Approach

Greedy choice: saturate highest capacity path first

Greedy Approach

Greedy choice: saturate highest capacity path first

Flow: 20

Greedy Approach

Greedy choice: saturate highest capacity path first

Observe: highest capacity path is not saturated in optimal solution

Residual Graphs

Given a flow f in graph G, the residual graph G_{f} models additional flow that is possible

- Forward edge for each edge in G with weight set to remaining capacity $c(e)-f(e)$
- Models additional flow that can be sent along the edge

Flow f in G

Residual graph G_{f}

Residual Graphs

Given a flow f in graph G, the residual graph G_{f} models additional flow that is possible

- Forward edge for each edge in G with weight set to remaining capacity $c(e)-f(e)$
- Models additional flow that can be sent along the edge
- Backward edge by flipping each edge e in G with weight set to flow $f(e)$
- Models amount of flow that can be removed from the edge

Flow f in G

Residual graph G_{f}

Residual Graphs Example

Flow Graph

Residual Graph

Residual Graphs

Consider a path from $s \rightarrow t$ in G_{f} using only edges with positive (non-zero) weight Consider the minimum-weight edge e along the path: we can increase the flow by $w(e)$

- Send $w(e)$ flow along all forward edges (these have at least $w(e)$ capacity)

Flow f in G

Residual graph G_{f}

Residual Graphs

Consider a path from $s \rightarrow t$ in G_{f} using only edges with positive (non-zero) weight Consider the minimum-weight edge e along the path: we can increase the flow by $w(e)$

- Send $w(e)$ flow along all forward edges (these have at least $w(e)$ capacity)
- Remove $w(e)$ flow along all backward edges (these contain at least $w(e)$ units of flow)

Flow f in G

Residual graph G_{f}

Residual Graphs

Consider a path from $s \rightarrow t$ in G_{f} using only edges with positive (non-zero) weight Consider the minimum-weight edge e along the path: we can increase the flow by $w(e)$

- Send $w(e)$ flow along all forward edges (these have at least $w(e)$ capacity)
- Remove $w(e)$ flow along all backward edges (these contain at least $w(e)$ units of flow)

Observe: Flow has increased by $w(e)$

Flow f in G

Residual graph G_{f}

Residual Graphs

Consider a path from $s \rightarrow t$ in G_{f} using only edges with positive (non-zero) weight Consider the minimum-weight edge e along the path: we can increase the flow by $w(e)$

- Send $w(e)$ flow along all forward edges (these have at least $w(e)$ capacity)
- Remove $w(e)$ flow along all backward edges (these contain at least $w(e)$ units of flow)

Observe: Flow has increased by $w(e)$
Why does this respect flow constraints?

- Incoming edge to a node always corresponds to increased flow to the node (more incoming flow from forward edge or less outgoing flow from backward edge)
- Outgoing edge to a node always corresponds to decreased flow to the node

Residual graph G_{f}

Residual Graphs

Consider a path from $s \rightarrow t$ in G_{f} using only edges with positive (non-zero) weight Consider the minimum-weight edge e along the path: we can increase the flow by $w(e)$

- Send $w(e)$ flow along all forward edges (these have at least $w(e)$ capacity)
- Remove $w(e)$ flow along all backward edges (these contain at least $w(e)$ units of flow)

Observe: Flow has increased by $w(e)$
Why does this respect flow constraints?

- Incoming edge to a node always corresponds to increased flow to the node (more incoming flow from forward edge or less outgoing flow from backward edge)
- Outgoing edge to a node always corresponds to decreased flow to the node

Capacity constraints satisfied by construction of the residual network

Residual graph G_{f}

Ford-Fulkerson Algorithm

Define an augmenting path to be an $s \rightarrow t$ path in the residual graph G_{f} (using edges of non-zero weight)

Ford-Fulkerson max-flow algorithm:

- Initialize $f(e)=0$ for all $e \in E$
- Construct the residual network G_{f}
- While there is an augmenting path p in G_{f} :
- Let $c=\min _{e \in E} c_{f}(e)\left(c_{f}(e)\right.$ is the weight of edge e in the residual network $\left.G_{f}\right)$
- Add c units of flow to G based on the augmenting path p
- Update the residual network G_{f} for the updated flow

Ford-Fulkerson Example

Initially: $f(e)=0$ for all $e \in E$

Residual graph G_{f}

Ford-Fulkerson Example

Increase flow by 1 unit

Residual graph G_{f}

Ford-Fulkerson Example

Increase flow by 1 unit

Residual graph G_{f}

Ford-Fulkerson Example

Residual graph G_{f}

Ford-Fulkerson Example

Increase flow by 1 unit

Residual graph G_{f}

Ford-Fulkerson Example

Increase flow by 1 unit

Residual graph G_{f}

Ford-Fulkerson Example

Increase flow by 1 unit

Residual graph G_{f}

Ford-Fulkerson Example

Residual graph G_{f}

Ford-Fulkerson Example

Increase flow by 1 unit

Residual graph G_{f}

Ford-Fulkerson Example

Increase flow by 1 unit

Residual graph G_{f}

Ford-Fulkerson Example

Residual graph G_{f}

Ford-Fulkerson Example

Increase flow by 1 unit

Residual graph G_{f}

Ford-Fulkerson Example

No more augmenting paths

Maximum flow: 4
Residual graph G_{f}

Ford-Fulkerson Running Time

Define an augmenting path to be an $s \rightarrow t$ path in the residual graph G_{f} (using edges of non-zero weight)

Ford-Fulkerson max-flow algorithm:

- Initialize $f(e)=0$ for all $e \in E$
- Construct the residual network G_{f}
- While there is an augmenting path p in G_{f} :
- Let $c=\min _{e \in E} c_{f}(e)\left(c_{f}(e)\right.$ is the weight of edge e in the residual network $\left.G_{f}\right)$
- Add c units of flow to G based on the augmenting path p
- Update the residual network G_{f} for the updated flow Initialization: $O(|E|)$

Ford-Fulkerson Running Time

Define an augmenting path to be an $s \rightarrow t$ path in the residual graph G_{f} (using edges of non-zero weight)

Ford-Fulkerson max-flow algorithm:

- Initialize $f(e)=0$ for all $e \in E$
- Construct the residual network G_{f}
- While there is an augmenting path p in G_{f} :
- Let $c=\min _{e \in E} c_{f}(e)\left(c_{f}(e)\right.$ is the weight of edge e in the residual network $\left.G_{f}\right)$
- Add c units of flow to G based on the augmenting path p
- Update the residual network G_{f} for the updated flow

Initialization: $O(|E|)$
Construct residual network: $O(|E|)$

Ford-Fulkerson Running Time

Define an augmenting path to be an $s \rightarrow t$ path in the residual graph G_{f} (using edges of non-zero weight)

Ford-Fulkerson max-flow algorithm:

- Initialize $f(e)=0$ for all $e \in E$
- Construct the residual network G_{f}
- While there is an augmenting path p in G_{f} :
- Let $c=\min _{e \in E} c_{f}(e)\left(c_{f}(e)\right.$ is the weight of edge e in the residual network $\left.G_{f}\right)$
- Add c units of flow to G based on the augme
- Update the residual network G_{f} for the upda Initialization: $O(|E|)$

We only care about nodes reachable from the source s (so the number of nodes that are "relevant" is at most $|E|$)

Construct residual network: $O(|E|)$
Finding augmenting path in residual network: $O(|E|)$ using BFS/DFS

Ford-Fulkerson Running Time

Define an augmenting path to be an $s \rightarrow t$ path in the residual graph G_{f} (using edges of non-zero weight)

How many iterations are needed?

- For integer-valued capacities, min-weight of each augmenting path is 1 , so number of iterations is bounded by $\left|f^{*}\right|$, where $\left|f^{*}\right|$ is max-flow in G
- For rational-valued capacities, can scale to make capacities integer
- For irrational-valued capacities, algorithm may never terminate!

Initialization: $O(|E|)$
Construct residual network: $O(|E|)$
Finding augmenting path in residual network: $O(|E|)$ using BFS/DFS

Ford-Fulkerson Running Time

Define an augmenting path to be an $s \rightarrow t$ path in the residual graph G_{f} (using edges of non-zero weight)

Ford-Fulkerson max-flow algorith

- Initialize $f(e)=0$ for all
- Construct the residual net
- While there is an augmen
- Let $c=\min _{e \in E} c_{f}(e)\left(c_{f}\right.$
- Add c units of flow to

For graphs with integer capacities, running time of Ford-Fulkerson is

$$
O\left(\left|f^{*}\right| \cdot|E|\right)
$$

Highly undesirable if $\left|f^{*}\right| \gg|E|$ (e.g., graph is
small, but capacities are $\approx 2^{32}$)

- Update the residual n

Initialization: $O(|E|)$
As described, algorithm is not polynomial-time!
Construct residual network: ©
Finding augmenting path in residual network: $O(|E|)$ using BFS/DFS

Worst-Case Ford-Fulkerson

Worst-Case Ford-Fulkerson

Increase flow by 1 unit

Worst-Case Ford-Fulkerson

Increase flow by 1 unit

Worst-Case Ford-Fulkerson

Worst-Case Ford-Fulkerson

Increase flow by 1 unit

Worst-Case Ford-Fulkerson

Increase flow by 1 unit

Worst-Case Ford-Fulkerson

Worst-Case Ford-Fulkerson

Observation: each iteration increases flow by 1 unit Total number of iterations: $\left|f^{*}\right|=200$

Can We Avoid this?

Edmonds-Karp Algorithm: choose augmenting path with fewest hops
Running time: $\Theta\left(\min \left(\left|E \|\left|\left|f^{*}\right|,|V|\right| E\right|^{2}\right)\right)=O\left(|V||E|^{2}\right)$
How to find this?
Use breadth-first search (BFS)!
Ford-Fulkerson max-flow algorithm:

- Initialize $f(e)=0$ for all $e \in E$
- Construct the residual network G_{f}

Edmonds-Karp = Ford-Fulkerson using BFS to find augmenting path

- While there is an augmenting path in G_{f}, let p be the path with fewest hops:
- Let $c=\min _{e \in E} c_{f}(e)\left(c_{f}(e)\right.$ is the weight of edge e in the residual network $\left.G_{f}\right)$
- Add c units of flow to G based on the augmenting path p
- Update the residual network G_{f} for the updated flow

Proof: See CLRS (Chapter 26.2)

Correctness of Ford-Fulkerson

Consider cuts which separate s and t

- Let $s \in S, t \in T$, such that $V=S \cup T$

Cost $\|S, T\|$ of cut (S, T): sum of the capacities of edges from S to T

Max-Flow / Min-Cut

Claim: Maximum flow in a flow network G always upper-bounded by the cost any cut that separates s and t
Proof: "Conservation of flow"

- All flow from s must eventually get to t
- To get from s to t, all flow must cross the cut somewhere

Conclusion: Max-flow in G is at most the cost of the min-cut in G

- $\max _{f}|f| \leq \min _{S, T}\|S, T\|$

Max-Flow Min-Cut Theorem

Let f be a flow in a graph G

there are no
f is a maximum

flow in $G$$\quad$| there exists a cut |
| :---: |
| (S, T) of G where |
| $\|f\|=\\|S, T\\|$ |

Statements are equivalent!

Implications:

- Correctness of Ford-Fulkerson: Ford-Fulkerson terminates when there are no more augmenting paths in the residual graph G_{f}, which means that f is a maximum flow
- Max-flow min-cut duality: the maximum flow in a network coincides with the minimum cut of the graph $\left(\max _{f}|f|=\min _{S, T}\|S, T\|\right)$
- Finding either the minimum cut or the maximum flow yields solution to the other
- Special case of more general principle (duality in linear programming)

Max-Flow Min-Cut Duality Example

Flow graph
no more augmenting paths

Residual graph

Max flow: 4

Max-Flow Min-Cut Duality Example

Flow graph
no more augmenting paths

Residual graph

Max flow: 4
Min cut:

When there are no more augmenting paths in the graph, there is a cut whose cost matches the flow

Max-Flow Min-Cut Theorem Proof

Let f be a flow in a graph G

Proof:

- Suppose f is a max flow in G and there is an augmenting path in G_{f}
- If there is an augmenting path in G_{f}, then we can send additional units of flow though the network along the augmenting path
- This contradicts optimality of f

Max-Flow Min-Cut Theorem Proof

Let f be a flow in a graph G

f is a maximum flow in G

there are no augmenting paths in the residual graph G_{f}
there exists a cut (S, T) of G where $|f|=\|S, T\|$

Proof:

- Take any flow f^{\prime}
- Consider the cut (S, T) of G; then, $\left|f^{\prime}\right| \leq\|S, T\|=|f|$
- Thus, $\left|f^{\prime}\right| \leq|f|$, so f must be a maximum flow

Max-Flow Min-Cut Theorem Proof

Let f be a flow in a graph G
fis a maximum
flow in G
there are no
augmenting paths in the
residual graph G_{f}
there exists a cut (S, T) of G where $|f|=\|S, T\|$

Max-Flow Min-Cut Theorem Proof

Flow graph
Residual graph
No augmenting paths means there is no path from s to t in G_{f}

- Let S be set of nodes reachable from s in G_{f}
- Let $T=V-S$

Max-Flow Min-Cut Theorem Proof

Claim: $\|S, T\|=|f|$

- Total flow $|f|$ is amount of outgoing flow from S to T minus the amount of incoming flow from T to S

Max-Flow Min-Cut Theorem Proof

no more augmenting paths

Claim: $\|S, T\|=|f|$

- Total flow $|f|$ is amount of outgoing flow from S to T minus the amount of incoming flow from T to S
- Outgoing flow: Consider edge (u, v) where $u \in S$ and $v \in T$
- Then, $f(u, v)=c(u, v)$. Otherwise, there is a forward edge (u, v) with positive weight in G_{f} and $v \in S$

Max-Flow Min-Cut Theorem Proof

Claim: $\|S, T\|=|f|$

- Total flow $|f|$ is amount of outgoing flow from S to T minus the amount of incoming flow from T to S
- Outgoing flow: Consider edge (u, v) where $u \in S$ and $v \in T$
- Then, $f(u, v)=c(u, v)$. Otherwise, there is a forward edge (u, v) with positive weight in G_{f} and $v \in S$
- Incoming flow: Consider edge (y, x) where $y \in T$ and $x \in S$
- Then, $f(y, x)=0$. Otherwise, there is a backward edge (x, y) with positive weight in G_{f} and $y \in S$

Max-Flow Min-Cut Theorem Proof

Claim: $\|S, T\|=|f|$

- Total flow $|f|$ is amount of outgoing flow from S to T minus the amount of incoming flow from T to S
- Outgoing flow: Consider edge (u, v) where $u \in S$ and $v \in T$
- Then, $f(u, v)=c(u, v)$. Otherwise, there is a forward edge (u, v) with positive weight in G_{f} and $v \in S$
- Incoming flow: Consider edge (y, x) where $y \in T$ and $x \in S$
- Then, $f(y, x)=0$. Otherwise, there is a backward edge (x, y) with positive weight in G_{f} and $y \in S$

Max-Flow Min-Cut Theorem

Let f be a flow in a graph G

Statements are equivalent!

Implications:

- Correctness of Ford-Fulkerson: Ford-Fulkerson terminates when there are no more augmenting paths in the residual graph G_{f}, which means that f is a maximum flow
- Max-flow min-cut duality: the maximum flow in a network coincides with the minimum cut of the graph $\left(\max _{f}|f|=\min _{S, T}\|S, T\|\right)$

Other Max Flow Algorithms

Ford-Fulkerson

- $\Theta\left(|E|\left|f^{*}\right|\right)$

Edmonds-Karp (Ford-Fulkerson using BFS to choose augmenting path)

- $\Theta\left(|E|^{2}|V|\right)$

Push-Relabel (Tarjan)

- $\Theta\left(|E||V|^{2}\right)$

Faster Push-Relabel (also Tarjan)

- $\Theta\left(|V|^{3}\right)$

Minimum-Cost Maximum-Flow Problem

Not all paths are created equal!

A cost is associated with each unit of flow sent along an edge Goal: Maximize flow while minimizing cost

Much harder problem! Can solve using linear programming

