Network Flow

Question: What is the maximum throughput of the railroad network?

Announcements

Unit B

• Programming due Friday, 4/15, 11:30pm

Unit C

- Basic 1 + 2 due Friday, 4/15, 11:30pm
- Advanced due Friday, 4/22
- Programming due Friday 4/22 Seam carving!

Greedy Algorithms

Require Optimal Substructure

- Solution to larger problem contains the solution to a smaller one
- Only one subproblem to consider!

Idea:

- 1. Identify a greedy choice property
 - How to make a choice guaranteed to be included in some optimal solution
- 2. Repeatedly apply the choice property until no subproblems remain

Definition: Cut

A Cut of graph G = (V, E) is a partition of the nodes into two sets, *S* and V - S

Edge $(v_1, v_2) \in E$ crosses a cut if $v_1 \in S$ and $v_2 \in V - S$ (or opposite), e.g. (A, C)

A set of edges R Respects a cut if no edges cross the cut e.g. $R = \{(A, B), (E, G), (F, G)\}$

Exchange argument

Shows correctness of a greedy algorithm

Idea:

- Show exchanging an item from an arbitrary optimal solution with your greedy choice makes the new solution no worse
- How to show my sandwich is at least as good as yours:
 - Show: "I can remove any item from your sandwich, and it would be no worse by replacing it with the same item from my sandwich"

Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T, let (S, V - S) be any cut which A respects. Let e be the leastweight edge which crosses (S, V - S). $A \cup \{e\}$ is also a subset of a minimum spanning tree.

Proof of Cut Theorem

Claim: If A is a subset of a MST T, and e is the leastweight edge which crosses cut (S, V - S) (which A respects) then A U {e} is also a subset of a MST.

13

Proof of Cut Theorem

Claim: If A is a subset of a MST T, and e is the leastweight edge which crosses cut (S, V - S) (which A respects) then A U $\{e\}$ is also a subset of a MST.

Consider some MST *T*, Case 2:

Consider if $e = (v_1, v_2) \notin T$ Since T is a MST, there is some path from v_1 to v_2 .

Let e' be the first edge on this path which crosses the cut

Build tree T' by exchanging e' for e

Proof of Cut Theorem

Claim: If A is a subset of a MST T, and e is the leastweight edge which crosses cut (S, V - S) (which A respects) then A U $\{e\}$ is also a subset of a MST.

Consider some MST *T*, Case 2:

Consider if $e = (v_1, v_2) \notin T$ T' = T with edge e instead of e'We assumed $w(e) \le w(e')$ w(T') = w(T) - w(e') + w(e) $w(T') \le w(T)$ So T' is also a MST! Thus the claim holds

General MST Algorithm

```
Start with an empty tree A
Repeat V - 1 times:
Pick a cut (S, V - S) which A respects
Add the min-weight edge which crosses (S, V - S)
```



```
Start with an empty tree A
Repeat V - 1 times:
Pick a cut (S, V - S) which A respects
Add the min-weight edge which crosses (S, V - S)
```

S is all endpoint of edges in A e is the min-weight edge that grows the tree 10^{B}

Start with an empty tree APick a start node Repeat V - 1 times: Add the min-weight edge which connects to node in A with a node not in A

Start with an empty tree *A*

Pick a start node

Repeat V - 1 times:

Add the min-weight edge which connects to node

Start with an empty tree *A*

Pick a start node

Repeat V - 1 times:

Add the min-weight edge which connects to node

Start with an empty tree *A*

Pick a start node

Repeat V - 1 times:

Add the min-weight edge which connects to node

Start with an empty tree APick a start node Repeat V - 1 times:

Keep edges in a Heap $O(E \log V)$

Add the min-weight edge which connects to node

Flow Networks

Graph G = (V, E)Source node $s \in V$ Sink node $t \in V$ Edge capacities $c(e) \in \mathbb{R}^+$

Max flow intuition: If *s* is a faucet, *t* is a drain, and *s* connects to *t* through a network of pipes *E* with capacities c(e), what is the maximum amount of water which can flow from the faucet to the drain?

Network Flow

Assignment of values f(e) to edges

- "Amount of water going through that pipe"
- Capacity constraint
 - $f(e) \leq c(e)$
 - "Flow cannot exceed capacity"

Flow constraint

- $\forall v \in V \{s, t\}$, inflow(v) = outflow(v)
- inflow $(v) = \sum_{x \in V} f(x, v)$
- outflow(v) = $\sum_{x \in V} f(v, x)$
- Water going in must match water coming out

Flow of G: |f| = outflow(s) - inflow(s)

• Net outflow of *s* **3** in this example

flow / capacity

Maximum Flow Problem

Of all valid flows through the graph, find the one that maximizes:

$$f| = \operatorname{outflow}(s) - \operatorname{inflow}(s)$$

Greedy choice: saturate <u>highest</u> capacity path first

Greedy choice: saturate <u>highest</u> capacity path first

Greedy choice: saturate highest capacity path first

Greedy choice: saturate highest capacity path first

Observe: highest capacity path is not <u>saturated</u> in optimal solution

Given a flow f in graph G, the residual graph G_f models <u>additional</u> flow that is possible

- Forward edge for each edge in G with weight set to remaining capacity c(e) f(e)
 - Models additional flow that can be sent along the edge

Given a flow f in graph G, the residual graph G_f models <u>additional</u> flow that is possible

- Forward edge for each edge in G with weight set to remaining capacity c(e) f(e)
 - Models additional flow that can be sent along the edge
- <u>Backward edge</u> by flipping each edge e in G with weight set to flow f(e)
 - Models amount of flow that can be <u>removed</u> from the edge

Residual Graphs Example

33

Consider a path from $s \to t$ in G_f using only edges with positive (non-zero) weight Consider the minimum-weight edge e along the path: we can increase the flow by w(e)

• Send w(e) flow along all forward edges (these have at least w(e) capacity)

Consider a path from $s \rightarrow t$ in G_f using only edges with positive (non-zero) weight Consider the minimum-weight edge e along the path: we can increase the flow by w(e)

- Send w(e) flow along all forward edges (these have at least w(e) capacity)
- Remove w(e) flow along all backward edges (these contain at least w(e) units of flow)

Consider a path from $s \rightarrow t$ in G_f using only edges with positive (non-zero) weight Consider the minimum-weight edge e along the path: we can increase the flow by w(e)

- Send w(e) flow along all forward edges (these have at least w(e) capacity)
- Remove w(e) flow along all backward edges (these contain at least w(e) units of flow)

Observe: Flow has <u>increased</u> by w(e)

Residual Graphs

Consider a path from $s \to t$ in G_f using only edges with positive (non-zero) weight Consider the minimum-weight edge e along the path: we can increase the flow by w(e)

- Send w(e) flow along all forward edges (these have at least w(e) capacity)
- Remove w(e) flow along all backward edges (these contain at least w(e) units of flow)

Observe: Flow has <u>increased</u> by w(e)

Why does this respect flow constraints?

- Incoming edge to a node always corresponds to increased flow to the node (more incoming flow from forward edge or less outgoing flow from backward edge)
- Outgoing edge to a node always corresponds to decreased flow to the node

37

Residual Graphs

Consider a path from $s \to t$ in G_f using only edges with positive (non-zero) weight Consider the minimum-weight edge e along the path: we can increase the flow by w(e)

- Send w(e) flow along all forward edges (these have at least w(e) capacity)
- Remove w(e) flow along all backward edges (these contain at least w(e) units of flow)

Observe: Flow has <u>increased</u> by w(e)

Why does this respect flow constraints?

- Incoming edge to a node always corresponds to increased flow to the node (more incoming flow from forward edge or less outgoing flow from backward edge)
- Outgoing edge to a node always corresponds to decreased flow to the node

Residual graph G_f

38

Ford-Fulkerson Algorithm

Define an <u>augmenting path</u> to be an $s \rightarrow t$ path in the residual graph G_f (using edges of non-zero weight)

Ford-Fulkerson max-flow algorithm:

- Initialize f(e) = 0 for all $e \in E$
- Construct the residual network G_f
- While there is an augmenting path p in G_f :
 - Let $c = \min_{e \in E} c_f(e)$ ($c_f(e)$ is the weight of edge e in the residual network G_f)
 - Add *c* units of flow to *G* based on the augmenting path *p*
 - Update the residual network G_f for the updated flow

Ford-Fulkerson approach: take any augmenting path (will revisit this later)

Initially:
$$f(e) = 0$$
 for all $e \in E$

Increase flow by 1 unit

Increase flow by 1 unit

Increase flow by 1 unit

Increase flow by 1 unit

Increase flow by 1 unit

Residual graph G_f

Increase flow by 1 unit

Increase flow by 1 unit

Residual graph G_f

Increase flow by 1 unit

No more augmenting paths

Residual graph G_f

Maximum flow: 4

Define an augmenting path to be an $s \rightarrow t$ path in the residual graph G_f (using edges of non-zero weight)

Ford-Fulkerson max-flow algorithm:

- Initialize f(e) = 0 for all $e \in E$
- Construct the residual network G_f
- While there is an augmenting path p in G_f :
 - Let $c = \min_{e \in E} c_f(e)$ ($c_f(e)$ is the weight of edge e in the residual network G_f)
 - Add *c* units of flow to *G* based on the augmenting path *p*
 - Update the residual network G_f for the updated flow

Initialization: O(|E|)

Define an augmenting path to be an $s \rightarrow t$ path in the residual graph G_f (using edges of non-zero weight)

Ford-Fulkerson max-flow algorithm:

- Initialize f(e) = 0 for all $e \in E$
- Construct the residual network G_f
- While there is an augmenting path p in G_f :
 - Let $c = \min_{e \in E} c_f(e)$ ($c_f(e)$ is the weight of edge e in the residual network G_f)
 - Add *c* units of flow to *G* based on the augmenting path *p*
 - Update the residual network G_{f} for the updated flow

Initialization: O(|E|)

```
Construct residual network: O(|E|)
```

Define an augmenting path to be an $s \rightarrow t$ path in the residual graph G_f (using edges of non-zero weight)

Ford-Fulkerson max-flow algorithm:

- Initialize f(e) = 0 for all $e \in E$
- Construct the residual network G_f
- While there is an augmenting path p in G_f :
 - Let $c = \min_{e \in E} c_f(e) (c_f(e))$ is the weight of edge e in the residual network G_f)
 - Add *c* units of flow to *G* based on the augme
 - Update the residual network G_f for the upda

Initialization: O(|E|)

Construct residual network: O(|E|)

Finding augmenting path in residual network: O(|E|) using BFS/DFS

We only care about nodes reachable from the source s (so the number of nodes that are "relevant" is at most |E|)

55

Define an augmenting path to be an $s \rightarrow t$ path in the residual graph G_f (using edges of non-zero weight)

How many iterations are needed?

- For integer-valued capacities, min-weight of each augmenting path is 1, so number of iterations is bounded by $|f^*|$, where $|f^*|$ is max-flow in G
- For rational-valued capacities, can scale to make capacities integer
- For irrational-valued capacities, algorithm may never terminate!

Initialization: O(|E|)

Construct residual network: O(|E|)

Finding augmenting path in residual network: O(|E|) using BFS/DFS

Define an augmenting path to be an $s \to t$ path in the residual graph G_f (using edges of non-zero weight)

Ford-Fulkerson max-flow algorith

- Initialize f(e) = 0 for all e
- Construct the residual net
- While there is an augmen
 - Let $c = \min_{e \in E} c_f(e)$ (c_f
 - Add *c* units of flow to
 - Update the residual n

Initialization: O(|E|)

Construct residual network:

For graphs with integer capacities, running time of Ford-Fulkerson is

 $O(|f^*| \cdot |E|)$ Highly undesirable if $|f^*| \gg |E|$ (e.g., graph is small, but capacities are $\approx 2^{32}$)

As described, algorithm is <u>not</u> polynomial-time!

Finding augmenting path in residual network: O(|E|) using BFS/DFS

Increase flow by 1 unit

Increase flow by 1 unit

Increase flow by 1 unit

Increase flow by 1 unit

Observation: each iteration increases flow by 1 unit **Total number of iterations:** $|f^*| = 200$

Can We Avoid this?

Edmonds-Karp Algorithm: choose augmenting path with fewest hops **Running time:** $\Theta(\min(|E||f^*|, |V||E|^2)) = O(|V||E|^2)$

Ford-Fulkerson max-flow algorithm:

- Initialize f(e) = 0 for all $e \in E$
- Construct the residual network G_f
- While there is an augmenting path in G_f , let p be the path with fewest hops:
 - Let $c = \min_{e \in E} c_f(e)$ ($c_f(e)$ is the weight of edge e in the residual network G_f)
 - Add *c* units of flow to *G* based on the augmenting path *p*
 - Update the residual network G_f for the updated flow

Proof: See CLRS (Chapter 26.2)

How to find this? Use breadth-first search (BFS)!

Edmonds-Karp = Ford-Fulkerson using BFS to find augmenting path

Correctness of Ford-Fulkerson

Consider cuts which separate *s* and *t*

• Let $s \in S$, $t \in T$, such that $V = S \cup T$

Cost ||S, T|| of cut (S, T): sum of the **capacities** of edges from S to T

Max-Flow / Min-Cut

Claim: Maximum flow in a flow network *G* always upper-bounded by the cost any cut that separates *s* and *t*

Proof: "Conservation of flow"

- All flow from *s* must eventually get to *t*
- To get from s to t, all flow must cross the cut somewhere

Conclusion: Max-flow in G is <u>at most</u> the cost of the min-cut in G

Max-Flow Min-Cut Theorem

Let f be a flow in a graph G

Implications:

- Correctness of Ford-Fulkerson: Ford-Fulkerson terminates when there are no more augmenting paths in the residual graph G_f , which means that f is a maximum flow
- Max-flow min-cut duality: the maximum flow in a network coincides with the minimum cut of the graph $(\max_{f} |f| = \min_{S,T} ||S, T||)$
 - Finding either the minimum cut or the maximum flow yields solution to the other
 - Special case of more general principle (duality in linear programming)

Max-Flow Min-Cut Duality Example

Flow graph

Residual graph

Max flow: 4

Max-Flow Min-Cut Duality Example

Flow graph

Residual graph

Max flow:4When there are no more augmenting paths in the graph,Min cut:4there is a cut whose cost matches the flow

Max-Flow Min-Cut Theorem Proof

Let f be a flow in a graph G

Proof:

- Suppose f is a max flow in G and there is an augmenting path in G_f
- If there is an augmenting path in G_f, then we can send additional units of flow though the network along the augmenting path
- This contradicts optimality of *f*
Let f be a flow in a graph G

Proof:

- Take any flow f'
- Consider the cut (S,T) of G; then, $|f'| \le ||S,T|| = |f|$
- Thus, $|f'| \leq |f|$, so f must be a maximum flow

Let f be a flow in a graph G

f is a maximun flow in *G*

there are no augmenting paths in the residual graph G_f

there exists a cut (S,T) of G where |f| = ||S,T||

Flow graph

Residual graph

No augmenting paths means there is <u>no</u> path from s to t in G_f

• Let S be set of nodes reachable from s in G_f

• Let
$$T = V - S$$

Claim: ||S, T|| = |f|

• Total flow |f| is amount of outgoing flow from S to T minus the amount of incoming flow from T to S

Claim: ||S, T|| = |f|

- Total flow |f| is amount of outgoing flow from S to T minus the amount of incoming flow from T to S
- **Outgoing flow:** Consider edge (u, v) where $u \in S$ and $v \in T$
 - Then, f(u, v) = c(u, v). Otherwise, there is a forward edge (u, v) with positive weight in G_f and $v \in S$

Claim: ||S, T|| = |f|

- Total flow |f| is amount of outgoing flow from S to T minus the amount of incoming flow from T to S
- Outgoing flow: Consider edge (u, v) where $u \in S$ and $v \in T$
 - Then, f(u, v) = c(u, v). Otherwise, there is a forward edge (u, v) with positive weight in G_f and $v \in S$
- Incoming flow: Consider edge (y, x) where $y \in T$ and $x \in S$
 - Then, f(y, x) = 0. Otherwise, there is a backward edge (x, y) with positive weight in G_f and $y \in S$

Claim: ||S, T|| = |f|

- Total flow |f| is amount of outgoing flow from S to T minus the amount of incoming flow from T to S
- Outgoing flow: Consider edge (u, v) where $u \in S$ and $v \in T$
 - Then, f(u, v) = c(u, v). Otherwise, there is a forward edge (u, v) with positive weight in G_f and $v \in S$
- Incoming flow: Consider edge (y, x) where $y \in T$ and $x \in S$
 - Then, f(y, x) = 0. Otherwise, there is a backward edge (x, y) with positive weight in G_f and $y \in S$

Max-Flow Min-Cut Theorem

Let f be a flow in a graph G

Implications:

- Correctness of Ford-Fulkerson: Ford-Fulkerson terminates when there are no more augmenting paths in the residual graph G_f , which means that f is a maximum flow
- **Max-flow min-cut duality:** the maximum flow in a network coincides with the minimum cut of the graph $(\max_{f} |f| = \min_{S,T} ||S, T||)$

Other Max Flow Algorithms

Ford-Fulkerson

• $\Theta(|E||f^*|)$

Edmonds-Karp (Ford-Fulkerson using BFS to choose augmenting path)

• $\Theta(|E|^2|V|)$

Push-Relabel (Tarjan)

• $\Theta(|E||V|^2)$

Faster Push-Relabel (also Tarjan)

• $\Theta(|V|^3)$

Minimum-Cost Maximum-Flow Problem

Not all paths are created equal!

A cost is associated with each unit of flow sent along an edge Goal: <u>Maximize</u> flow while <u>minimizing</u> cost

Much harder problem! Can solve using linear programming

82