
CS4102 Algorithms
Spring 2022

Warm up

Why is an algorithm’s space complexity (how much memory it uses)
important?

Why might a memory-intensive algorithm be a “bad” one?

4

Why lots of memory is “bad”

5

Today’s Keywords

• Greedy Algorithms

• Choice Function

• Cache Replacement

• Hardware & Algorithms

CLRS Chapter 16

6

Announcements

• Unit B

– Programming due Friday, 4/15, 11:30pm

• Unit C

– Basic 1 + 2 due Friday, 4/15, 11:30pm

– Advanced due Friday, 4/22

– Programming due Friday 4/22 – Seam carving!

7

REVIEW: Showing Huffman is Optimal

• Overview:

– Show that there is an optimal tree in which the least
frequent characters are siblings

• Exchange argument

– Show that making them siblings and solving the new
smaller sub-problem results in an optimal solution

• Proof by contradiction

8

Greedy Choice Property

Optimal Substructure works

Huffman Exchange Argument

• Claim: if 𝑐1, 𝑐2 are the least-frequent characters, then there is
an optimal prefix-free code s.t. 𝑐1, 𝑐2 are siblings

– i.e. codes for 𝑐1 , 𝑐2 are the same length and differ only by their last
bit

9𝑐1

𝑇𝑜𝑝𝑡

𝑐2

Case 1: Consider some optimal tree 𝑇𝑜𝑝𝑡 . If 𝑐1, 𝑐2 are siblings in this

tree, then claim holds

Huffman Exchange Argument

• Claim: if 𝑐1, 𝑐2 are the least-frequent characters, then there is
an optimal prefix-free code s.t. 𝑐1, 𝑐2 are siblings

– i.e. codes for 𝑐1 , 𝑐2 are the same length and differ only by their last
bit

10

𝑐2

𝑎

𝑐1

𝑇𝑜𝑝𝑡

𝑏

Case 2: Consider some optimal tree 𝑇𝑜𝑝𝑡 , in which 𝑐1, 𝑐2 are not siblings

Let 𝑎, 𝑏 be the two characters of lowest
depth that are siblings
(Why must they exist?)

Idea: show that swapping 𝑐1 with 𝑎 does
not increase cost of the tree.
Similar for 𝑐2 and 𝑏
Assume: 𝑓𝑐1 ≤ 𝑓𝑎 and 𝑓𝑐2 ≤ 𝑓𝑏

Finishing the Proof

• Show Optimal Substructure

– Show treating 𝑐1 , 𝑐2 as a new “combined” character gives optimal
solution

11

Why does solving this smaller problem:

Give an optimal solution to this?:

𝑐1 𝑐2

𝑐1 𝑐2

𝜎

Optimal Substructure

• Claim: An optimal solution for 𝐹 involves finding an optimal
solution for 𝐹′, then adding 𝑐1, 𝑐2 as children to 𝜎

12

𝑐1 𝑐2

𝑐1 𝑐2

𝜎

𝐹′

𝐹

Optimal Substructure

• Claim: An optimal solution for 𝐹 involves finding an optimal
solution for 𝐹′, then adding 𝑐1, 𝑐2 as children to 𝜎

13

𝑇

𝑐1

𝜎

𝑐2

𝑇′

𝜎

If this is optimal Then this is optimal

𝑓𝜎 = 𝑓𝑐1 + 𝑓𝑐2

𝐵 𝑇′ = 𝐵 𝑇 − 𝑓𝑐1 − 𝑓𝑐2

ℓ𝑐1 = ℓ𝜎 + 1
ℓ𝑐2 = ℓ𝜎 + 1

Optimal Substructure

• Claim: An optimal solution for 𝐹 involves finding an optimal
solution for 𝐹′, then adding 𝑐1, 𝑐2 as children to 𝜎

14

𝑇

𝑐1

𝜎

𝑐2

Suppose 𝑇 is not optimal
Let 𝑈 be a lower-cost tree

𝐵 𝑈 < 𝐵(𝑇)

𝑐1

𝑈

𝑐2

Toward contradiction

Optimal Substructure

15

𝑈′

𝜎

𝐵 𝑈 < 𝐵(𝑇)

𝑐1

𝑈

𝑐2

𝐵 𝑈′ = 𝐵 𝑈 − 𝑓𝑐1 − 𝑓𝑐2

< 𝐵 𝑇 − 𝑓𝑐1 − 𝑓𝑐2

= 𝐵 𝑇′

Contradicts optimality of 𝑇′, so 𝑇 is
optimal!

• Claim: An optimal solution for 𝐹 involves finding an optimal
solution for 𝐹′, then adding 𝑐1, 𝑐2 as children to 𝜎

Optimal Substructure

• Claim: An optimal solution for 𝐹 involves finding an optimal
solution for 𝐹′, then adding 𝑐1, 𝑐2 as children to 𝜎

16

𝑐1 𝑐2

𝑐1 𝑐2

𝜎

𝐹′

𝐹

𝑈′

𝜎

𝑇′
𝜎

𝑇

𝑐1

𝜎

𝑐2

𝑐1

𝑈

𝑐2

>
>

Contradiction!
optimal

not-optimal optimal

?!?!

Caching Problem

• Why is using too much memory a bad thing?

17

Von Neumann Bottleneck

• Named for John von Neumann

• Inventor of modern computer architecture

• Other notable influences include:

– Mathematics

– Physics

– Economics

– Computer Science

18

Von Neumann Bottleneck

• Reading from memory is VERY slow

• Big memory = slow memory

• Solution: hierarchical memory

• Takeaway for Algorithms: Memory is time, more memory is a
lot more time

19

CPU,
registers

Cache
Disk

If not look here

Hopefully your
data in here

Hope it’s not here

Access time:
1 cycle

Access time:
10 cycles

Access time:
1,000,000 cycles

Caching Problem

• Cache misses are very expensive

• When we load something new into cache, we must eliminate
something already there

• We want the best cache “schedule” to minimize the number of
misses

20

Caching Problem Definition

• Input:

– 𝑘 = size of the cache

–𝑀 = 𝑚1 , 𝑚2 , …𝑚𝑛 = memory access pattern

• Output:

– “schedule” for the cache (list of items in the cache at each time)
which minimizes cache fetches

21

Example

22

A B C D A D E A D B A E C E A

A

B

C

Example

23

A B C D A D E A D B A E C E A

A

B

C

A

B

C

Example

24

A B C D A D E A D B A E C E A

A

B

C

A

B

C

A

B

C

Example

25

A B C D A D E A D B A E C E A

A

B

C

We must evict
something to make
room for D

A

B

C

A

B

C

A

B

C

Example

26

A B C D A D E A D B A E C E A

D

B

C

If we evict AA

B

C

A

B

C

A

B

C

A

B

C

Example

27

A B C D A D E A D B A E C E A

A

B

D

If we evict CA

B

C

A

B

C

A

B

C

A

B

C

Our Problem vs Reality

• Assuming we know the entire access pattern
• Cache is Fully Associative
• Counting # of fetches (not necessarily misses)
• “Reduced” Schedule: Address only loaded on the cycle it’s required

– Reduced == Unreduced (by number of fetches)

28

A B C D A D E A D B A E C E A

A B C D A D E A D B A E C E A

A

B

C

A

B

C

A

B

C

A

B

C

D

B

C

D

B

C

A

B

C

A

B

C

Unreduced

Reduced
Leaving A in longer does
not save fetches

Greedy Algorithms

• Require Optimal Substructure

– Solution to larger problem contains the solution to a smaller one

– Only one subproblem to consider!

• Idea:

1. Identify a greedy choice property

• How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain

29

Greedy choice property

• Belady evict rule:

– Evict the item accessed farthest in the future

30

A B C D A D E A D B A E C E A

A

B

C Evict C

A

B

C

A

B

C

A

B

C

Greedy choice property

• Belady evict rule:

– Evict the item accessed farthest in the future

31

A B C D A D E A D B A E C E A

A

B

D

A

B

C

A

B

C

A

B

C

A

B

D

A

B

D

A

B

D Evict B

Greedy choice property

• Belady evict rule:

– Evict the item accessed farthest in the future

32

A B C D A D E A D B A E C E A

A

B

D

A

B

C

A

B

C

A

B

C

A

B

D

A

B

D

A

E

D

A

E

D

A

E

D

A

E

D Evict D

Greedy choice property

• Belady evict rule:

– Evict the item accessed farthest in the future

33

A B C D A D E A D B A E C E A

A

B

D

A

B

C

A

B

C

A

B

C

A

B

D

A

B

D

A

E

D

A

E

D

A

E

D

A

E

B

A

E

B

A

E

B

A

E

B Evict B

Greedy choice property

• Belady evict rule:

– Evict the item accessed farthest in the future

34

A B C D A D E A D B A E C E A

A

B

D

A

B

C

A

B

C

A

B

C

A

B

D

A

B

D

A

E

D

A

E

D

A

E

D

A

E

B

A

E

B

A

E

B

A

E

C

A

E

C

A

E

C

4 Cache Misses

Greedy Algorithms

• Require Optimal Substructure

– Solution to larger problem contains the solution to a smaller one

– Only one subproblem to consider!

• Idea:

1. Identify a greedy choice property

• How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain

35

Caching Greedy Algorithm

Initialize 𝑐𝑎𝑐ℎ𝑒= first k accesses

For each 𝑚𝑖 ∈ 𝑀:

if 𝑚𝑖 ∈ 𝑐𝑎𝑐ℎ𝑒:

print 𝑐𝑎𝑐ℎ𝑒

else:

𝑚 = furthest-in-future from cache

evict 𝑚, load 𝑚𝑖

print 𝑐𝑎𝑐ℎ𝑒

36

𝑂(𝑘)

𝑛 times

𝑂(𝑘)

𝑂(𝑘)

𝑂(𝑘𝑛)

𝑂(1)

𝑂(𝑘)
𝑂(𝑘𝑛2)

Exchange argument

• Shows correctness of a greedy algorithm

• Idea:

– Show exchanging an item from an arbitrary optimal solution with
your greedy choice makes the new solution no worse

– How to show my sandwich is at least as good as yours:

• Show: “I can remove any item from your sandwich, and it would be no worse
by replacing it with the same item from my sandwich”

37

Belady Exchange Lemma

Let 𝑆𝑓𝑓 be the schedule chosen by our greedy algorithm

Let 𝑆𝑖 be a schedule which agrees with 𝑆𝑓𝑓 for the first 𝑖 memory accesses.

We will show: there is a schedule 𝑆𝑖+1 which agrees with 𝑆𝑓𝑓 for the first

𝑖 + 1 memory accesses, and has no more misses than 𝑆𝑖
(i.e. 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆𝑖+1 ≤ 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆𝑖))

38

𝑆∗

Agrees with
𝑆𝑓𝑓 on first 0
accesses

𝑆1 𝑆2
Agrees with
𝑆𝑓𝑓 on first

access

Agrees with
𝑆𝑓𝑓 on first 2
accesses

… 𝑆𝑓𝑓
Agrees with
𝑆𝑓𝑓 on all 𝑛
accesses

Lemma Lemma Lemma Lemma
Optimal Greedy

Belady Exchange Proof Idea

39

𝑆𝑖

𝑆𝑓𝑓

𝑆𝑖+1

First 𝑖 accesses

Must agree with 𝑆𝑓𝑓

Need to fill in the rest
of 𝑆𝑖+1 to have no

more misses than 𝑆𝑖

𝑆𝑖 Cache after 𝑖

Proof of Lemma

Goal: find 𝑆𝑖+1 s.t. 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆𝑖+1 ≤ 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆𝑖)

Since 𝑆𝑖 agrees with 𝑆𝑓𝑓 for the first 𝑖 accesses, the

state of the cache at access 𝑖 + 1 will be the same

40

𝑆𝑓𝑓 Cache after 𝑖=

Consider access 𝑚𝑖+1 = 𝑑

Case 1: if 𝑑 is in the cache, then neither 𝑆𝑖 nor 𝑆𝑓𝑓
evict from the cache, use the same cache for 𝑆𝑖+1

𝑓𝑒 𝑓𝑒

𝑆𝑖+1 Cache after 𝑖 𝑓𝑒

𝑑 𝑑

𝑑

𝑆𝑖 Cache after 𝑖

Proof of Lemma

Goal: find 𝑆𝑖+1 s.t. 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆𝑖+1 ≤ 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆𝑖)

Since 𝑆𝑖 agrees with 𝑆𝑓𝑓 for the first 𝑖 accesses, the

state of the cache at access 𝑖 + 1 will be the same

41

𝑆𝑓𝑓 Cache after 𝑖=

Consider access 𝑚𝑖+1 = 𝑑

𝑓𝑒 𝑓𝑒

Case 2: if 𝑑 isn’t in the cache, and both 𝑆𝑖 and
𝑆𝑓𝑓 evict 𝑓 from the cache, evict 𝑓 for 𝑑 in 𝑆𝑖+1

𝑆𝑖+1 Cache after 𝑖 𝑑𝑒

𝑆𝑖 Cache after 𝑖

Proof of Lemma

Goal: find 𝑆𝑖+1 s.t. 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆𝑖+1 ≤ 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆𝑖)

Since 𝑆𝑖 agrees with 𝑆𝑓𝑓 for the first 𝑖 accesses, the

state of the cache at access 𝑖 + 1 will be the same

42

𝑆𝑓𝑓 Cache after 𝑖=

Consider access 𝑚𝑖+1 = 𝑑

𝑓𝑒 𝑓𝑒

Case 3: if 𝑑 isn’t in the cache, 𝑆𝑖 evicts 𝑒 and 𝑆𝑓𝑓
evicts 𝑓 from the cache

𝑆𝑖 Cache after 𝑖 + 1 𝑆𝑓𝑓 Cache after 𝑖 + 1≠𝑓𝑑 𝑑𝑒

Case 3

43

𝑆𝑖

𝑆𝑓𝑓

𝑆𝑖+1

First 𝑖 accesses

Must agree with 𝑆𝑓𝑓

Need to fill in the rest
of 𝑆𝑖+1 to have no

more misses than 𝑆𝑖

Case 3

44

𝑆𝑖

𝑆𝑓𝑓

𝑆𝑖+1 𝑚𝑡

First 𝑖 accesses

First place 𝑆𝑖 involves 𝑒 or 𝑓

Copy 𝑆𝑖

𝑚𝑡 = the first access after 𝑖 + 1 in which 𝑆𝑖 deals with 𝑒 or 𝑓

3 options: 𝒎𝒕 = 𝒆 or 𝒎𝒕 = 𝒇 or 𝒎𝒕 = 𝒙 ≠ 𝒆, 𝒇

Case 3,

45

𝑆𝑖

𝑆𝑓𝑓

𝑆𝑖+1 𝑒

First 𝑖 accesses

First place 𝑆𝑖 uses 𝑒 or 𝑓

Copy 𝑆𝑖

𝑚𝑡 = the first access after 𝑖 + 1 in which 𝑆𝑖 deals with 𝑒 or 𝑓

3 options: 𝒎𝒕 = 𝒆 or 𝒎𝒕 = 𝒇 or 𝒎𝒕 = 𝒙 ≠ 𝒆, 𝒇

Case 3,

Goal: find 𝑆𝑖+1 s.t. 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆𝑖+1 ≤ 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆𝑖)

46

𝑆𝑖 Cache after 𝑡 − 1 𝑆𝑖+1 Cache after 𝑡 − 1≠𝑓𝑑 𝑑𝑒

𝑆𝑖 must load 𝑒 into
the cache, assume it
evicts 𝑥

𝑆𝑖+1 will load 𝑓 into
the cache, evicting 𝑥

𝑆𝑖+1 behaved exactly the same as 𝑆𝑖 between 𝑖
and 𝑡, and has the same cache after 𝑡,
therefore 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆𝑖+1 = 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆𝑖)

The caches now match!

𝑥 𝑥

𝑒 𝑓

Case 3,

47

𝑆𝑖

𝑆𝑓𝑓

𝑆𝑖+1 𝑓

First 𝑖 accesses

First place 𝑆𝑖 uses 𝑒 or 𝑓

Copy 𝑆𝑖

𝑚𝑡 = the first access after 𝑖 + 1 in which 𝑆𝑖 deals with 𝑒 or 𝑓

3 options: 𝒎𝒕 = 𝒆 or 𝒎𝒕 = 𝒇 or 𝒎𝒕 = 𝒙 ≠ 𝒆, 𝒇

Case 3,

Cannot Happen!

48

𝑆𝑖

𝑆𝑓𝑓

𝑆𝑖+1 𝑓

First place 𝑆𝑖 uses 𝑒 or 𝑓

“Evict 𝑓"

“Evict 𝑓"

Means 𝑓 not farthest future access!

Case 3,

49

𝑆𝑖

𝑆𝑓𝑓

𝑆𝑖+1 𝑥

First 𝑖 accesses

First place 𝑆𝑖 uses 𝑒 or 𝑓

Copy 𝑆𝑖

𝑚𝑡 = the first access after 𝑖 + 1 in which 𝑆𝑖 deals with 𝑒 or 𝑓

3 options: 𝒎𝒕 = 𝒆 or 𝒎𝒕 = 𝒇 or 𝒎𝒕 = 𝒙 ≠ 𝒆, 𝒇

Case 3,

Goal: find 𝑆𝑖+1 s.t. 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆𝑖+1 ≤ 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆𝑖)

50

𝑆𝑖 Cache after 𝑡 − 1 𝑆𝑖+1 Cache after 𝑡 − 1≠𝑓𝑑 𝑑𝑒

𝑆𝑖 loads 𝑥 into the
cache, it must be
evicting 𝑓

𝑆𝑖+1 will load 𝑥 into
the cache, evicting 𝑒

𝑆𝑖+1 behaved exactly the same as 𝑆𝑖 between 𝑖
and 𝑡, and has the same cache after 𝑡,
therefore 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆𝑖+1 = 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆𝑖)

𝑥 𝑥

The caches now match!

Use Lemma to show Optimality

51

𝑆∗

Agrees with
𝑆𝑓𝑓 on first 0
accesses

𝑆1 𝑆2
Agrees with
𝑆𝑓𝑓 on first
access

Agrees with

𝑆𝑓𝑓 on first 2
accesses

… 𝑆𝑓𝑓
Agrees with

𝑆𝑓𝑓 on all 𝑛
accesses

Lemma Lemma Lemma Lemma

Kruskal’s Algorithm

52

Start with an empty tree 𝐴
Add to 𝐴 the lowest-weight edge that does not
create a cycle

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Greedy Algorithms

• Require Optimal Substructure

– Solution to larger problem contains the solution to a smaller one

– Only one subproblem to consider!

• Idea:

1. Identify a greedy choice property

• How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain

53

Kruskal’s Algorithm

54

Start with an empty tree 𝐴
Add to 𝐴 the lowest-weight edge that does not
create a cycle

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Kruskal’s Algorithm

55

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Start with an empty tree 𝐴
Add to 𝐴 the lowest-weight edge that does not
create a cycle

Kruskal’s Algorithm

56

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Start with an empty tree 𝐴
Add to 𝐴 the lowest-weight edge that does not
create a cycle

Kruskal’s Algorithm

57

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Start with an empty tree 𝐴
Add to 𝐴 the lowest-weight edge that does not
create a cycle

Kruskal’s Algorithm

58

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Start with an empty tree 𝐴
Add to 𝐴 the lowest-weight edge that does not
create a cycle

Definition: Cut

59

A Cut of graph 𝐺 = (𝑉, 𝐸) is a partition of the
nodes into two sets, 𝑆 and 𝑉 − 𝑆

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

𝑆

Edge 𝑣1 , 𝑣2 ∈ 𝐸 crosses a
cut if 𝑣1 ∈ 𝑆 and 𝑣2 ∈ 𝑉 − 𝑆
(or opposite), e.g. (𝐴, 𝐶)

A set of edges 𝑅 Respects a cut
if no edges cross the cut
e.g. 𝑅 = { 𝐴, 𝐵 , 𝐸, 𝐺 , 𝐹, 𝐺 }

Exchange argument

• Shows correctness of a greedy algorithm

• Idea:

– Show exchanging an item from an arbitrary optimal solution with
your greedy choice makes the new solution no worse

– How to show my sandwich is at least as good as yours:

• Show: “I can remove any item from your sandwich, and it would be no worse
by replacing it with the same item from my sandwich”

60

Cut Theorem

If a set of edges 𝐴 is a subset of a minimum spanning tree 𝑇, let
(𝑆, 𝑉 − 𝑆) be any cut which 𝐴 respects. Let 𝑒 be the least-weight
edge which crosses (𝑆, 𝑉 − 𝑆). 𝐴 ∪ {𝑒} is also a subset of a
minimum spanning tree.

61

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Proof of Cut Theorem

62

Claim: If 𝐴 is a subset of a MST 𝑇, and 𝑒 is the least-
weight edge which crosses cut (𝑆, 𝑉 − 𝑆) (which 𝐴
respects) then 𝐴 ∪ {𝑒} is also a subset of a MST.

𝑆

𝑇

𝐴 ⊆ 𝑇

𝑒

Consider some MST 𝑇,
Case 1: (the easy case)

If 𝑒 ∈ 𝑇 Then claim holds

Proof of Cut Theorem

63

Claim: If 𝐴 is a subset of a MST 𝑇, and 𝑒 is the least-
weight edge which crosses cut (𝑆, 𝑉 − 𝑆) (which 𝐴
respects) then 𝐴 ∪ {𝑒} is also a subset of a MST.

𝑇

𝐴 ⊆ 𝑇

Consider some MST 𝑇,
Case 2:

Consider if 𝑒 = (𝑣1 , 𝑣2) ∉ 𝑇

Since 𝑇 is a MST, there is
some path from 𝑣1 to 𝑣2.

Let 𝑒′ be the first edge on this
path which crosses the cut

Build tree 𝑇′ by exchanging
𝑒′ for 𝑒

𝑣2

𝑣1

𝑆

𝑒
𝑒′

Proof of Cut Theorem

64

Claim: If 𝐴 is a subset of a MST 𝑇, and 𝑒 is the least-
weight edge which crosses cut (𝑆, 𝑉 − 𝑆) (which 𝐴
respects) then 𝐴 ∪ {𝑒} is also a subset of a MST.

𝑇

𝐴 ⊆ 𝑇

Consider some MST 𝑇,
Case 2:

Consider if 𝑒 = (𝑣1 , 𝑣2) ∉ 𝑇

𝑣2

𝑣1

𝑆

𝑒
𝑒′

We assumed 𝑤 𝑒 ≤ 𝑤(𝑒′)
𝑤 𝑇′ = 𝑤 𝑇 − 𝑤 𝑒′ +𝑤(𝑒)
𝑤 𝑇′ ≤ 𝑤 𝑇
So 𝑇′ is also a MST!
Thus the claim holds

𝑇′ = 𝑇 with edge 𝑒 instead of 𝑒′

Kruskal’s Algorithm

65

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Start with an empty tree 𝐴
Repeat 𝑉 − 1 times:

Add the min-weight edge that doesn’t
cause a cycle

𝑆

𝑒

Keep edges in a Disjoint-set
data structure (very fancy)

𝑂 𝐸 log 𝑉

General MST Algorithm

66

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Start with an empty tree 𝐴
Repeat 𝑉 − 1 times:

Pick a cut (𝑆, 𝑉 − 𝑆) which 𝐴 respects
Add the min-weight edge which crosses (𝑆, 𝑉 − 𝑆)

Prim’s Algorithm

67

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Start with an empty tree 𝐴
Repeat 𝑉 − 1 times:

Pick a cut (𝑆, 𝑉 − 𝑆) which 𝐴 respects
Add the min-weight edge which crosses (𝑆, 𝑉 − 𝑆)

𝑆 is all endpoint of edges in 𝐴
𝑒 is the min-weight edge that grows the tree

Prim’s Algorithm

68

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:

Add the min-weight edge which connects to node
in 𝐴 with a node not in 𝐴

Prim’s Algorithm

69

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:

Add the min-weight edge which connects to node
in 𝐴 with a node not in 𝐴

Prim’s Algorithm

70

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:

Add the min-weight edge which connects to node
in 𝐴 with a node not in 𝐴

Prim’s Algorithm

71

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:

Add the min-weight edge which connects to node
in 𝐴 with a node not in 𝐴

Prim’s Algorithm

72

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:

Add the min-weight edge which connects to node
in 𝐴 with a node not in 𝐴

Keep edges in a Heap
𝑂 𝐸 log 𝑉

