
CS4102 Algorithms
Spring 2022

Warm up

Why is an algorithm’s space complexity (how much memory it uses) 
important?

Why might a memory-intensive algorithm be a “bad” one?
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Why lots of memory is “bad”
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Today’s Keywords

• Greedy Algorithms

• Choice Function

• Cache Replacement

• Hardware & Algorithms

CLRS Chapter 16

6



Announcements

• Unit B

– Programming due Friday, 4/15, 11:30pm

• Unit C

– Basic 1 + 2 due Friday, 4/15, 11:30pm

– Advanced due Friday, 4/22

– Programming due Friday 4/22 – Seam carving!

7



REVIEW: Showing Huffman is Optimal

• Overview:

– Show that there is an optimal tree in which the least 
frequent characters are siblings

• Exchange argument

– Show that making them siblings and solving the new 
smaller sub-problem results in an optimal solution

• Proof by contradiction
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Greedy Choice Property

Optimal Substructure works



Huffman Exchange Argument

• Claim: if 𝑐1, 𝑐2 are the least-frequent characters, then there is 
an optimal prefix-free code s.t. 𝑐1, 𝑐2 are siblings

– i.e. codes for 𝑐1 , 𝑐2 are the same length and differ only by their last 
bit

9𝑐1

𝑇𝑜𝑝𝑡

𝑐2

Case 1: Consider some optimal tree 𝑇𝑜𝑝𝑡 . If 𝑐1, 𝑐2 are siblings in this 

tree, then claim holds



Huffman Exchange Argument

• Claim: if 𝑐1, 𝑐2 are the least-frequent characters, then there is 
an optimal prefix-free code s.t. 𝑐1, 𝑐2 are siblings

– i.e. codes for 𝑐1 , 𝑐2 are the same length and differ only by their last 
bit

10

𝑐2

𝑎

𝑐1

𝑇𝑜𝑝𝑡

𝑏

Case 2: Consider some optimal tree 𝑇𝑜𝑝𝑡 , in which 𝑐1, 𝑐2 are not siblings

Let 𝑎, 𝑏 be the two characters of lowest 
depth that are siblings 
(Why must they exist?)

Idea: show that swapping 𝑐1 with 𝑎 does 
not increase cost of the tree. 
Similar for 𝑐2 and 𝑏
Assume: 𝑓𝑐1 ≤ 𝑓𝑎 and 𝑓𝑐2 ≤ 𝑓𝑏



Finishing the Proof

• Show Optimal Substructure

– Show treating 𝑐1 , 𝑐2 as a new “combined” character gives optimal 
solution
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Why does solving this smaller problem:

Give an optimal solution to this?:

𝑐1 𝑐2

𝑐1 𝑐2

𝜎



Optimal Substructure

• Claim: An optimal solution for 𝐹 involves finding an optimal 
solution for 𝐹′, then adding 𝑐1, 𝑐2 as children to 𝜎
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𝑐1 𝑐2

𝑐1 𝑐2

𝜎

𝐹′

𝐹



Optimal Substructure

• Claim: An optimal solution for 𝐹 involves finding an optimal 
solution for 𝐹′, then adding 𝑐1, 𝑐2 as children to 𝜎
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𝑇

𝑐1

𝜎

𝑐2

𝑇′

𝜎

If this is optimal Then this is optimal

𝑓𝜎 = 𝑓𝑐1 + 𝑓𝑐2

𝐵 𝑇′ = 𝐵 𝑇 − 𝑓𝑐1 − 𝑓𝑐2

ℓ𝑐1 = ℓ𝜎 + 1
ℓ𝑐2 = ℓ𝜎 + 1



Optimal Substructure

• Claim: An optimal solution for 𝐹 involves finding an optimal 
solution for 𝐹′, then adding 𝑐1, 𝑐2 as children to 𝜎
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𝑇

𝑐1

𝜎

𝑐2

Suppose 𝑇 is not optimal
Let 𝑈 be a lower-cost tree

𝐵 𝑈 < 𝐵(𝑇)

𝑐1

𝑈

𝑐2

Toward contradiction



Optimal Substructure
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𝑈′

𝜎

𝐵 𝑈 < 𝐵(𝑇)

𝑐1

𝑈

𝑐2

𝐵 𝑈′ = 𝐵 𝑈 − 𝑓𝑐1 − 𝑓𝑐2

< 𝐵 𝑇 − 𝑓𝑐1 − 𝑓𝑐2

= 𝐵 𝑇′

Contradicts optimality of 𝑇′, so 𝑇 is 
optimal!

• Claim: An optimal solution for 𝐹 involves finding an optimal 
solution for 𝐹′, then adding 𝑐1, 𝑐2 as children to 𝜎



Optimal Substructure

• Claim: An optimal solution for 𝐹 involves finding an optimal 
solution for 𝐹′, then adding 𝑐1, 𝑐2 as children to 𝜎
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𝑐1 𝑐2

𝑐1 𝑐2

𝜎

𝐹′

𝐹

𝑈′

𝜎

𝑇′
𝜎

𝑇

𝑐1

𝜎

𝑐2

𝑐1

𝑈

𝑐2

>
>

Contradiction!
optimal

not-optimal optimal

?!?!



Caching Problem

• Why is using too much memory a bad thing?
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Von Neumann Bottleneck

• Named for John von Neumann

• Inventor of modern computer architecture

• Other notable influences include:

– Mathematics 

– Physics

– Economics 

– Computer Science
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Von Neumann Bottleneck

• Reading from memory is VERY slow

• Big memory = slow memory

• Solution: hierarchical memory

• Takeaway for Algorithms: Memory is time, more memory is a 
lot more time
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CPU, 
registers

Cache
Disk

If not look here

Hopefully your 
data in here

Hope it’s not here

Access time: 
1 cycle

Access time: 
10 cycles

Access time: 
1,000,000 cycles



Caching Problem

• Cache misses are very expensive

• When we load something new into cache, we must eliminate 
something already there

• We want the best cache “schedule” to minimize the number of 
misses
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Caching Problem Definition

• Input: 

– 𝑘 = size of the cache

–𝑀 = 𝑚1 , 𝑚2 , …𝑚𝑛 = memory access pattern

• Output: 

– “schedule” for the cache (list of items in the cache at each time) 
which minimizes cache fetches
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Example
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Example
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Example
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Example
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A   B   C   D   A   D   E   A   D   B   A   E   C   E   A

A

B

C

We must evict 
something to make 
room for D

A

B

C

A

B

C

A

B

C



Example
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A   B   C   D   A   D   E   A   D   B   A   E   C   E   A

D

B

C

If we evict AA

B

C

A

B

C

A

B

C

A

B

C



Example
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A   B   C   D   A   D   E   A   D   B   A   E   C   E   A

A

B

D

If we evict CA

B

C

A

B

C

A

B

C

A

B

C



Our Problem vs Reality

• Assuming we know the entire access pattern
• Cache is Fully Associative
• Counting # of fetches (not necessarily misses)
• “Reduced” Schedule: Address only loaded on the cycle it’s required

– Reduced == Unreduced (by number of fetches)
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A   B   C   D   A   D   E   A   D   B   A   E   C   E   A

A   B   C   D   A   D   E   A   D   B   A   E   C   E   A

A

B

C

A

B

C

A

B

C

A

B

C

D

B

C

D

B

C

A

B

C

A

B

C

Unreduced

Reduced
Leaving A in longer does 
not save fetches



Greedy Algorithms

• Require Optimal Substructure

– Solution to larger problem contains the solution to a smaller one

– Only one subproblem to consider!

• Idea:

1. Identify a greedy choice property

• How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain
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Greedy choice property

• Belady evict rule:

– Evict the item accessed farthest in the future
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Greedy choice property

• Belady evict rule:

– Evict the item accessed farthest in the future
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Greedy choice property

• Belady evict rule:

– Evict the item accessed farthest in the future
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Greedy choice property

• Belady evict rule:

– Evict the item accessed farthest in the future
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Greedy choice property

• Belady evict rule:

– Evict the item accessed farthest in the future
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Greedy Algorithms

• Require Optimal Substructure

– Solution to larger problem contains the solution to a smaller one

– Only one subproblem to consider!

• Idea:

1. Identify a greedy choice property

• How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain
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Caching Greedy Algorithm

Initialize 𝑐𝑎𝑐ℎ𝑒= first k accesses

For each 𝑚𝑖 ∈ 𝑀:

if 𝑚𝑖 ∈ 𝑐𝑎𝑐ℎ𝑒:

print 𝑐𝑎𝑐ℎ𝑒

else:

𝑚 = furthest-in-future from cache

evict 𝑚, load 𝑚𝑖

print 𝑐𝑎𝑐ℎ𝑒

36

𝑂(𝑘)

𝑛 times

𝑂(𝑘)

𝑂(𝑘)

𝑂(𝑘𝑛)

𝑂(1)

𝑂(𝑘)
𝑂(𝑘𝑛2)



Exchange argument

• Shows correctness of a greedy algorithm

• Idea:

– Show exchanging an item from an arbitrary optimal solution with 
your greedy choice makes the new solution no worse

– How to show my sandwich is at least as good as yours:

• Show: “I can remove any item from your sandwich, and it would be no worse 
by replacing it with the same item from my sandwich”
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Belady Exchange Lemma

Let 𝑆𝑓𝑓 be the schedule chosen by our greedy algorithm

Let 𝑆𝑖 be a schedule which agrees with 𝑆𝑓𝑓 for the first 𝑖 memory accesses.

We will show: there is a schedule 𝑆𝑖+1 which agrees with 𝑆𝑓𝑓 for the first 

𝑖 + 1 memory accesses, and has no more misses than 𝑆𝑖
(i.e. 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆𝑖+1 ≤ 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆𝑖))

38

𝑆∗

Agrees with 
𝑆𝑓𝑓 on first 0 
accesses

𝑆1 𝑆2
Agrees with 
𝑆𝑓𝑓 on first  

access

Agrees with 
𝑆𝑓𝑓 on first 2  
accesses

… 𝑆𝑓𝑓
Agrees with 
𝑆𝑓𝑓 on all 𝑛
accesses

Lemma Lemma Lemma Lemma
Optimal Greedy 



Belady Exchange Proof Idea

39

𝑆𝑖

𝑆𝑓𝑓

𝑆𝑖+1

First 𝑖 accesses

Must agree with 𝑆𝑓𝑓

Need to fill in the rest 
of 𝑆𝑖+1 to have no 

more misses than 𝑆𝑖



𝑆𝑖 Cache after 𝑖

Proof of Lemma

Goal: find 𝑆𝑖+1 s.t. 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆𝑖+1 ≤ 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆𝑖)

Since 𝑆𝑖 agrees with 𝑆𝑓𝑓 for the first 𝑖 accesses, the 

state of the cache at access 𝑖 + 1 will be the same
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𝑆𝑓𝑓 Cache after 𝑖=

Consider access 𝑚𝑖+1 = 𝑑

Case 1: if 𝑑 is in the cache, then neither 𝑆𝑖 nor 𝑆𝑓𝑓
evict from the cache, use the same cache for 𝑆𝑖+1

𝑓𝑒 𝑓𝑒

𝑆𝑖+1 Cache after 𝑖 𝑓𝑒

𝑑 𝑑

𝑑



𝑆𝑖 Cache after 𝑖

Proof of Lemma

Goal: find 𝑆𝑖+1 s.t. 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆𝑖+1 ≤ 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆𝑖)

Since 𝑆𝑖 agrees with 𝑆𝑓𝑓 for the first 𝑖 accesses, the 

state of the cache at access 𝑖 + 1 will be the same
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𝑆𝑓𝑓 Cache after 𝑖=

Consider access 𝑚𝑖+1 = 𝑑

𝑓𝑒 𝑓𝑒

Case 2: if 𝑑 isn’t in the cache, and both 𝑆𝑖 and 
𝑆𝑓𝑓 evict 𝑓 from the cache, evict 𝑓 for 𝑑 in 𝑆𝑖+1

𝑆𝑖+1 Cache after 𝑖 𝑑𝑒



𝑆𝑖 Cache after 𝑖

Proof of Lemma

Goal: find 𝑆𝑖+1 s.t. 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆𝑖+1 ≤ 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆𝑖)

Since 𝑆𝑖 agrees with 𝑆𝑓𝑓 for the first 𝑖 accesses, the 

state of the cache at access 𝑖 + 1 will be the same
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𝑆𝑓𝑓 Cache after 𝑖=

Consider access 𝑚𝑖+1 = 𝑑

𝑓𝑒 𝑓𝑒

Case 3: if 𝑑 isn’t in the cache, 𝑆𝑖 evicts 𝑒 and 𝑆𝑓𝑓
evicts 𝑓 from the cache

𝑆𝑖 Cache after 𝑖 + 1 𝑆𝑓𝑓 Cache after 𝑖 + 1≠𝑓𝑑 𝑑𝑒



Case 3
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𝑆𝑖

𝑆𝑓𝑓

𝑆𝑖+1

First 𝑖 accesses

Must agree with 𝑆𝑓𝑓

Need to fill in the rest 
of 𝑆𝑖+1 to have no 

more misses than 𝑆𝑖



Case 3

44

𝑆𝑖

𝑆𝑓𝑓

𝑆𝑖+1 𝑚𝑡

First 𝑖 accesses

First place 𝑆𝑖 involves 𝑒 or 𝑓

Copy 𝑆𝑖

𝑚𝑡 = the first access after 𝑖 + 1 in which 𝑆𝑖 deals with 𝑒 or 𝑓

3 options: 𝒎𝒕 = 𝒆 or 𝒎𝒕 = 𝒇 or 𝒎𝒕 = 𝒙 ≠ 𝒆, 𝒇



Case 3, 
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𝑆𝑖

𝑆𝑓𝑓

𝑆𝑖+1 𝑒

First 𝑖 accesses

First place 𝑆𝑖 uses 𝑒 or 𝑓

Copy 𝑆𝑖

𝑚𝑡 = the first access after 𝑖 + 1 in which 𝑆𝑖 deals with 𝑒 or 𝑓

3 options: 𝒎𝒕 = 𝒆 or 𝒎𝒕 = 𝒇 or 𝒎𝒕 = 𝒙 ≠ 𝒆, 𝒇



Case 3, 

Goal: find 𝑆𝑖+1 s.t. 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆𝑖+1 ≤ 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆𝑖)
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𝑆𝑖 Cache after 𝑡 − 1 𝑆𝑖+1 Cache after 𝑡 − 1≠𝑓𝑑 𝑑𝑒

𝑆𝑖 must load 𝑒 into 
the cache, assume it 
evicts 𝑥

𝑆𝑖+1 will load 𝑓 into 
the cache, evicting 𝑥

𝑆𝑖+1 behaved exactly the same as 𝑆𝑖 between 𝑖
and 𝑡, and has the same cache after 𝑡, 
therefore 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆𝑖+1 = 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆𝑖)

The caches now match!

𝑥 𝑥

𝑒 𝑓



Case 3, 
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𝑆𝑖

𝑆𝑓𝑓

𝑆𝑖+1 𝑓

First 𝑖 accesses

First place 𝑆𝑖 uses 𝑒 or 𝑓

Copy 𝑆𝑖

𝑚𝑡 = the first access after 𝑖 + 1 in which 𝑆𝑖 deals with 𝑒 or 𝑓

3 options: 𝒎𝒕 = 𝒆 or 𝒎𝒕 = 𝒇 or 𝒎𝒕 = 𝒙 ≠ 𝒆, 𝒇



Case 3, 

Cannot Happen!
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𝑆𝑖

𝑆𝑓𝑓

𝑆𝑖+1 𝑓

First place 𝑆𝑖 uses 𝑒 or 𝑓

“Evict 𝑓"

“Evict 𝑓"

Means 𝑓 not farthest future access!



Case 3, 
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𝑆𝑖

𝑆𝑓𝑓

𝑆𝑖+1 𝑥

First 𝑖 accesses

First place 𝑆𝑖 uses 𝑒 or 𝑓

Copy 𝑆𝑖

𝑚𝑡 = the first access after 𝑖 + 1 in which 𝑆𝑖 deals with 𝑒 or 𝑓

3 options: 𝒎𝒕 = 𝒆 or 𝒎𝒕 = 𝒇 or 𝒎𝒕 = 𝒙 ≠ 𝒆, 𝒇



Case 3, 

Goal: find 𝑆𝑖+1 s.t. 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆𝑖+1 ≤ 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆𝑖)
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𝑆𝑖 Cache after 𝑡 − 1 𝑆𝑖+1 Cache after 𝑡 − 1≠𝑓𝑑 𝑑𝑒

𝑆𝑖 loads 𝑥 into the 
cache, it must be 
evicting 𝑓

𝑆𝑖+1 will load 𝑥 into 
the cache, evicting 𝑒

𝑆𝑖+1 behaved exactly the same as 𝑆𝑖 between 𝑖
and 𝑡, and has the same cache after 𝑡, 
therefore 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆𝑖+1 = 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆𝑖)

𝑥 𝑥

The caches now match!



Use Lemma to show Optimality

51

𝑆∗

Agrees with 
𝑆𝑓𝑓 on first 0 
accesses

𝑆1 𝑆2
Agrees with 
𝑆𝑓𝑓 on first  
access

Agrees with 

𝑆𝑓𝑓 on first 2  
accesses

… 𝑆𝑓𝑓
Agrees with 

𝑆𝑓𝑓 on all 𝑛
accesses

Lemma Lemma Lemma Lemma



Kruskal’s Algorithm

52

Start with an empty tree 𝐴
Add to 𝐴 the lowest-weight edge that does not 
create a cycle
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Greedy Algorithms

• Require Optimal Substructure

– Solution to larger problem contains the solution to a smaller one

– Only one subproblem to consider!

• Idea:

1. Identify a greedy choice property

• How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain
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Kruskal’s Algorithm
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Start with an empty tree 𝐴
Add to 𝐴 the lowest-weight edge that does not 
create a cycle
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Kruskal’s Algorithm
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Start with an empty tree 𝐴
Add to 𝐴 the lowest-weight edge that does not 
create a cycle



Kruskal’s Algorithm
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Definition: Cut

59

A Cut of graph 𝐺 = (𝑉, 𝐸) is a partition of the 
nodes into two sets,  𝑆 and 𝑉 − 𝑆
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𝑆

Edge 𝑣1 , 𝑣2 ∈ 𝐸 crosses a 
cut if 𝑣1 ∈ 𝑆 and 𝑣2 ∈ 𝑉 − 𝑆
(or opposite), e.g. (𝐴, 𝐶)

A set of edges 𝑅 Respects a cut
if no edges cross the cut
e.g. 𝑅 = { 𝐴, 𝐵 , 𝐸, 𝐺 , 𝐹, 𝐺 }



Exchange argument

• Shows correctness of a greedy algorithm

• Idea:

– Show exchanging an item from an arbitrary optimal solution with 
your greedy choice makes the new solution no worse

– How to show my sandwich is at least as good as yours:

• Show: “I can remove any item from your sandwich, and it would be no worse 
by replacing it with the same item from my sandwich”
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Cut Theorem

If a set of edges 𝐴 is a subset of a minimum spanning tree 𝑇, let 
(𝑆, 𝑉 − 𝑆) be any cut which 𝐴 respects. Let 𝑒 be the least-weight 
edge which crosses (𝑆, 𝑉 − 𝑆). 𝐴 ∪ {𝑒} is also a subset of a 
minimum spanning tree.
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Proof of Cut Theorem
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Claim: If 𝐴 is a subset of a MST 𝑇, and 𝑒 is the least-
weight edge which crosses cut (𝑆, 𝑉 − 𝑆) (which 𝐴
respects) then 𝐴 ∪ {𝑒} is also a subset of a MST.

𝑆

𝑇

𝐴 ⊆ 𝑇

𝑒

Consider some MST 𝑇, 
Case 1: (the easy case)

If 𝑒 ∈ 𝑇 Then claim holds 



Proof of Cut Theorem
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Claim: If 𝐴 is a subset of a MST 𝑇, and 𝑒 is the least-
weight edge which crosses cut (𝑆, 𝑉 − 𝑆) (which 𝐴
respects) then 𝐴 ∪ {𝑒} is also a subset of a MST.

𝑇

𝐴 ⊆ 𝑇

Consider some MST 𝑇, 
Case 2:

Consider if 𝑒 = (𝑣1 , 𝑣2) ∉ 𝑇

Since 𝑇 is a MST, there is 
some path from 𝑣1 to 𝑣2.

Let 𝑒′ be the first edge on this 
path which crosses the cut

Build tree 𝑇′ by exchanging 
𝑒′ for 𝑒

𝑣2

𝑣1

𝑆

𝑒
𝑒′



Proof of Cut Theorem

64

Claim: If 𝐴 is a subset of a MST 𝑇, and 𝑒 is the least-
weight edge which crosses cut (𝑆, 𝑉 − 𝑆) (which 𝐴
respects) then 𝐴 ∪ {𝑒} is also a subset of a MST.

𝑇

𝐴 ⊆ 𝑇

Consider some MST 𝑇, 
Case 2:

Consider if 𝑒 = (𝑣1 , 𝑣2) ∉ 𝑇

𝑣2

𝑣1

𝑆

𝑒
𝑒′

We assumed 𝑤 𝑒 ≤ 𝑤(𝑒′)
𝑤 𝑇′ = 𝑤 𝑇 − 𝑤 𝑒′ +𝑤(𝑒)
𝑤 𝑇′ ≤ 𝑤 𝑇
So 𝑇′ is also a MST!
Thus the claim holds

𝑇′ = 𝑇 with edge 𝑒 instead of 𝑒′



Kruskal’s Algorithm
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Start with an empty tree 𝐴
Repeat 𝑉 − 1 times:

Add the min-weight edge that doesn’t 
cause a cycle

𝑆

𝑒

Keep edges in a Disjoint-set 
data structure (very fancy)

𝑂 𝐸 log 𝑉



General MST Algorithm

66

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Start with an empty tree 𝐴
Repeat 𝑉 − 1 times:

Pick a cut (𝑆, 𝑉 − 𝑆) which 𝐴 respects
Add the min-weight edge which crosses (𝑆, 𝑉 − 𝑆)



Prim’s Algorithm
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Start with an empty tree 𝐴
Repeat 𝑉 − 1 times:

Pick a cut (𝑆, 𝑉 − 𝑆) which 𝐴 respects
Add the min-weight edge which crosses (𝑆, 𝑉 − 𝑆)

𝑆 is all endpoint of edges in 𝐴
𝑒 is the min-weight edge that grows the tree



Prim’s Algorithm
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Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:

Add the min-weight edge which connects to node 
in 𝐴 with a node not in 𝐴



Prim’s Algorithm
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Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:

Add the min-weight edge which connects to node 
in 𝐴 with a node not in 𝐴



Prim’s Algorithm
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Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:

Add the min-weight edge which connects to node 
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Prim’s Algorithm
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Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:
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Prim’s Algorithm
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Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:

Add the min-weight edge which connects to node 
in 𝐴 with a node not in 𝐴

Keep edges in a Heap
𝑂 𝐸 log 𝑉


