CS4102 Algorithms

Spring 2022

Warm up

Why is an algorithm’s space complexity (how much memory it uses)
important?

Why might a memory-intensive algorithm be a “bad” one?

Why lots of memory is “bad”

‘iMl'l-bJ lrﬂﬁr\br\.1 |
Q]nquer\l' k.'r\c[,; op/helnbr} v\/\@wrﬂ < hme

QFe,z.LO«L Whar‘% — Ccot’\c..

meneny = slos ()
Yok Whortj - <£¢$

Today’s Keywords

* Greedy Algorithms

* Choice Function

* Cache Replacement
 Hardware & Algorithms

CLRS Chapter 16

Announcements

* UnitB
— Programming due Friday, 4/15, 11:30pm
e UnitC
— Basic 1 + 2 due Friday, 4/15, 11:30pm
— Advanced due Friday, 4/22
— Programming due Friday 4/22 — Seam carving!

REVIEW: Showing Huffman is Optimal

e Overview:

— Show that there is an optimal tree in which the least

frequent characters are siblings Greedy Choice Property
* Exchange argument

— Show that making them siblings and solving the new

smaller sub-problem results in an optimal solution
e Proof by contradiction Optimal Substructure works

Huffman Exchange Argument

* Claim:if ¢q, c, are the least-frequent characters, then there is
an optimal prefix-free code s.t. ¢4, ¢, are siblings
— i.e. codes for ¢q, ¢, are the same length and differ only by their last
bit
Case 1: Consider some optimal tree T,,,;. If ¢, ¢, are siblings in this
tree, then claim holds

Huffman Exchange Argument

* Claim:if ¢q, c, are the least-frequent characters, then there is
an optimal prefix-free code s.t. ¢4, ¢, are siblings
— i.e. codes for ¢q, ¢, are the same length and differ only by their last
bit

Case 2: Consider some optimal tree T, in which c¢,, ¢, are not siblings

Let a, b be the two characters of lowest
depth that are siblings
(Why must they exist?)

ldea: show that swapping ¢; with a does
not increase cost of the tree.
Similar for ¢, and b

Assume: f.1 < foand f.» < f,

10

Finishing the Proof

* Show Optimal Substructure

— Show treating ¢4, ¢, as a new “combined” character gives optimal
solution

Why does solving this smaller problem:

Nl EEEEEE Ba

Give an optimal solution to this?:

e e e

11

Optimal Substructure

* Claim: An optimal solution for F involves finding an optimal
solution for F’, then adding ¢4, ¢, as childrento o

.
[IIIIIIIIIIF&I]

F
e e e

Optimal Substructure

* Claim: An optimal solution for F involves finding an optimal
solution for F’, then adding ¢4, ¢, as childrento o

If this is optimal Then this is optimal

fo = Je1 T /e

B(T') = B(T) = fe1 — fe2 P

Optimal Substructure

* Claim: An optimal solution for F involves finding an optimal
solution for F’, then adding ¢4, ¢, as childrento o

Toward contradiction

Suppose T is not optimal
Let U be a lower-cost tree

B(U) < B(T)

14

Optimal Substructure

* Claim: An optimal solution for F involves finding an optimal
solution for F’, then adding ¢4, ¢, as childrento o

B(U) < B(T)

B(U') = B(U) — fe1 — Je2
< B(T) = fe1 — fe2
= B(T")

0}

Contradicts optimality of T', so T is
optimal! 15

Optimal Substructure

* Claim: An optimal solution for F involves finding an optimal
solution for F’, then adding ¢4, ¢, as childrento o

optimal o 2171
Contradiction!

>

not-optimal

optimal

16

Caching Problem

 Why is using too much memory a bad thing?

17

Von Neumann Bottleneck

* Named for John von Neumann
* |[nventor of modern computer architecture

* Other notable influences include:
— Mathematics
— Physics
— Economics
— Computer Science

18

Von Neumann Bottleneck

* Reading from memory is VERY slow
* Big memory = slow memory
e Solution: hierarchical memory

e Takeaway for Algorithms: Memory is time, more memory is a
lot more time Hope it’s not here

If not look here

Hopefullyyour
datain here

CPU,
registers

Access time: Access time: 1,000,000 cycles 19
1 cycle 10 cycles

Access time:

Caching Problem

* Cache misses are very expensive

* When we load something new into cache, we must eliminate
something already there

e We want the best cache “schedule” to minimize the number of
misses

20

Caching Problem Definition

* |Input:

— k = size of the cache

- M = |m{,m,,...m,] = memory access pattern
* Qutput:

— “schedule” for the cache (list of items in the cache at each time)
which minimizes cache fetches

21

ﬁBCDADEADBAECEA

22

A BCDADEADIUBAECEA
v

23

A B C
v v

D ADEADUBAECEA

24

“ We must evict

something to make
room for D

A B

CDADEADBAECEA
v vV R

25

“ \ If we evict A

ABCDADEADBAECEA
VENAVE IR

26

“ If we evict C

N
E

A B C A DEADUBAECEA
v v R

27

Our Problem vs Reality

* Assuming we know the entire access pattern
* Cache is Fully Associative
e Counting # of fetches (not necessarily misses)

 “Reduced” Schedule: Address only loaded on the cycle it’s required
— Reduced == Unreduced (by number of fetches)

N

Unreduced

A BCDADEADUBAECEA

N Leaving A in longer does
Reduced not save fetches

A B CDADTEADUIBAETC CEA "

Greedy Algorithms

* Require Optimal Substructure
— Solution to larger problem contains the solution to a smaller one
— Only one subproblem to consider!

* |dea:
1. Identify a greedy choice property

* How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain

29

Greedy choice property

* Belady evict rule:

— Evict the item accessed farthest in the future

A B
v v

CD
v %

Evict C

A DEADZBAECTEA

30

Greedy choice property

* Belady evict rule:

— Evict the item accessed farthest in the future

“ Evict B

EADDBAECEA

31

Greedy choice property

* Belady evict rule:

— Evict the item accessed farthest in the future

A B C A DEADSB
/// X VvV VR

32

Greedy choice property

* Belady evict rule:

— Evict the item accessed farthest in the future

A B C
///

A D
®x vV

E A D
 IVAVE

A E
//

C

E

A

Evict B

33

Greedy choice property

* Belady evict rule:

— Evict the item accessed farthest in the future

A B C A DEAD A E E A
/// X VvV VR // X vV

4 Cache Misses

34

Greedy Algorithms

* Require Optimal Substructure
— Solution to larger problem contains the solution to a smaller one
— Only one subproblem to consider!

* |dea:
1. Identify a greedy choice property

* How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain

35

Caching Greedy Algorithm

Initialize cache= first k accesses 0(k)
Foreachm; € M: ntimes
if m; € cache: 0(k)
print cache 0(k)
else:
m = furthest-in-future from cache 0(kn)
evictm, loadm; 0(1)
printcache 0(k) O(an)

36

Exchange argument

* Shows correctness of a greedy algorithm
* |dea:

— Show exchanging an item from an arbitrary optimal solution with
your greedy choice makes the new solution no worse
— How to show my sandwich is at least as good as yours:

e Show: “I can remove any item from your sandwich, and it would be no worse
by replacing it with the same item from my sandwich”

Belady Exchange Lemma

Let S¢ ¢ be the schedule chosen by our greedy algorithm
Let 5; be a schedule which agrees with 5S¢+ for the first i memory accesses.

We will show: there is a schedule S;; which agrees with 5S¢ for the first
I + 1 memory accesses, and has no more misses than 5;

(i.e. misses(S;,1) < misses(S;))

Optimal Greedy
Lemma Lemma Lemma Lemma
3
ST =25 I=—AS>) -)) Iy
Agrees with Agrees with Agrees with Agrees with
Sfron first O Sfron first SgFon first 2 Sgron alln .

accesses access daCcesses accesses

Belady Exchange Proof Idea

First i accesses

A
| \
s, | 1 I 1 [))

Need to fill in the rest

Si+1 - -- *- -- - of S;41 to have no

more misses than §;

Must agree with 5S¢ ¢

s, | [[1 I

Proof of Lemma

Goal: find S;, 1 s.t. misses(S;,.,) < misses(S;)
Since 5; agrees with S¢¢ for the first i accesses, the
state of the cache at access i + 1 will be the same

f - S¢r Cache after i

d e

S; Cache after i d € f

Consider access m;,; = d

Case 1:if d is in the cache, then neither 5; nor 5¢
evict from the cache, use the same cache for §; 4

S;11 Cache afteri d < f

40

Proof of Lemma

Goal: find S;, 1 s.t. misses(S;,.,) < misses(S;)
Since 5; agrees with S¢¢ for the first i accesses, the
state of the cache at access i + 1 will be the same

S; Cache afteri e f T Ssr Cache afteri e f

Consider access m;,; = d

Case 2:if d isn’tin the cache, and both S; and
S¢r evict f from the cache, evict f ford in §; 4

S;11 Cache afteri < d

41

Proof of Lemma

Goal: find S;, 1 s.t. misses(S;,.,) < misses(S;)
Since 5; agrees with S¢¢ for the first i accesses, the
state of the cache at access i + 1 will be the same

S; Cache after i € f — Sfr Cache after i € f

Consider access m;,; = d

Case 3:if d isn’tin the cache, 5; evicts e and 5¢¢
evicts f from the cache

S; Cache afteri + 1 d f #: SgrCache afteri +1 € d

42

First i accesses

A
| \
s, | 1 I 1 [))

Need to fill in the rest

Si+1 - -- *- -- - of S;41 to have no

more misses than §;

Must agree with 5S¢ ¢

Srf ‘1111111

First i accesses

A
| \
s, | 1 I 1 [))

Copy S;

%ﬂllllii@l

First place S; involves e or f

s, | [[1 I

m; = the first access after i + 1 in which S; deals with e or f

3optionssmy=e ormy=form,=x *e,f

Case3,m; =e

First i accesses

A
| \
s, | 1 I 1 [))

Copy S;

%ﬂlllliigl

First place S; usese or f

s, | [[1 I

m,; = the first access after i + 1 in which §; deals with e or f

3 options: m; = e

Case3,m; =e

Goal: find S;,{ s.t. misses(S;,,) < misses(S;)

S;Cacheaftert—1 * ¢ f + Si1i Cacheaftert—1 X € d
¢ f

5; mustload e into S;., will load f into

the cache, assume it the cache, evicting x

evicts x

The caches now match!

S;+1 behaved exactly the same as 5; between i
and t, and has the same cache after ¢,
therefore misses(S;, ;) = misses(S;) 46

First i accesses

A
| \
s, | 1 I 1 [))

Copy S;

%ﬂllllii?I

First place S; usese or f

s, | [[1 I

m,; = the first access after i + 1 in which §; deals with e or f

3 options: m;=f

Cannot Happen!

s, | 1 [) [

“Evict "

o ANENEERE

First place S; usese or f
Means f not farthest future access!

Srf ---*----

“Evict "

Case3, mi=x+#e,f

First i accesses

A
| \
s, | 1 I 1 [))

Copy S;

%ﬂllllii?I

First place S; usese or f

s, | [[1 I

m,; = the first access after i + 1 in which §; deals with e or f

3 options: m;=x+e,f

Case3, mi=x+#e,f

Goal: find S;,{ s.t. misses(S;,,) < misses(S;)

S; Cache after t — 1 d f ol Cocheaftert—1 ¢ ¢
X X

S; loads x into the S;+1 will load x into

cache, it must be the cache, evicting e

evicting f

The caches now match!

S;+1 behaved exactly the same as 5; between i
and t, and has the same cache after ¢,
therefore misses(S;, ;) = misses(S;)

50

Use Lemma to show Optimality

Lemma Lemma Lemma Lemma
3
ST =S IS, (=l S -
Agrees with Agrees with Agrees with Agrees with
Sffon first O Sff on first Sff on first 2 Sffon alln

accesses access accesses accesses

51

Kruskal’s Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not
create a cycle

52

Greedy Algorithms

* Require Optimal Substructure
— Solution to larger problem contains the solution to a smaller one
— Only one subproblem to consider!

* |dea:
1. Identify a greedy choice property

* How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain

53

Kruskal’s Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not
create a cycle

54

Kruskal’s Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not
create a cycle

55

Kruskal’s Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not
create a cycle

56

Kruskal’s Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not
create a cycle

57

Kruskal’s Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not
create a cycle

58

Definition: Cut

A Cut of graph ¢ = (V, E) is a partition of the
nodes into two sets, S andV — S

Edge a A set of edges R Respects a cut
cutifvyeSandv, eV -5 if no edges cross the cut
(or opposite), e.g. (4,C) eg. R={(4,B),(E G),(F,G)}

59

Exchange argument

* Shows correctness of a greedy algorithm
* |dea:

— Show exchanging an item from an arbitrary optimal solution with
your greedy choice makes the new solution no worse
— How to show my sandwich is at least as good as yours:

e Show: “I can remove any item from your sandwich, and it would be no worse
by replacing it with the same item from my sandwich” |

Cut Theorem

If 2 set of edges A is a subset of a minimum spanningtree T, let
(5,V —S5) be any cut which A respects. Let ¢ be the least-weight
edge which crosses (S5,V —5). AU is also a subset of a
minimum spanning tree.

61

Proof of Cut Theorem

Claim: If A is a subsetof a MST T', and ¢ is the least-
weight edge which crosses cut (S, — 5) (which A
respects) then A U is also a subset of a MST.

::7;':. Consider some MST T,
ACT Case 1: (the easy case)
----- If © € T Then claim holds

62

Proof of Cut Theorem

Claim: If A is a subsetof a MST T', and ¢ is the least-
weight edge which crosses cut (S, — 5) (which A
respects) then A U is also a subset of a MST.

Consider some MST T,
_____ Case 2:

Consider if T

Since T is a MST, there is
some path from v, to v,.

Let e’ be the first edge on this
path which crosses the cut

Build tree T’ by exchanging
e' fore o

Proof of Cut Theorem

Claim: If A is a subsetof a MST T', and ¢ is the least-
weight edge which crosses cut (S, — 5) (which A
respects) then A U is also a subset of a MST.
Consider some MST T,

T
8 Case 2:
Consider if &7
T' = T with edge ¢ instead of e’
We assumed <w(e')
w(T") = w(T) —w(e') +
w(T") < w(T)

So T’ is also a MIST!
Thus the claim holds

64

Kruskal’s Algorithm

. Keep edges in a Disjoint-set
Start with an empty tree A data structure (very fancy)

Repeat V' — 1 times: O(E logV)
Add the min-weight edge that doesn’t
cause a cycle

65

General MST Algorithm

Start with an empty tree A
Repeat V' — 1 times:
Pick a cut (5,V — 5) which A respects
Add the S,V —=25)

66

Prim’s Algorithm

Start with an empty tree A
Repeat V' — 1 times:
Pick acut (5,V — 5) which A respects
Add the min-weight edge which crosses (5,V — 5)

S is all endpoint of edges in A
is the min-weight edge that grows the tree

67

Prim’s Algorithm

Start with an empty tree A
Pick a start node
Repeat V' — 1 times:
Add the min-weight edge which connects to node
in A with a node notin A

68

Prim’s Algorithm

Start with an empty tree A
Pick a start node
Repeat V' — 1 times:
Add the min-weight edge which connects to node
in A with a node notin A

69

Prim’s Algorithm

Start with an empty tree A
Pick a start node
Repeat V' — 1 times:
Add the min-weight edge which connects to node
in A with a node notin A

70

Prim’s Algorithm

Start with an empty tree A
Pick a start node
Repeat V' — 1 times:
Add the min-weight edge which connects to node
in A with a node notin A

71

Prim’s Algorithm

Start with an empty tree A Keep edges in a Heap

Pick a start node O(E logV)
Repeat V' — 1 times:
Add the min-weight edge which connects to node
in A with a node notin A

72

