CS4102 Algorithms

Spring 2022

Warm up

Why is an algorithm's space complexity (how much memory it uses) important?

Why might a memory-intensive algorithm be a "bad" one?

Why lots of memory is "bad"

limited menory different kinds of memory speed of menory - cache memony = slow (?) fast Memory = \$\$\$

menory < time

Today's Keywords

- Greedy Algorithms
- Choice Function
- Cache Replacement
- Hardware & Algorithms

CLRS Chapter 16

Announcements

- Unit B
 - Programming due Friday, 4/15, 11:30pm
- Unit C
 - Basic 1 + 2 due Friday, 4/15, 11:30pm
 - Advanced due Friday, 4/22
 - Programming due Friday 4/22 Seam carving!

REVIEW: Showing Huffman is Optimal

Overview:

- Show that there is an optimal tree in which the least
 frequent characters are siblings
 Greedy Choice Property
 - Exchange argument
- Show that making them siblings and solving the new smaller sub-problem results in an optimal solution
 - Proof by contradiction

Optimal Substructure works

Huffman Exchange Argument

- Claim: if c_1, c_2 are the least-frequent characters, then there is an optimal prefix-free code s.t. c_1, c_2 are siblings
 - i.e. codes for c_1, c_2 are the same length and differ only by their last bit

Case 1: Consider some optimal tree T_{opt} . If c_1 , c_2 are siblings in this tree, then claim holds

Huffman Exchange Argument

- Claim: if c_1, c_2 are the least-frequent characters, then there is an optimal prefix-free code s.t. c_1, c_2 are siblings
 - i.e. codes for c_1, c_2 are the same length and differ only by their last bit

Case 2: Consider some optimal tree T_{opt} , in which c_1 , c_2 are not siblings

Let a, b be the two characters of lowest depth that are siblings (Why must they exist?)

Idea: show that swapping c_1 with a does not increase cost of the tree. Similar for c_2 and bAssume: $f_{c1} \le f_a$ and $f_{c2} \le f_b$

Finishing the Proof

- Show Optimal Substructure
 - Show treating c_1, c_2 as a new "combined" character gives optimal solution

Why does solving this smaller problem:

• Claim: An optimal solution for F involves finding an optimal solution for F', then adding c_1, c_2 as children to σ

Then this is optimal

$$B(T') = B(T) - f_{c1} - f_{c2}$$

Caching Problem

Why is using too much memory a bad thing?

Von Neumann Bottleneck

- Named for John von Neumann
- Inventor of modern computer architecture
- Other notable influences include:
 - Mathematics
 - Physics
 - Economics
 - Computer Science

Von Neumann Bottleneck

- Reading from memory is VERY slow
- Big memory = slow memory
- Solution: hierarchical memory

• Takeaway for Algorithms: Memory is time, more memory is a

lot more time

Caching Problem

- Cache misses are very expensive
- When we load something new into cache, we must eliminate something already there
- We want the best cache "schedule" to minimize the number of misses

Caching Problem Definition

• Input:

- -k =size of the cache
- $-M = [m_1, m_2, ... m_n] =$ memory access pattern

• Output:

"schedule" for the cache (list of items in the cache at each time)
 which minimizes cache fetches

Our Problem vs Reality

- Assuming we know the entire access pattern
- Cache is Fully Associative
- Counting # of fetches (not necessarily misses)
- "Reduced" Schedule: Address only loaded on the cycle it's required
 - Reduced == Unreduced (by number of fetches)

Greedy Algorithms

- Require Optimal Substructure
 - Solution to larger problem contains the solution to a smaller one
 - Only one subproblem to consider!
- Idea:
 - 1. Identify a greedy choice property
 - How to make a choice guaranteed to be included in some optimal solution
 - 2. Repeatedly apply the choice property until no subproblems remain

- Belady evict rule:
 - Evict the item accessed farthest in the future

- Belady evict rule:
 - Evict the item accessed farthest in the future

- Belady evict rule:
 - Evict the item accessed farthest in the future

- Belady evict rule:
 - Evict the item accessed farthest in the future

- Belady evict rule:
 - Evict the item accessed farthest in the future

4 Cache Misses

Greedy Algorithms

- Require Optimal Substructure
 - Solution to larger problem contains the solution to a smaller one
 - Only one subproblem to consider!
- Idea:
 - 1. Identify a greedy choice property
 - How to make a choice guaranteed to be included in some optimal solution
 - 2. Repeatedly apply the choice property until no subproblems remain

Caching Greedy Algorithm

```
Initialize cache = first k accesses O(k)
For each m_i \in M: n \text{ times}
      if m_i \in cache: O(k)
            print cache O(k)
      else:
            m = \text{furthest-in-future from cache } O(kn)
            evict m, load m_i O(1)
            print cache O(k)
                                                           O(kn^2)
```

Exchange argument

- Shows correctness of a greedy algorithm
- Idea:
 - Show exchanging an item from an arbitrary optimal solution with your greedy choice makes the new solution no worse
 - How to show my sandwich is at least as good as yours:
 - Show: "I can remove any item from your sandwich, and it would be no worse

by replacing it with the same item from my sandwich"

Belady Exchange Lemma

Let S_{ff} be the schedule chosen by our greedy algorithm

Let S_i be a schedule which agrees with S_{ff} for the first i memory accesses. We will show: there is a schedule S_{i+1} which agrees with S_{ff} for the first i+1 memory accesses, and has no more misses than S_i (i.e. $misses(S_{i+1}) \leq misses(S_i)$)

Belady Exchange Proof Idea

Proof of Lemma

Goal: find S_{i+1} s.t. $misses(S_{i+1}) \leq misses(S_i)$

Since S_i agrees with S_{ff} for the first i accesses, the state of the cache at access i+1 will be the same

Consider access $m_{i+1} = d$

Case 1: if d is in the cache, then neither S_i nor S_{ff} evict from the cache, use the same cache for S_{i+1}

Proof of Lemma

Goal: find S_{i+1} s.t. $misses(S_{i+1}) \leq misses(S_i)$

Since S_i agrees with S_{ff} for the first i accesses, the state of the cache at access i+1 will be the same

Consider access $m_{i+1} = d$

Case 2: if d isn't in the cache, and both S_i and S_{ff} evict f from the cache, evict f for d in S_{i+1}

Proof of Lemma

Goal: find S_{i+1} s.t. $misses(S_{i+1}) \leq misses(S_i)$

Since S_i agrees with S_{ff} for the first i accesses, the state of the cache at access i+1 will be the same

Consider access $m_{i+1} = d$

Case 3: if d isn't in the cache, S_i evicts e and S_{ff} evicts f from the cache

Case 3

Case 3

 $m_t=$ the first access after i+1 in which S_i deals with e or f 3 options: $m_t=e$ or $m_t=f$ or $m_t=x\neq e$, f

Case 3, $m_t = e$

 $m_t =$ the first access after i+1 in which S_i deals with e or f 3 options: $m_t = e$ or $m_t = f$ or $m_t = x \neq e$, f

Case 3, $m_t = e$

Goal: find S_{i+1} s.t. $misses(S_{i+1}) \leq misses(S_i)$

 S_i must load e into the cache, assume it evicts x

 S_{i+1} will load f into the cache, evicting x

The caches now match!

 S_{i+1} behaved exactly the same as S_i between i and t, and has the same cache after t, therefore $misses(S_{i+1}) = misses(S_i)$

Case 3, $m_t = f$

 $m_t=$ the first access after i+1 in which S_i deals with e or f 3 options: $m_t=e$ or $m_t=f$ or $m_t=x\neq e$, f

Case 3, $m_t = f$

Cannot Happen!

Case 3, $m_t = x \neq e$, f

 m_t = the first access after i+1 in which S_i deals with e or f 3 options: $m_t = e$ or $m_t = f$ or $m_t = x \neq e$, f

Case 3, $m_t = x \neq e$, f

Goal: find S_{i+1} s.t. $misses(S_{i+1}) \leq misses(S_i)$

 S_i loads x into the cache, it must be evicting f

 S_{i+1} will load x into the cache, evicting e

The caches now match!

 S_{i+1} behaved exactly the same as S_i between i and t, and has the same cache after t, therefore $misses(S_{i+1}) = misses(S_i)$

Use Lemma to show Optimality

Greedy Algorithms

- Require Optimal Substructure
 - Solution to larger problem contains the solution to a smaller one
 - Only one subproblem to consider!
- Idea:
 - 1. Identify a greedy choice property
 - How to make a choice guaranteed to be included in some optimal solution
 - 2. Repeatedly apply the choice property until no subproblems remain

Definition: Cut

A Cut of graph G = (V, E) is a partition of the nodes into two sets, S and V - S

Edge $(v_1, v_2) \in E$ crosses a cut if $v_1 \in S$ and $v_2 \in V - S$ (or opposite), e.g. (A, C)

A set of edges R Respects a cut if no edges cross the cut e.g. $R = \{(A, B), (E, G), (F, G)\}$

Exchange argument

- Shows correctness of a greedy algorithm
- Idea:
 - Show exchanging an item from an arbitrary optimal solution with your greedy choice makes the new solution no worse
 - How to show my sandwich is at least as good as yours:
 - Show: "I can remove any item from your sandwich, and it would be no worse by replacing it with the same item from my sandwich"

Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T, let (S, V - S) be any cut which A respects. Let e be the least-weight edge which crosses (S, V - S). $A \cup \{e\}$ is also a subset of a minimum spanning tree.

Proof of Cut Theorem

Claim: If A is a subset of a MST T, and e is the least-weight edge which crosses cut (S, V - S) (which A respects) then $A \cup \{e\}$ is also a subset of a MST.

Proof of Cut Theorem

Claim: If A is a subset of a MST T, and e is the least-weight edge which crosses cut (S, V - S) (which A respects) then $A \cup \{e\}$ is also a subset of a MST.

Consider some MST *T*, Case 2:

Consider if $e = (v_1, v_2) \notin T$

Since T is a MST, there is some path from v_1 to v_2 .

Let e' be the first edge on this path which crosses the cut

Build tree T' by exchanging e' for e

Proof of Cut Theorem

Claim: If A is a subset of a MST T, and e is the least-weight edge which crosses cut (S, V - S) (which A respects) then $A \cup \{e\}$ is also a subset of a MST.

Start with an empty tree ARepeat V-1 times:

Add the min-weight edge that doesn't cause a cycle

10 B 8 E 8 H 2 9 D 5 9 D 11 E G 11

Keep edges in a Disjoint-set data structure (very fancy) $O(E \log V)$

General MST Algorithm

Start with an empty tree A

Repeat V-1 times:

Pick a cut (S, V - S) which A respects

Add the min-weight edge which crosses (S, V - S)

Start with an empty tree A

Repeat V-1 times:

Pick a cut (S, V - S) which A respects

Add the min-weight edge which crosses (S, V - S)

- S is all endpoint of edges in A
- e is the min-weight edge that grows the tree

Start with an empty tree A

Pick a start node

Repeat V-1 times:

Start with an empty tree A

Pick a start node

Repeat V-1 times:

Start with an empty tree A

Pick a start node

Repeat V-1 times:

Start with an empty tree A

Pick a start node

Repeat V-1 times:

Start with an empty tree *A* Pick a start node

Keep edges in a Heap $O(E \log V)$

Repeat V-1 times:

