CS4102 Algorithms

Spring 2022

Warm up

Why is an algorithm's space complexity (how much memory it uses) important?

Why might a memory-intensive algorithm be a "bad" one?

Why lots of memory is "bad"
limited memory
different kinds of marion
memory \leq time
spent of memory - cache
mem. $y=$ slow (?)
fast Memory $=\$ \$ \$$

Today's Keywords

- Greedy Algorithms
- Choice Function
- Cache Replacement
- Hardware \& Algorithms

CLRS Chapter 16

Announcements

- Unit B
- Programming due Friday, 4/15, 11:30pm
- Unit C
- Basic 1 + 2 due Friday, 4/15, 11:30pm
- Advanced due Friday, 4/22
- Programming due Friday 4/22 - Seam carving!

REVIEW: Showing Huffman is Optimal

- Overview:
- Show that there is an optimal tree in which the least frequent characters are siblings

Greedy Choice Property

- Exchange argument
- Show that making them siblings and solving the new smaller sub-problem results in an optimal solution
- Proof by contradiction

Huffman Exchange Argument

- Claim: if c_{1}, c_{2} are the least-frequent characters, then there is an optimal prefix-free code s.t. c_{1}, c_{2} are siblings
- i.e. codes for c_{1}, c_{2} are the same length and differ only by their last bit

Case 1: Consider some optimal tree $T_{o p t}$. If c_{1}, c_{2} are siblings in this tree, then claim holds

Huffman Exchange Argument

- Claim: if c_{1}, c_{2} are the least-frequent characters, then there is an optimal prefix-free code s.t. c_{1}, c_{2} are siblings
- i.e. codes for c_{1}, c_{2} are the same length and differ only by their last bit

Case 2: Consider some optimal tree $T_{o p t}$, in which c_{1}, c_{2} are not siblings Let a, b be the two characters of lowest
 depth that are siblings (Why must they exist?)

Idea: show that swapping c_{1} with a does not increase cost of the tree.
Similar for c_{2} and b
Assume: $f_{c 1} \leq f_{a}$ and $f_{c 2} \leq f_{b}$

Finishing the Proof

- Show Optimal Substructure
- Show treating c_{1}, c_{2} as a new "combined" character gives optimal solution

Why does solving this smaller problem:

Give an optimal solution to this?:

Optimal Substructure

- Claim: An optimal solution for F involves finding an optimal solution for F^{\prime}, then adding c_{1}, c_{2} as children to σ

Optimal Substructure

- Claim: An optimal solution for F involves finding an optimal solution for F^{\prime}, then adding c_{1}, c_{2} as children to σ

If this is optimal

$$
B\left(T^{\prime}\right)=B(T)-f_{c 1}-f_{c 2}
$$

Optimal Substructure

- Claim: An optimal solution for F involves finding an optimal solution for F^{\prime}, then adding c_{1}, c_{2} as children to σ

Toward contradiction

Optimal Substructure

- Claim: An optimal solution for F involves finding an optimal solution for F^{\prime}, then adding c_{1}, c_{2} as children to σ

Optimal Substructure

- Claim: An optimal solution for F involves finding an optimal solution for F^{\prime}, then adding c_{1}, c_{2} as children to σ

Caching Problem

- Why is using too much memory a bad thing?

Von Neumann Bottleneck

- Named for John von Neumann
- Inventor of modern computer architecture
- Other notable influences include:
- Mathematics
- Physics
- Economics
- Computer Science

Von Neumann Bottleneck

- Reading from memory is VERY slow
- Big memory = slow memory
- Solution: hierarchical memory
- Takeaway for Algorithms: Memory is time, more memory is a lot more time

Hope it's not here
If not look here
Hopefully your data in here

Access time:
1 cycle

Caching Problem

- Cache misses are very expensive
- When we load something new into cache, we must eliminate something already there
- We want the best cache "schedule" to minimize the number of misses

Caching Problem Definition

- Input:
$-k=$ size of the cache
$-M=\left[m_{1}, m_{2}, \ldots m_{n}\right]=$ memory access pattern
- Output:
- "schedule" for the cache (list of items in the cache at each time) which minimizes cache fetches

Example

而
 A B C D A D E A D B A E C E A

Example

Example

Example

Example

Example

Our Problem vs Reality

- Assuming we know the entire access pattern
- Cache is Fully Associative
- Counting \# of fetches (not necessarily misses)
- "Reduced" Schedule: Address only loaded on the cycle it's required
- Reduced == Unreduced (by number of fetches)

Greedy Algorithms

- Require Optimal Substructure
- Solution to larger problem contains the solution to a smaller one
- Only one subproblem to consider!
- Idea:

1. Identify a greedy choice property

- How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain

Greedy choice property

- Belady evict rule:
- Evict the item accessed farthest in the future

Evict C
A B C D A D E A D B A E C E A

Greedy choice property

- Belady evict rule:
- Evict the item accessed farthest in the future

A	A	A	A	A	A	A
B	B	B	B	B	B	B
C	C	C	D	D	D	D

Evict B
A B C D A D E A D B A E C E A

Greedy choice property

- Belady evict rule:
- Evict the item accessed farthest in the future

| A |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| B | B | B | B | B | B | E | E | E | E |
| C | C | C | D |

Evict D
A B C D A D E A D B A E C E A

Greedy choice property

- Belady evict rule:
- Evict the item accessed farthest in the future

Evict B

Greedy choice property

- Belady evict rule:
- Evict the item accessed farthest in the future

4 Cache Misses

Greedy Algorithms

- Require Optimal Substructure
- Solution to larger problem contains the solution to a smaller one
- Only one subproblem to consider!
- Idea:

1. Identify a greedy choice property

- How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain

Caching Greedy Algorithm

Initialize cache $=$ first k accesses $O(k)$
For each $m_{i} \in M$: n times

$$
\begin{aligned}
& \text { if } m_{i} \in \text { cache: } O(k) \\
& \text { print cache } O(k)
\end{aligned}
$$

else:
$m=$ furthest-in-future from cache $O(k n)$
evict m, load $m_{i} \quad O(1)$
print cache $O(k)$
$O\left(k n^{2}\right)$

Exchange argument

- Shows correctness of a greedy algorithm
- Idea:
- Show exchanging an item from an arbitrary optimal solution with your greedy choice makes the new solution no worse
- How to show my sandwich is at least as good as yours:
- Show: "I can remove any item from your sandwich, and it would be no worse by replacing it with the same item from my sandwich"

Belady Exchange Lemma

Let $S_{f f}$ be the schedule chosen by our greedy algorithm

Let S_{i} be a schedule which agrees with $S_{f f}$ for the first i memory accesses.
We will show: there is a schedule S_{i+1} which agrees with $S_{f f}$ for the first
$i+1$ memory accesses, and has no more misses than S_{i}
(i.e. $\operatorname{misses}\left(S_{i+1}\right) \leq \operatorname{misses}\left(S_{i}\right)$)

Belady Exchange Proof Idea

First i accesses

Proof of Lemma

Goal: find S_{i+1} s.t. $\operatorname{misses}\left(S_{i+1}\right) \leq \operatorname{misses}\left(S_{i}\right)$
Since S_{i} agrees with $S_{f f}$ for the first i accesses, the state of the cache at access $i+1$ will be the same

Consider access $m_{i+1}=d$
Case 1: if d is in the cache, then neither S_{i} nor $S_{f f}$ evict from the cache, use the same cache for S_{i+1}

Proof of Lemma

Goal: find S_{i+1} s.t. $\operatorname{misses}\left(S_{i+1}\right) \leq \operatorname{misses}\left(S_{i}\right)$
Since S_{i} agrees with $S_{f f}$ for the first i accesses, the state of the cache at access $i+1$ will be the same

| s_{i} Cache after i | e | f |
| :--- | :--- | :--- |$=$| $s_{f f}$ Cache after i | e | f |
| :--- | :--- | :--- |

Consider access $m_{i+1}=d$
Case 2: if d isn't in the cache, and both S_{i} and $S_{f f}$ evict f from the cache, evict f for d in S_{i+1}

Proof of Lemma

Goal: find S_{i+1} s.t. $\operatorname{misses}\left(S_{i+1}\right) \leq \operatorname{misses}\left(S_{i}\right)$
Since S_{i} agrees with $S_{f f}$ for the first i accesses, the state of the cache at access $i+1$ will be the same

s_{i} Cache after i	e	f				
Consider			$=$	$s_{f f}$ Cache after i	e	f
:---	:---	:---				

Consider access $m_{i+1}=d$
Case 3: if d isn't in the cache, S_{i} evicts e and $S_{f f}$ evicts f from the cache

Case 3

$$
S_{i+1} \square \square \square \square \square \square \begin{gathered}
\text { Need to fill in the rest } \\
\text { of } S_{i+1} \text { to have no } \\
\text { more misses than } S_{i}
\end{gathered}
$$

Must agree with $S_{f f}$
\square
$S_{f f} \square \square$

Case 3

$m_{t}=$ the first access after $i+1$ in which S_{i} deals with e or f 3 options: $\boldsymbol{m}_{\boldsymbol{t}}=\boldsymbol{e}$ or $\boldsymbol{m}_{\boldsymbol{t}}=\boldsymbol{f}$ or $\boldsymbol{m}_{\boldsymbol{t}}=\boldsymbol{x} \neq \boldsymbol{e}, \boldsymbol{f}$

Case 3, $m_{t}=e$

$m_{t}=$ the first access after $i+1$ in which S_{i} deals with e or f 3 options: $\boldsymbol{m}_{\boldsymbol{t}}=\boldsymbol{e}$ or $m_{t}=f$ or $m_{t}=x \neq e, f$

Case 3, $m_{t}=e$

Goal: find S_{i+1} s.t. $\operatorname{misses}\left(S_{i+1}\right) \leq \operatorname{misses}\left(S_{i}\right)$

S_{i} must load e into the cache, assume it

S_{i+1} will load f into the cache, evicting x evicts x

The caches now match!
S_{i+1} behaved exactly the same as S_{i} between i and t, and has the same cache after t, therefore $\operatorname{misses}\left(S_{i+1}\right)=\operatorname{misses}\left(S_{i}\right)$

Case 3, $m_{t}=f$

$m_{t}=$ the first access after $i+1$ in which S_{i} deals with e or f 3 options: $m_{t}=e$ or $\boldsymbol{m}_{\boldsymbol{t}}=\boldsymbol{f}$ or $m_{t}=x \neq e, f$

Case 3, $m_{t}=f$

Cannot Happen!

Case 3, $m_{t}=x \neq e, f$

$m_{t}=$ the first access after $i+1$ in which S_{i} deals with e or f 3 options: $m_{t}=e$ or $m_{t}=f$ or $\boldsymbol{m}_{\boldsymbol{t}}=\boldsymbol{x} \neq \boldsymbol{e}, \boldsymbol{f}$

Case 3, $m_{t}=x \neq e, f$

Goal: find S_{i+1} s.t. $\operatorname{misses}\left(S_{i+1}\right) \leq \operatorname{misses}\left(S_{i}\right)$

S_{i} loads x into the cache, it must be

S_{i+1} will load x into the cache, evicting e evicting f

The caches now match!
S_{i+1} behaved exactly the same as S_{i} between i and t, and has the same cache after t, therefore $\operatorname{misses}\left(S_{i+1}\right)=\operatorname{misses}\left(S_{i}\right)$

Use Lemma to show Optimality

Kruskal's Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not create a cycle

Greedy Algorithms

- Require Optimal Substructure
- Solution to larger problem contains the solution to a smaller one
- Only one subproblem to consider!
- Idea:

1. Identify a greedy choice property

- How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain

Kruskal's Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not create a cycle

Kruskal's Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not create a cycle

Kruskal's Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not create a cycle

Kruskal's Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not create a cycle

Kruskal's Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not create a cycle

Definition: Cut

A Cut of graph $G=(V, E)$ is a partition of the nodes into two sets, S and $V-S$

Edge $\left(v_{1}, v_{2}\right) \in E$ crosses a cut if $v_{1} \in S$ and $v_{2} \in V-S$ (or opposite), e.g. (A, C)

A set of edges R Respects a cut if no edges cross the cut e.g. $R=\{(A, B),(E, G),(F, G)\}$

Exchange argument

- Shows correctness of a greedy algorithm
- Idea:
- Show exchanging an item from an arbitrary optimal solution with your greedy choice makes the new solution no worse
- How to show my sandwich is at least as good as yours:
- Show: "I can remove any item from your sandwich, and it would be no worse by replacing it with the same item from my sandwich"

Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T, let ($S, V-S$) be any cut which A respects. Let e be the least-weight edge which crosses $(S, V-S) . A \cup\{e\}$ is also a subset of a minimum spanning tree.

Proof of Cut Theorem

Claim: If A is a subset of a MST T, and e is the leastweight edge which crosses cut $(S, V-S)$ (which A respects) then $A \cup\{e\}$ is also a subset of a MST.

- ${ }^{T}$ -
$A \subseteq T$

Consider some MST T,
Case 1: (the easy case) If $e \in T$ Then claim holds

Proof of Cut Theorem

Claim: If A is a subset of a MST T, and e is the leastweight edge which crosses cut $(S, V-S)$ (which A respects) then $A \cup\{e\}$ is also a subset of a MST.

$$
\text { Consider if } e=\left(v_{1}, v_{2}\right) \notin T
$$ Since T is a MST, there is some path from v_{1} to v_{2}.

Let e^{\prime} be the first edge on this path which crosses the cut

Build tree T^{\prime} by exchanging e^{\prime} for e

Proof of Cut Theorem

Claim: If A is a subset of a MST T, and e is the leastweight edge which crosses cut $(S, V-S)$ (which A respects) then $A \cup\{e\}$ is also a subset of a MST.

Kruskal's Algorithm

Start with an empty tree A Repeat $V-1$ times:

Keep edges in a Disjoint-set data structure (very fancy) $O(E \log V)$
Add the min-weight edge that doesn't
cause a cycle

General MST Algorithm

Start with an empty tree A
Repeat $V-1$ times:
Pick a cut $(S, V-S)$ which A respects
Add the min-weight edge which crosses $(S, V-S)$

Prim's Algorithm

Start with an empty tree A
Repeat $V-1$ times:
Pick a cut $(S, V-S)$ which A respects
Add the min-weight edge which crosses $(S, V-S)$
S is all endpoint of edges in A
e is the min-weight edge that grows the tree

Prim's Algorithm

Start with an empty tree A
Pick a start node
Repeat $V-1$ times:
Add the min-weight edge which connects to node in A with a node not in A

Prim's Algorithm

Start with an empty tree A
Pick a start node
Repeat $V-1$ times:
Add the min-weight edge which connects to node in A with a node not in A

Prim's Algorithm

Start with an empty tree A
Pick a start node
Repeat $V-1$ times:
Add the min-weight edge which connects to node in A with a node not in A

Prim's Algorithm

Start with an empty tree A
Pick a start node
Repeat $V-1$ times:
Add the min-weight edge which connects to node in A with a node not in A

Prim's Algorithm

Start with an empty tree A Pick a start node

> Keep edges in a Heap
> $O(E \log V)$ Repeat $V-1$ times:

Add the min-weight edge which connects to node in A with a node not in A

