CS4102 Algorithms

Warm up

Decode the line below into English
(hint: use Google or Wolfram Alpha)

CS4102 Algorithms

Warm up

Decode the line below into English
(hint: use Google or Wolfram Alpha)

Today's Keywords

- Greedy Algorithms
- Exchange Argument
- Choice Function
- Prefix-free code
- Compression
- Huffman Code

Announcements

- Unit B
- Advanced due Friday, 11:30pm
- Programming due Friday, 4/15, 11:30pm
- Unit C
- Basic 1 released, due Friday, 4/15, 11:30pm
- Basic 2 coming soon!
- Advanced due Friday, 4/22
- Programming due Friday 4/22 - Seam carving!

Greedy Algorithms

- Require Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Or: If S is an optimal solution to a problem, then the components of S are optimal solutions to sub-problems
- Only one subproblem to consider!
- Idea:

1. Identify a greedy choice property

- How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain

Exchange argument

- Shows correctness of a greedy algorithm
- Idea:
- Show exchanging an item from an arbitrary optimal solution with your greedy choice makes the new solution no worse
- How to show my sandwich is at least as good as yours:
- Show: "I can remove any item from your sandwich, and it would be no worse by replacing it with the same item from my sandwich"

Sam Morse

- Engineer and artist

Message Encoding

- Problem: need to electronically send a message to two people at a distance.
- Channel for message is binary (either on or off)

How can we do it?

wiggle, wiggle, wiggle like a gypsy queen
wiggle, wiggle, wiggle all dressed in green

- Take the message, send it over character-by-character with an encoding

Character	
a. 2	0000
d: 2	0001
e: 13	0010
g: 14	0011
i: 8	0100
k: 1	0101
l: 9	0110
n: 3	0111
$\mathrm{p}: 1$	1000
q: 1	1001
r: 2	1010
s: 3	1011
u: 1	1100
w: 6	1101
y: 2	1110

How efficient is this?

wiggle wiggle wiggle like a gypsy queen wiggle wiggle wiggle all dressed in green

Each character requires 4 bits

$$
\ell_{c}=4
$$

Cost of encoding:
$B\left(T,\left\{f_{c}\right\}\right)=\sum_{\text {character } c} \ell_{c} f_{c}=68 \cdot 4=272$

Better Solution: Allow for different characters to have different-size encodings (high frequency \rightarrow short code)

Character	
a 2	Encoding
a: 2	0000
d: 2	0001
e: 13	0010
g: 14	0011
i: 8	0100
k: 1	0101
l: 9	0110
n : 3	0111
$\mathrm{p}: 1$	1000
$\mathrm{q}: 1$	1001
r: 2	1010
s: 3	1011
u: 1	1100
w: 6	1101
$y: 2$	1110

More efficient coding

Morse Code

International Morse Code

1. The length of a dot is one unit.
2. A dash is three units.
3. The space between parts of the same letter is one unit.
4. The space between letters is three units.
5. The space between words is seven units.

Problem with Morse Code

International Morse Code

1. The length of a dot is one unit.
2. A dash is three units
3. The space between parts of the same letter is one unit.
4. The space between letters is three units.

5 . The space between words is seven units.

Ambiguous Decoding

Prefix-Free Code

- A prefix-free code is codeword table T such that for any two characters c_{1}, c_{2}, if $c_{1} \neq c_{2}$ then $\operatorname{code}\left(c_{1}\right)$ is not a prefix of $\operatorname{code}\left(c_{2}\right)$

g	0	1111011100011010	
e	10	w i gg l e	
l	110		
i	1110		
w	11110		
...	...		
l			

Binary Trees = Prefix-free Codes

- I can represent any prefix-free code as a binary tree
- I can create a prefix-free code from any binary tree

Goal: Shortest Prefix-Free Encoding

- Input: A set of character frequencies $\left\{f_{c}\right\}$
- Output: A prefix-free code T which minimizes

$$
\begin{aligned}
& B\left(T,\left\{f_{c}\right\}\right)=\sum_{\text {characteter } c} \ell_{c} f_{c} \\
& \text { Huffman Coding!! }
\end{aligned}
$$

Greedy Algorithms

- Require Optimal Substructure
- Solution to larger problem contains the solution to a smaller one
- Only one subproblem to consider!
- Idea:

1. Identify a greedy choice property

- How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain

Huffman Algorithm

- Choose the least frequent pair, combine into a subtree

Huffman Algorithm

- Choose the least frequent pair, combine into a subtree

Subproblem of size $n-1$!

Huffman Algorithm

- Choose the least frequent pair, combine into a subtree

Huffman Algorithm

- Choose the least frequent pair, combine into a subtree

Huffman Algorithm

- Choose the least frequent pair, combine into a subtree

Huffman Algorithm

- Choose the least frequent pair, combine into a subtree

Huffman Algorithm

- Choose the least frequent pair, combine into a subtree

Huffman Algorithm

- Choose the least frequent pair, combine into a subtree

Exchange argument

- Shows correctness of a greedy algorithm
- Idea:
- Show exchanging an item from an arbitrary optimal solution with your greedy choice makes the new solution no worse
- How to show my sandwich is at least as good as yours:
- Show: "I can remove any item from your sandwich, and it would be no worse by replacing it with the same item from my sandwich"

Showing Huffman is Optimal

- Overview:
- Show that there is an optimal tree in which the least frequent characters are siblings
- Exchange argument
- Show that making them siblings and solving the new smaller subproblem results in an optimal solution
- Proof by contradiction

Showing Huffman is Optimal

- First Step: Show any optimal tree is "full" (each node has either 0 or 2 children)

Huffman Exchange Argument

- Claim: if c_{1}, c_{2} are the least-frequent characters, then there is an optimal prefix-free code s.t. c_{1}, c_{2} are siblings
- i.e. codes for c_{1}, c_{2} are the same length and differ only by their last bit

Case 1: Consider some optimal tree $T_{o p t}$. If c_{1}, c_{2} are siblings in this tree, then claim holds

Huffman Exchange Argument

- Claim: if c_{1}, c_{2} are the least-frequent characters, then there is an optimal prefix-free code s.t. c_{1}, c_{2} are siblings
- i.e. codes for c_{1}, c_{2} are the same length and differ only by their last bit

Case 2: Consider some optimal tree $T_{o p t}$, in which c_{1}, c_{2} are not siblings Let a, b be the two characters of lowest
 depth that are siblings (Why must they exist?)

Idea: show that swapping c_{1} with a does not increase cost of the tree.
Similar for c_{2} and b
Assume: $f_{c 1} \leq f_{a}$ and $f_{c 2} \leq f_{b}$

Case 2: c_{1}, c_{2} are not siblings in $T_{o p t}$

- Claim: the least-frequent characters $\left(c_{1}, c_{2}\right)$, are siblings in some optimal tree
$a, b=$ lowest-depth siblings
Idea: show that swapping c_{1} with a does not increase cost of the tree.
Assume: $f_{c 1} \leq f_{a}$
$B\left(T_{o p t}\right)=C+f_{c 1} \ell_{c 1}+f_{a} \ell_{a}$

$$
B\left(T^{\prime}\right)=C+f_{c 1} \ell_{a}+f_{a} \ell_{c 1}
$$

Case 2: c_{1}, c_{2} are not siblings in $T_{o p t}$

- Claim: the least-frequent characters $\left(c_{1}, c_{2}\right)$, are siblings in some optimal tree
$a, b=$ lowest-depth siblings
Idea: show that swapping c_{1} with a does not increase cost of the tree.
Assume: $f_{c 1} \leq f_{a}$

$$
\begin{aligned}
B\left(T_{o p t}\right)=C+f_{c 1} \ell_{c 1} & +f_{a} \ell_{a} \quad B\left(T^{\prime}\right)=C+f_{c 1} \ell_{a}+f_{a} \ell_{c 1} \\
& \geq 0 \Rightarrow T^{\prime} \text { optimal } \\
B\left(T_{o p t}\right)-B\left(T^{\prime}\right) & =C+f_{c 1} \ell_{c 1}+f_{a} \ell_{a}-\left(C+f_{c 1} \ell_{a}+f_{a} \ell_{c 1}\right) \\
& =f_{c 1} \ell_{c 1}+f_{a} \ell_{a}-f_{c 1} \ell_{a}-f_{a} \ell_{c 1} \\
& =f_{c 1}\left(\ell_{c 1}-\ell_{a}\right)+f_{a}\left(\ell_{a}-\ell_{c 1}\right) \\
& =\left(f_{a}-f_{c 1}\right)\left(\ell_{a}-\ell_{c 1}\right)
\end{aligned}
$$

Case 2: c_{1}, c_{2} are not siblings in $T_{o p t}$

- Claim: the least-frequent characters $\left(c_{1}, c_{2}\right)$, are siblings in some optimal tree
$a, b=$ lowest-depth siblings
Idea: show that swapping c_{1} with a does not increase cost of the tree.
Assume: $f_{c 1} \leq f_{a}$
$B\left(T_{o p t}\right)=C+f_{c 1} \ell_{c 1}+f_{a} \ell_{a} \quad B\left(T^{\prime}\right)=C+f_{c 1} \ell_{a}+f_{a} \ell_{c 1}$

Case 2:Repeat to swap c_{2}, b !

- Claim: the least-frequent characters $\left(c_{1}, c_{2}\right)$, are siblings in some optimal tree
$a, b=$ lowest-depth siblings
Idea: show that swapping c_{2} with b does not increase cost of the tree.
Assume: $f_{c 2} \leq f_{b}$
$B\left(T^{\prime}\right)=C+f_{c 2} \ell_{c 2}+f_{b} \ell_{b}$

$$
B\left(T^{\prime \prime}\right)=C+f_{c 2} \ell_{b}+f_{b} \ell_{c 2}
$$

Showing Huरffman is Optimal

- Overview:
- Show that there is an optimal tree in which the least frequent characters are siblings
- Exchange argument
- Show that making them siblings and solving the new smaller subproblem results in an optimal solution
- Proof by contradiction

Finishing the Proof

- Show Optimal Substructure
- Show treating c_{1}, c_{2} as a new "combined" character gives optimal solution

Why does solving this smaller problem:

Give an optimal solution to this?:

Optimal Substructure

- Claim: An optimal solution for F involves finding an optimal solution for F^{\prime}, then adding c_{1}, c_{2} as children to σ

Optimal Substructure

- Claim: An optimal solution for F involves finding an optimal solution for F^{\prime}, then adding c_{1}, c_{2} as children to σ

If this is optimal

Then this is optimal

$$
B\left(T^{\prime}\right)=B(T)-f_{c 1}-f_{c 2}
$$

Optimal Substructure

- Claim: An optimal solution for F involves finding an optimal solution for F^{\prime}, then adding c_{1}, c_{2} as children to σ

Toward contradiction

Optimal Substructure

- Claim: An optimal solution for F involves finding an optimal solution for F^{\prime}, then adding c_{1}, c_{2} as children to σ

Optimal Substructure

- Claim: An optimal solution for F involves finding an optimal solution for F^{\prime}, then adding c_{1}, c_{2} as children to σ

Mental Stretch

Why is an algorithm's space complexity (how much memory it uses) important?

Why might a memory-intensive algorithm be a "bad" one?

Why lots of memory is "bad"

Caching Problem

- Why is using too much memory a bad thing?

Von Neumann Bottleneck

- Named for John von Neumann
- Inventor of modern computer architecture
- Other notable influences include:
- Mathematics
- Physics
- Economics
- Computer Science

Von Neumann Bottleneck

- Reading from memory is VERY slow
- Big memory = slow memory
- Solution: hierarchical memory
- Takeaway for Algorithms: Memory is time, more memory is a lot more time

Caching Problem

- Cache misses are very expensive
- When we load something new into cache, we must eliminate something already there
- We want the best cache "schedule" to minimize the number of misses

Caching Problem Definition

- Input:
$-k=$ size of the cache
$-M=\left[m_{1}, m_{2}, \ldots m_{n}\right]=$ memory access pattern
- Output:
- "schedule" for the cache (list of items in the cache at each time) which minimizes cache fetches

Example

Example

Example

Example

Example

Example

Our Problem vs Reality

- Assuming we know the entire access pattern
- Cache is Fully Associative
- Counting \# of fetches (not necessarily misses)
- "Reduced" Schedule: Address only loaded on the cycle it's required
- Reduced $==$ Unreduced (by number of misses)

Reduced
Leaving A in longer does not save fetches

Greedy Algorithms

- Require Optimal Substructure
- Solution to larger problem contains the solution to a smaller one
- Only one subproblem to consider!
- Idea:

1. Identify a greedy choice property

- How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain

Greedy choice property

- Belady evict rule:
- Evict the item accessed farthest in the future

Evict C
A B \quad C \quad D A

Greedy choice property

- Belady evict rule:
- Evict the item accessed farthest in the future

Evict B
A B C D D A D \quad E

B A E C E A

Greedy choice property

- Belady evict rule:
- Evict the item accessed farthest in the future

A	A	A	A	A	A	A	A	A	A
B	B	B	B	B	B	E	E	E	E
C	C	C	D	D	D	D	D	D	B

Evict D
A B C D A D E A D B A E C E A

Greedy choice property

- Belady evict rule:
- Evict the item accessed farthest in the future

Greedy choice property

- Belady evict rule:
- Evict the item accessed farthest in the future

4 Cache Misses

Greedy Algorithms

- Require Optimal Substructure
- Solution to larger problem contains the solution to a smaller one
- Only one subproblem to consider!
- Idea:

1. Identify a greedy choice property

- How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain

Caching Greedy Algorithm

Initialize cache= first k accesses
$O(k)$
For each $m_{i} \in M$:
$\begin{array}{cc}\text { if } m_{i} \in \text { cache: } & O(k) \\ \text { print cache } & O(k)\end{array}$
else:
$m=$ furthest-in-future from cache
O(kn)
evict m, load m_{i} print cache $\quad O(k)$
$O\left(k n^{2}\right)$

Exchange argument

- Shows correctness of a greedy algorithm
- Idea:
- Show exchanging an item from an arbitrary optimal solution with your greedy choice makes the new solution no worse
- How to show my sandwich is at least as good as yours:
- Show: "I can remove any item from your sandwich, and it would be no worse by replacing it with the same item from mv sandwich"

Let $S_{f f}$ be the schedule chosen by our greedy algorithm Let S_{i} be a schedule which agrees with $S_{f f}$ for the first i memory accesses.
We will show: there is a schedule S_{i+1} which agrees with $S_{f f}$ for the first $i+1$ memory accesses, and has no more misses than S_{i}
(i.e. $\operatorname{misses}\left(S_{i+1}\right) \leq \operatorname{misses}\left(S_{i}\right)$)

Belady Exchange Proof Idea

First i accesses

$S_{i+1} \square \square \square \square \square \square \begin{gathered}\text { Need to fill in the rest } \\ \text { of } S_{i+1} \text { to have no } \\ \text { more misses than } S_{i}\end{gathered}$
Must agree with $S_{f f}$

Proof of Lemma

Goal: find S_{i+1} s.t. misses $\left(S_{i+1}\right) \leq \operatorname{misses}\left(S_{i}\right)$
Since S_{i} agrees with $S_{f f}$ for the first i accesses, the state of the cache at access $i+1$ will be the same

Consider access $m_{i+1}=d$
Case 1: if d is in the cache, then neither S_{i} nor $S_{f f}$ evict from the cache, use the same cache for S_{i+1}

Proof of Lemma

Goal: find S_{i+1} s.t. misses $\left(S_{i+1}\right) \leq \operatorname{misses}\left(S_{i}\right)$
Since S_{i} agrees with $S_{f f}$ for the first i accesses, the state of the cache at access $i+1$ will be the same

Consider access $m_{i+1}=d$
Case 2: if d isn't in the cache, and both S_{i} and $S_{f f}$ evict f from the cache, evict f for d in S_{i+1}

Proof of Lemma

Goal: find S_{i+1} s.t. $\operatorname{misses}\left(S_{i+1}\right) \leq \operatorname{misses}\left(S_{i}\right)$
Since S_{i} agrees with $S_{f f}$ for the first i accesses, the state of the cache at access $i+1$ will be the same

Consider access $m_{i+1}=d$
Case 3: if d isn't in the cache, S_{i} evicts e and $S_{f f}$ evicts f from the cache

Case 3

First i accesses

$S_{i+1} \square \square \square \square \square \square \square \begin{gathered}\text { Need to fill in the rest } \\ \text { of } S_{i+1} \text { to have no } \\ \text { more misses than } S_{i}\end{gathered}$
Must agree with $S_{f f}$

Case 3

$m_{t}=$ the first access after $i+1$ in which S_{i} involveswith e or f

$$
\boldsymbol{m}_{\boldsymbol{t}}=\boldsymbol{e} \text { or } \boldsymbol{m}_{\boldsymbol{t}}=\boldsymbol{f} \text { or } \boldsymbol{m}_{\boldsymbol{t}}=\boldsymbol{x} \neq \boldsymbol{e}, \boldsymbol{f}
$$

Case $3, m_{t}=e$

$m_{t}=$ the first access after $i+1$ in which S_{i} deals with e or f

Case $3, m_{t}=e$

Goal: find S_{i+1} s.t. $\operatorname{misses}\left(S_{i+1}\right) \leq \operatorname{misses}\left(S_{i}\right)$

S_{i} must load e into the cache, assume it

S_{i+1} will load f into the cache, evicting x evicts x

The caches now match!
S_{i+1} behaved exactly the same as S_{i} between i and t, and has the same cache after t, therefore misses $\left(S_{i+1}\right)=\operatorname{misses}\left(S_{i}\right)$

Case $3, m_{t}=f$

$m_{t}=$ the first access after $i+1$ in which S_{i} deals with e or f $\boldsymbol{m}_{\boldsymbol{t}}=\boldsymbol{e}$ or $\boldsymbol{m}_{\boldsymbol{t}}=\boldsymbol{f}$ or $\boldsymbol{m}_{\boldsymbol{t}}=\boldsymbol{x} \neq \boldsymbol{e}, \boldsymbol{f}$

Case $3, m_{t}=f$

¢̧ann $\square \square \square \square \square \square \square \square$
 "Evict f "

 First place S_{i} uses e or f Means f not farthest future access!

 "Evict f"

Case 3, $m_{t}=x \neq e, f$

$m_{t}=$ the first access after $i+1$ in which S_{i} deals with e or f
$m_{t}=e$ or $m_{t}=f$ or $m_{t}=x \neq e, f$

Case $3, m_{t}=x \neq e, f$

Goal: find S_{i+1} s.t. $\operatorname{misses}\left(S_{i+1}\right) \leq \operatorname{misses}\left(S_{i}\right)$

S_{i} loads x into the cache, it must be

S_{i+1} will load x into the cache, evicting e evicting f

The caches now match!
S_{i+1} behaved exactly the same as S_{i} between i and t, and has the same cache after t, therefore $\operatorname{misses}\left(S_{i+1}\right)=\operatorname{misses}\left(S_{i}\right)$

Entire Huffman Derivation Follows

- Not covered in class, just for your review

Huffman Algorithm

- Choose the least frequent pair, combine into a subtree

$\mathrm{G}: 14$	$\mathrm{E}: 13$	$\mathrm{~L}: 9$	$\mathrm{I}: 8$	$\mathrm{~W}: 6$	$\mathrm{~N}: 3$	$\mathrm{~S}: 3$	$\mathrm{~A}: 2$	$\mathrm{D}: 2$	$\mathrm{R}: 2$	$\mathrm{Y}: 2$	$\mathrm{~K}: 1$	$\mathrm{P}: 1$	$\mathrm{Q}: 1$	$\mathrm{U}: 1$

Huffman Algorithm

- Choose the least frequent pair, combine into a subtree

Huffman Algorithm

- Choose the least frequent pair, combine into a subtree

Huffman Algorithm

- Choose the least frequent pair, combine into a subtree

Huffman Algorithm

- Choose the least frequent pair, combine into a subtree

Huffman Algorithm

- Choose the least frequent pair, combine into a subtree

Huffman Algorithm

- Choose the least frequent pair, combine into a subtree

Huffman Algorithm

- Choose the least frequent pair, combine into a subtree

Huffman Algorithm

- Choose the least frequent pair, combine into a subtree

Huffman Algorithm

- Choose the least frequent pair, combine into a subtree

Huffman Algorithm

- Choose the least frequent pair, combine into a subtree

Huffman Algorithm

- Choose the least frequent pair, combine into a subtree

Huffman Algorithm

- Choose the least frequent pair, combine into a subtree

Huffman Algorithm

- Choose the least frequent pair, combine into a subtree

Huffman Algorithm

- Choose the least frequent pair,
combine into a subtree68

