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Today’s Keywords

• Greedy Algorithms
• Exchange Argument
• Choice Function
• Prefix-free code
• Compression
• Huffman Code

3CLRS: Chapter 16



Announcements

• Unit B
– Advanced due Friday, 11:30pm
– Programming due Friday, 4/15, 11:30pm

• Unit C
– Basic 1 released, due Friday, 4/15, 11:30pm
– Basic 2 coming soon!
– Advanced due Friday, 4/22
– Programming due Friday 4/22 – Seam carving!
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Greedy Algorithms

• Require Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones
• Or: If S is an optimal solution to a problem, then the components of S are 

optimal solutions to sub-problems

– Only one subproblem to consider!

• Idea:
1. Identify a greedy choice property
• How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain
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Exchange argument

• Shows correctness of a greedy algorithm
• Idea:
– Show exchanging an item from an arbitrary optimal solution with 

your greedy choice makes the new solution no worse
– How to show my sandwich is at least as good as yours:
• Show: “I can remove any item from your sandwich, and it would be no worse 

by replacing it with the same item from my sandwich”
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Sam Morse

• Engineer
and artist
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Message Encoding
• Problem: need to electronically send a message 

to two people at a distance.
• Channel for message is binary (either on or off)

8

𝑚



How can we do it?

• Take the message, send it over 
character-by-character with an 
encoding
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wiggle, wiggle, wiggle like a gypsy queen
wiggle, wiggle, wiggle all dressed in green a: 2

d: 2
e: 13
g: 14
i: 8
k: 1
l: 9
n: 3
p: 1
q: 1
r: 2
s: 3
u: 1
w: 6
y: 2

Character 
Frequency

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110

Encoding 



How efficient is this?

Each character requires 4 bits
ℓ! = 4
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wiggle wiggle wiggle like a gypsy queen
wiggle wiggle wiggle all dressed in green

Cost of encoding:

𝐵 𝑇, 𝑓! = &
!"#$#!%&$ !

ℓ!𝑓! = 68 ⋅ 4 = 272

Better Solution: Allow for different 
characters to have different-size encodings
(high frequency → short code) 

a: 2
d: 2
e: 13
g: 14
i: 8
k: 1
l: 9
n: 3
p: 1
q: 1
r: 2
s: 3
u: 1
w: 6
y: 2

Character 
Frequency

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110

Encoding 



More efficient coding
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𝐵 𝑇, 𝑓! = &
!"#$#!%&$ !

ℓ!𝑓!

When this is big

Make this small

Codeword Size
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Morse Code
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Problem with Morse Code
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Decode:
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Ambiguous Decoding



Prefix-Free Code

• A prefix-free code is codeword table 𝑇 such 
that for any two characters 𝑐", 𝑐#, if 𝑐" ≠ 𝑐#
then 𝑐𝑜𝑑𝑒(𝑐") is not a prefix of 𝑐𝑜𝑑𝑒(𝑐#)
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…
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Binary Trees = Prefix-free Codes

• I can represent any prefix-free code as a binary tree
• I can create a prefix-free code from any binary tree
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Goal: Shortest Prefix-Free Encoding

• Input: A set of character frequencies {𝑓!}
• Output: A prefix-free code 𝑇 which minimizes

𝐵 𝑇, 𝑓! = 1
!$%&%!'(& !

ℓ!𝑓!

16

Huffman Coding!!



Greedy Algorithms

• Require Optimal Substructure
– Solution to larger problem contains the solution to a smaller one
– Only one subproblem to consider!

• Idea:
1. Identify a greedy choice property
• How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain

17



Huffman Algorithm

• Choose the least frequent pair, 
combine into a subtree
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G:14 E:13 L:9 I:8 W:6 N:3 S:3 A:2 D:2 R:2 Y:2 K:1 P:1 Q:1 U:1



Huffman Algorithm

• Choose the least frequent pair, 
combine into a subtree
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G:14 E:13 L:9 I:8 W:6 N:3 S:3 A:2 D:2 R:2 Y:2 K:1 P:1

Q:1 U:1

2
0 1

Subproblem of size 𝑛 − 1!



Huffman Algorithm

• Choose the least frequent pair, 
combine into a subtree
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G:14 E:13 L:9 I:8 W:6 N:3 S:3 A:2 D:2 R:2 Y:2

Q:1 U:1

2
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Huffman Algorithm

• Choose the least frequent pair, 
combine into a subtree

21

G:14 E:13 L:9 I:8 W:6 N:3 S:3 A:2 D:2 R:2 Y:2
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Huffman Algorithm

• Choose the least frequent pair, 
combine into a subtree
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Huffman Algorithm

• Choose the least frequent pair, 
combine into a subtree
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G:14 E:13 L:9 I:8 W:6 N:3 S:3
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Huffman Algorithm

• Choose the least frequent pair, 
combine into a subtree
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G:14 E:13 L:9 I:8 W:6

Q:1 U:1

2
0 1

K:1 P:1

2
0 1

4
0 1

R:2 Y:2

4
0 1

A:2 D:2

4
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N:3 S:3

6
0 1



Huffman Algorithm
• Choose the least frequent pair, 

combine into a subtree
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G:14 E:13

27
0 1

L:9 I:8

17
0 1

Q:1 U:1

2
0 1

K:1 P:1

2
0 1

4
0 1

N:3 S:3

6
0 1

10

0 1

W:6

R:2 Y:2

4
0 1

A:2 D:2

4
0 1

8
0 1

14

0 1

240 1

410 1

680 1



Exchange argument

• Shows correctness of a greedy algorithm
• Idea:
– Show exchanging an item from an arbitrary optimal solution with 

your greedy choice makes the new solution no worse
– How to show my sandwich is at least as good as yours:
• Show: “I can remove any item from your sandwich, and it would be no worse 

by replacing it with the same item from my sandwich”
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Showing Huffman is Optimal

• Overview:
– Show that there is an optimal tree in which the least frequent 

characters are siblings
• Exchange argument

– Show that making them siblings and solving the new smaller sub-
problem results in an optimal solution
• Proof by contradiction
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Showing Huffman is Optimal

• First Step: Show any optimal tree is “full” (each node has either 
0 or 2 children)

28

W

R Y

0 1

0

0 1

W

R Y

10

0 1
𝑇 𝑇′

𝑇′ is a “better” tree than 𝑇, because all codes in 
red subtree are shorter in 𝑇′, without creating 
any longer codes



Huffman Exchange Argument
• Claim: if 𝑐", 𝑐# are the least-frequent characters, then there is 

an optimal prefix-free code s.t. 𝑐", 𝑐# are siblings
– i.e. codes for 𝑐!, 𝑐" are the same length and differ only by their last 

bit

29𝑐'

𝑇)*'

𝑐(

Case 1: Consider some optimal tree 𝑇)*%. If 𝑐', 𝑐( are siblings in this 
tree, then claim holds



Huffman Exchange Argument
• Claim: if 𝑐", 𝑐# are the least-frequent characters, then there is 

an optimal prefix-free code s.t. 𝑐", 𝑐# are siblings
– i.e. codes for 𝑐!, 𝑐" are the same length and differ only by their last 

bit

30

𝑐(

𝑎

𝑐'

𝑇)*'

𝑏

Case 2: Consider some optimal tree 𝑇)*%, in which 𝑐', 𝑐( are not siblings

Let 𝑎, 𝑏 be the two characters of lowest 
depth that are siblings 
(Why must they exist?)

Idea: show that swapping 𝑐' with 𝑎 does 
not increase cost of the tree. 
Similar for 𝑐( and 𝑏
Assume: 𝑓!' ≤ 𝑓# and 𝑓!( ≤ 𝑓+



Case 2: 𝑐5, 𝑐6 are not siblings in 𝑇789
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𝑐(

𝑎

𝑐'

𝑇)*'

𝑏

• Claim: the least-frequent characters (𝑐", 𝑐#), are siblings in 
some optimal tree
𝑎, 𝑏 = lowest-depth siblings
Idea: show that swapping 𝑐' with 𝑎 does not increase cost of the tree.
Assume: 𝑓!' ≤ 𝑓#

𝑐(

𝑐'

𝑎

𝑇′

𝑏

𝐵 𝑇)*% = 𝐶 + 𝑓!'ℓ!' + 𝑓#ℓ# 𝐵 𝑇′ = 𝐶 + 𝑓!'ℓ# + 𝑓#ℓ!'



Case 2: 𝑐5, 𝑐6 are not siblings in 𝑇789
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𝑎, 𝑏 = lowest-depth siblings
Idea: show that swapping 𝑐' with 𝑎 does not increase cost of the tree.
Assume: 𝑓!' ≤ 𝑓#

𝐵 𝑇)*% = 𝐶 + 𝑓!'ℓ!' + 𝑓#ℓ# 𝐵 𝑇′ = 𝐶 + 𝑓!'ℓ# + 𝑓#ℓ!'

𝐵 𝑇)*% − 𝐵 𝑇, = 𝐶 + 𝑓!'ℓ!' + 𝑓#ℓ# − (𝐶 + 𝑓!'ℓ# + 𝑓#ℓ!')

= 𝑓!'ℓ!' + 𝑓#ℓ# − 𝑓!'ℓ# − 𝑓#ℓ!'
= 𝑓!'(ℓ!' − ℓ#) + 𝑓#(ℓ# − ℓ!')
= (𝑓#−𝑓!')(ℓ# − ℓ!')

≥ 0 ⇒ 𝑇′ optimal

• Claim: the least-frequent characters (𝑐", 𝑐#), are siblings in 
some optimal tree



Case 2: 𝑐5, 𝑐6 are not siblings in 𝑇789
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𝑐(

𝑎

𝑐'

𝑇)*'

𝑏

𝑎, 𝑏 = lowest-depth siblings
Idea: show that swapping 𝑐' with 𝑎 does not increase cost of the tree.
Assume: 𝑓!' ≤ 𝑓#

𝑐(

𝑐'

𝑎

𝑇′

𝑏

𝐵 𝑇)*% = 𝐶 + 𝑓!'ℓ!' + 𝑓#ℓ# 𝐵 𝑇′ = 𝐶 + 𝑓!'ℓ# + 𝑓#ℓ!'

𝐵 𝑇)*% − 𝐵 𝑇, = (𝑓#−𝑓!')(ℓ# − ℓ!')
≥ 0 ≥ 0

𝐵 𝑇)*% − 𝐵 𝑇, ≥ 0
𝑇′ is also optimal!

• Claim: the least-frequent characters (𝑐", 𝑐#), are siblings in 
some optimal tree



Case 2:Repeat to swap 𝑐6, 𝑏!
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𝑐(

𝑐'

𝑎

𝑇′

𝑏

𝑎, 𝑏 = lowest-depth siblings
Idea: show that swapping 𝑐( with 𝑏 does not increase cost of the tree.
Assume: 𝑓!( ≤ 𝑓+

𝑏

𝑐'

𝑎

𝑇′′

𝑐(

𝐵 𝑇′ = 𝐶 + 𝑓!(ℓ!( + 𝑓+ℓ+ 𝐵 𝑇′′ = 𝐶 + 𝑓!(ℓ+ + 𝑓+ℓ!(

𝐵 𝑇′ − 𝐵 𝑇,, = (𝑓+−𝑓!()(ℓ+ − ℓ!()
≥ 0 ≥ 0

𝐵 𝑇′ − 𝐵 𝑇,, ≥ 0
𝑇′′ is also optimal! Claim holds!

• Claim: the least-frequent characters (𝑐", 𝑐#), are siblings in 
some optimal tree



Showing Huffman is Optimal

• Overview:
– Show that there is an optimal tree in which the least frequent 

characters are siblings
• Exchange argument

– Show that making them siblings and solving the new smaller sub-
problem results in an optimal solution
• Proof by contradiction

35



Finishing the Proof

• Show Optimal Substructure
– Show treating 𝑐!, 𝑐" as a new “combined” character gives optimal 

solution

36

Why does solving this smaller problem:

Give an optimal solution to this?:
𝑐! 𝑐"

𝑐! 𝑐"

𝜎



Optimal Substructure

• Claim: An optimal solution for 𝐹 involves finding an optimal 
solution for 𝐹′, then adding 𝑐", 𝑐# as children to 𝜎

37

𝑐! 𝑐"

𝑐! 𝑐"

𝜎

𝐹′

𝐹



Optimal Substructure
• Claim: An optimal solution for 𝐹 involves finding an optimal 

solution for 𝐹′, then adding 𝑐", 𝑐# as children to 𝜎

38

𝑇

𝑐'

𝜎

𝑐(

𝑇′
𝜎

If this is optimal Then this is optimal

𝑓# = 𝑓$! + 𝑓$"

𝐵 𝑇% = 𝐵 𝑇 − 𝑓$! − 𝑓$"

ℓ$! = ℓ# + 1
ℓ$" = ℓ# + 1



Optimal Substructure
• Claim: An optimal solution for 𝐹 involves finding an optimal 

solution for 𝐹′, then adding 𝑐", 𝑐# as children to 𝜎

39

𝑇

𝑐'

𝜎

𝑐(

Suppose 𝑇 is not optimal
Let 𝑈 be a lower-cost tree

𝐵 𝑈 < 𝐵(𝑇)

𝑐'

𝑈

𝑐(

Toward contradiction



Optimal Substructure
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𝑈′

𝜎

𝐵 𝑈 < 𝐵(𝑇)

𝑐'

𝑈

𝑐(

𝐵 𝑈′ = 𝐵 𝑈 − 𝑓$! − 𝑓$"
< 𝐵 𝑇 − 𝑓$! − 𝑓$"
= 𝐵 𝑇′

Contradicts optimality of 𝑇′, so 𝑇 is 
optimal!

• Claim: An optimal solution for 𝐹 involves finding an optimal 
solution for 𝐹′, then adding 𝑐", 𝑐# as children to 𝜎



Optimal Substructure

• Claim: An optimal solution for 𝐹 involves finding an optimal 
solution for 𝐹′, then adding 𝑐", 𝑐# as children to 𝜎
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𝑐! 𝑐"

𝑐! 𝑐"

𝜎

𝐹′

𝐹

𝑈′

𝜎

𝑇′
𝜎

𝑇

𝑐'

𝜎
𝑐(

𝑐'

𝑈

𝑐(

>
>Contradiction!



Mental Stretch

Why is an algorithm’s space complexity (how much 
memory it uses) important?

Why might a memory-intensive algorithm be a “bad” 
one?

44



Why lots of memory is “bad”

45



Caching Problem

• Why is using too much memory a bad thing?

46



Von Neumann Bottleneck

• Named for John von Neumann
• Inventor of modern computer architecture
• Other notable influences include:
– Mathematics 
– Physics
– Economics 
– Computer Science

47



Von Neumann Bottleneck
• Reading from memory is VERY slow
• Big memory = slow memory
• Solution: hierarchical memory
• Takeaway for Algorithms: Memory is time, 

more memory is a lot more time

48

CPU, 
registers

Cache Disk

If not look hereHopefully your 
data in here

Hope it’s not here

Access time: 
1 cycle Access time: 

10 cycles

Access time: 
1,000,000 cycles



Caching Problem

• Cache misses are very expensive
• When we load something new into cache, we must eliminate 

something already there
• We want the best cache “schedule” to minimize the number of 

misses

49



Caching Problem Definition

• Input: 
– 𝑘 = size of the cache
–𝑀 = 𝑚!, 𝑚", …𝑚& = memory access pattern

• Output: 
– “schedule” for the cache (list of items in the cache at each time) 

which minimizes cache fetches

50



Example

51
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Example
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Example
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Example
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A   B   C   D   A   D   E   A   D   B   A   E   C   E   A

A
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C

We must evict 
something to make 
room for D
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Example
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Example
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If we evict CA
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Our Problem vs Reality
• Assuming we know the entire access pattern
• Cache is Fully Associative
• Counting # of fetches (not necessarily misses)
• “Reduced” Schedule: Address only loaded on the cycle it’s required
– Reduced == Unreduced (by number of misses)

57

A   B   C   D   A   D   E   A   D   B   A   E   C   E   A

A   B   C   D   A   D   E   A   D   B   A   E   C   E   A

A
B
C

A
B
C

A
B
C

A
B
C

D
B
C

D
B
C

A
B
C

A
B
C

Unreduced

Reduced
Leaving A in longer does 
not save fetches



Greedy Algorithms

• Require Optimal Substructure
– Solution to larger problem contains the solution to a smaller one
– Only one subproblem to consider!

• Idea:
1. Identify a greedy choice property
• How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain

58



Greedy choice property

• Belady evict rule:
– Evict the item accessed farthest in the future

59
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Greedy choice property

• Belady evict rule:
– Evict the item accessed farthest in the future
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Greedy choice property

• Belady evict rule:
– Evict the item accessed farthest in the future
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Greedy choice property

• Belady evict rule:
– Evict the item accessed farthest in the future
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Greedy choice property

• Belady evict rule:
– Evict the item accessed farthest in the future
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Greedy Algorithms

• Require Optimal Substructure
– Solution to larger problem contains the solution to a smaller one
– Only one subproblem to consider!

• Idea:
1. Identify a greedy choice property
• How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain

64



Caching Greedy Algorithm

Initialize 𝑐𝑎𝑐ℎ𝑒= first k accesses
For each 𝑚+ ∈ 𝑀:

if 𝑚+ ∈ 𝑐𝑎𝑐ℎ𝑒:
print 𝑐𝑎𝑐ℎ𝑒

else:
𝑚 = furthest-in-future from cache
evict 𝑚, load 𝑚+
print 𝑐𝑎𝑐ℎ𝑒

65

𝑂(𝑘)
𝑛 times

𝑂(𝑘)
𝑂(𝑘)

𝑂(𝑘𝑛)
𝑂(1)

𝑂(𝑘)

𝑂(𝑘𝑛!)



Exchange argument

• Shows correctness of a greedy algorithm
• Idea:
– Show exchanging an item from an arbitrary optimal solution with 

your greedy choice makes the new solution no worse
– How to show my sandwich is at least as good as yours:
• Show: “I can remove any item from your sandwich, and it would be no worse 

by replacing it with the same item from my sandwich”

66



Belady Exchange Lemma

Let 𝑆'' be the schedule chosen by our greedy algorithm
Let 𝑆( be a schedule which agrees with 𝑆'' for the first 𝑖
memory accesses.
We will show: there is a schedule 𝑆()! which agrees 
with 𝑆'' for the first 𝑖 + 1 memory accesses, and has 
no more misses than 𝑆(
(i.e. 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆()! ≤ 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆())

67

𝑆∗
Agrees with 
𝑆## on first 0 
accesses

𝑆# 𝑆!
Agrees with 
𝑆## on first  
access

Agrees with 
𝑆## on first 2  
accesses

… 𝑆$$
Agrees with 
𝑆## on all 𝑛
accesses

Lemma Lemma Lemma Lemma
Optimal Greedy 



Belady Exchange Proof Idea
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𝑆(

𝑆''

𝑆()!

First 𝑖 accesses

Must agree with 𝑆77

Need to fill in the rest 
of 𝑆89' to have no 

more misses than 𝑆8



𝑆$ Cache after 𝑖

Proof of Lemma

Goal: find 𝑆!"# s.t. 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆!"# ≤ 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆!)
Since 𝑆! agrees with 𝑆$$ for the first 𝑖 accesses, the 
state of the cache at access 𝑖 + 1 will be the same
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𝑆## Cache after 𝑖=
Consider access 𝑚()! = 𝑑

Case 1: if 𝑑 is in the cache, then neither 𝑆! nor 𝑆$$
evict from the cache, use the same cache for 𝑆!"#

𝑓𝑒 𝑓𝑒

𝑆$%! Cache after 𝑖 𝑓𝑒



𝑆$ Cache after 𝑖

Proof of Lemma

Goal: find 𝑆!"# s.t. 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆!"# ≤ 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆!)
Since 𝑆! agrees with 𝑆$$ for the first 𝑖 accesses, the 
state of the cache at access 𝑖 + 1 will be the same
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𝑆## Cache after 𝑖=
Consider access 𝑚()! = 𝑑

𝑓𝑒 𝑓𝑒

Case 2: if 𝑑 isn’t in the cache, and both 𝑆+ and 
𝑆,, evict 𝑓 from the cache, evict 𝑓 for 𝑑 in 𝑆+-"

𝑆$%! Cache after 𝑖 𝑑𝑒



𝑆$ Cache after 𝑖

Proof of Lemma

Goal: find 𝑆!"# s.t. 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆!"# ≤ 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆!)
Since 𝑆! agrees with 𝑆$$ for the first 𝑖 accesses, the 
state of the cache at access 𝑖 + 1 will be the same
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𝑆## Cache after 𝑖=
Consider access 𝑚()! = 𝑑

𝑓𝑒 𝑓𝑒

Case 3: if 𝑑 isn’t in the cache, 𝑆+ evicts 𝑒 and 𝑆,,
evicts 𝑓 from the cache

𝑆$ Cache after 𝑖 + 1 𝑆## Cache after 𝑖 + 1≠𝑓𝑑 𝑑𝑒



Case 3
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𝑆(

𝑆''

𝑆()!

First 𝑖 accesses

Must agree with 𝑆77

Need to fill in the rest 
of 𝑆89' to have no 

more misses than 𝑆8



Case 3
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𝑆(

𝑆''

𝑆()! 𝑚%

First 𝑖 accesses

First place 𝑆8 involves 𝑒 or 𝑓

Copy 𝑆$

𝑚* = the first access after 𝑖 + 1 in which 𝑆( involveswith 𝑒 or 𝑓
𝒎𝒕 = 𝒆 or 𝒎𝒕 = 𝒇 or 𝒎𝒕 = 𝒙 ≠ 𝒆, 𝒇



Case 3, 𝑚9 = 𝑒
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𝑆(

𝑆''

𝑆()! 𝑒

First 𝑖 accesses

First place 𝑆8 uses 𝑒 or 𝑓

Copy 𝑆$

𝑚* = the first access after 𝑖 + 1 in which 𝑆( deals with 𝑒 or 𝑓



Case 3, 𝑚9 = 𝑒
Goal: find 𝑆+-" s.t. 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆+-" ≤ 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆+)
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𝑆$ Cache after 𝑡 − 1 𝑆$%! Cache after 𝑡 − 1≠𝑓𝑑 𝑑𝑒

𝑆+ must load 𝑒 into 
the cache, assume it 
evicts 𝑥

𝑆+-" will load 𝑓 into 
the cache, evicting 𝑥

𝑆!"# behaved exactly the same as 𝑆! between 𝑖
and 𝑡, and has the same cache after 𝑡, 
therefore 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆!"# = 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆!)

The caches now match!

𝑥 𝑥

𝑒 𝑓



Case 3, 𝑚9 = 𝑓
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𝑆(

𝑆''

𝑆()! 𝑓

First 𝑖 accesses

First place 𝑆8 uses 𝑒 or 𝑓

Copy 𝑆$

𝑚* = the first access after 𝑖 + 1 in which 𝑆( deals with 𝑒 or 𝑓
𝒎𝒕 = 𝒆 or 𝒎𝒕 = 𝒇 or 𝒎𝒕 = 𝒙 ≠ 𝒆, 𝒇



Case 3, 𝑚9 = 𝑓

Cannot Happen!
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𝑆(

𝑆''

𝑆()! 𝑓

First place 𝑆8 uses 𝑒 or 𝑓

“Evict 𝑓"

“Evict 𝑓"

Means 𝑓 not farthest future access!



Case 3, 𝑚9 = 𝑥 ≠ 𝑒, 𝑓
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𝑆(

𝑆''

𝑆()! 𝑥

First 𝑖 accesses

First place 𝑆8 uses 𝑒 or 𝑓

Copy 𝑆$

𝑚* = the first access after 𝑖 + 1 in which 𝑆( deals with 𝑒 or 𝑓
𝑚* = 𝑒 or 𝑚* = 𝑓 or 𝑚* = 𝑥 ≠ 𝑒, 𝑓



Case 3, 𝑚9 = 𝑥 ≠ 𝑒, 𝑓

Goal: find 𝑆+-" s.t. 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆+-" ≤ 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆+)
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𝑆$ Cache after 𝑡 − 1 𝑆$%! Cache after 𝑡 − 1≠𝑓𝑑 𝑑𝑒

𝑆+ loads 𝑥 into the 
cache, it must be 
evicting 𝑓

𝑆+-" will load 𝑥 into 
the cache, evicting 𝑒

𝑆!"# behaved exactly the same as 𝑆! between 𝑖
and 𝑡, and has the same cache after 𝑡, 
therefore 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆!"# = 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆!)

𝑥 𝑥

The caches now match!



80



Entire Huffman Derivation Follows

• Not covered in class, just for your review

81



Huffman Algorithm

• Choose the least frequent pair, 
combine into a subtree

82

G:14 E:13 L:9 I:8 W:6 N:3 S:3 A:2 D:2 R:2 Y:2 K:1 P:1 Q:1 U:1



Huffman Algorithm

• Choose the least frequent pair, 
combine into a subtree

83

G:14 E:13 L:9 I:8 W:6 N:3 S:3 A:2 D:2 R:2 Y:2 K:1 P:1

Q:1 U:1

2
0 1



Huffman Algorithm

• Choose the least frequent pair, 
combine into a subtree
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G:14 E:13 L:9 I:8 W:6 N:3 S:3 A:2 D:2 R:2 Y:2

Q:1 U:1

2
0 1

K:1 P:1

2
0 1



Huffman Algorithm

• Choose the least frequent pair, 
combine into a subtree

85

G:14 E:13 L:9 I:8 W:6 N:3 S:3 A:2 D:2 R:2 Y:2

Q:1 U:1

2
0 1

K:1 P:1

2
0 1

4
0 1



Huffman Algorithm

• Choose the least frequent pair, 
combine into a subtree
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G:14 E:13 L:9 I:8 W:6 N:3 S:3 A:2 D:2

Q:1 U:1

2
0 1

K:1 P:1

2
0 1

4
0 1

R:2 Y:2

4
0 1



Huffman Algorithm

• Choose the least frequent pair, 
combine into a subtree

87

G:14 E:13 L:9 I:8 W:6 N:3 S:3

Q:1 U:1

2
0 1

K:1 P:1

2
0 1

4
0 1

R:2 Y:2

4
0 1

A:2 D:2

4
0 1



Huffman Algorithm

• Choose the least frequent pair, 
combine into a subtree

88

G:14 E:13 L:9 I:8 W:6

Q:1 U:1

2
0 1

K:1 P:1

2
0 1

4
0 1

R:2 Y:2

4
0 1

A:2 D:2

4
0 1

N:3 S:3

6
0 1



Huffman Algorithm

• Choose the least frequent pair, 
combine into a subtree

89

G:14 E:13 L:9 I:8 W:6

Q:1 U:1

2
0 1

K:1 P:1

2
0 1

4
0 1

N:3 S:3

6
0 1

R:2 Y:2

4
0 1

A:2 D:2

4
0 1

8
0 1



Huffman Algorithm

• Choose the least frequent pair, 
combine into a subtree
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G:14 E:13 L:9 I:8 W:6

R:2 Y:2

4
0 1

A:2 D:2

4
0 1

8
0 1

Q:1 U:1

2
0 1

K:1 P:1

2
0 1

4
0 1

N:3 S:3

6
0 1

10

0 1



Huffman Algorithm

• Choose the least frequent pair, 
combine into a subtree
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G:14 E:13 L:9 I:8

Q:1 U:1

2
0 1

K:1 P:1

2
0 1

4
0 1

N:3 S:3

6
0 1

10

0 1

W:6

R:2 Y:2

4
0 1

A:2 D:2

4
0 1

8
0 1

14

0 1



Huffman Algorithm

• Choose the least frequent pair, 
combine into a subtree
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G:14 E:13

Q:1 U:1

2
0 1

K:1 P:1

2
0 1

4
0 1

N:3 S:3

6
0 1

10

0 1

W:6

R:2 Y:2

4
0 1

A:2 D:2

4
0 1

8
0 1

14

0 1
L:9 I:8

17
0 1



Huffman Algorithm
• Choose the least frequent pair, 

combine into a subtree
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G:14 E:13

L:9 I:8

17
0 1

Q:1 U:1

2
0 1

K:1 P:1

2
0 1

4
0 1

N:3 S:3

6
0 1

10

0 1

W:6

R:2 Y:2

4
0 1

A:2 D:2

4
0 1

8
0 1

14

0 1

240 1



Huffman Algorithm
• Choose the least frequent pair, 

combine into a subtree
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L:9 I:8

17
0 1

G:14 E:13

27
0 1

Q:1 U:1

2
0 1

K:1 P:1

2
0 1

4
0 1

N:3 S:3

6
0 1

10

0 1

W:6

R:2 Y:2

4
0 1

A:2 D:2

4
0 1

8
0 1

14

0 1

240 1



Huffman Algorithm
• Choose the least frequent pair, 

combine into a subtree
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G:14 E:13

27
0 1

L:9 I:8

17
0 1

Q:1 U:1

2
0 1

K:1 P:1

2
0 1

4
0 1

N:3 S:3

6
0 1

10

0 1

W:6

R:2 Y:2

4
0 1

A:2 D:2

4
0 1

8
0 1

14

0 1

240 1

410 1



Huffman Algorithm
• Choose the least frequent pair, 

combine into a subtree
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G:14 E:13

27
0 1

L:9 I:8

17
0 1

Q:1 U:1

2
0 1

K:1 P:1

2
0 1

4
0 1

N:3 S:3

6
0 1

10

0 1

W:6

R:2 Y:2

4
0 1

A:2 D:2

4
0 1

8
0 1

14

0 1

240 1

410 1

680 1


