CS4102 Algorithms Spring 2022

Warm up

Decode the line below into English

(hint: use Google or Wolfram Alpha)

•• •-•• •• -•- • •- •-• --- •-• •• - •••• -- •••

CS4102 Algorithms Spring 2022

Warm up

Decode the line below into English

(hint: use Google or Wolfram Alpha)

Today's Keywords

- Greedy Algorithms
- Exchange Argument
- Choice Function
- Prefix-free code
- Compression
- Huffman Code

CLRS: Chapter 16 3

Announcements

• Unit B

- Advanced due Friday, 11:30pm
- Programming due Friday, 4/15, 11:30pm
- Unit C
 - Basic 1 released, due Friday, 4/15, 11:30pm
 - Basic 2 coming soon!
 - Advanced due Friday, 4/22
 - Programming due Friday 4/22 Seam carving!

Greedy Algorithms

- Require Optimal Substructure
 - Solution to larger problem contains the solutions to smaller ones
 - Or: If S is an optimal solution to a problem, then the components of S are optimal solutions to sub-problems
 - Only one subproblem to consider!
- Idea:
 - 1. Identify a greedy choice property
 - How to make a choice guaranteed to be included in some optimal solution
 - 2. Repeatedly apply the choice property until no subproblems remain

Exchange argument

- Shows correctness of a greedy algorithm
- Idea:
 - Show exchanging an item from an arbitrary optimal solution with your greedy choice makes the new solution no worse
 - How to show my sandwich is at least as good as yours:
 - Show: "I can remove any item from your sandwich, and it would be no worse by replacing it with the same item from my sandwich"

Sam Morse

- Engineer and artist

Message Encoding

- Problem: need to electronically send a message to two people at a distance.
- Channel for message is binary (either on or off)

How can we do it?

wiggle, wiggle, wiggle like a gypsy queen wiggle, wiggle, wiggle all dressed in green

 Take the message, send it over character-by-character with an encoding

Character				
requen	cy ,	Encodir	lg	
a: 2		0000		
d: 2		0001		
e: 13		0010		
g: 14		0011		
i: 8		0100		
k: 1		0101		
:9		0110		
n: 3		0111		
p: 1		1000		
q: 1		1001		
r: 2		1010		
s: 3		1011		
u: 1		1100		
w: 6		1101		
y: 2		1110		

9

How efficient is this?

wiggle wiggle wiggle like a gypsy queen wiggle wiggle wiggle all dressed in green
Each character requires 4 bits $\ell_c = 4$
Cost of encoding: $\sum_{n \in \mathbb{N}} a_n \in \mathbb{N}$
$B(I, \{J_c\}) = \gamma \ell_c J_c = 68 \cdot 4 = 2/2$

character c

Better Solution: Allow for different characters to have different-size encodings (high frequency → short code)

Character				
Frequency	Encoding			
a: 2	0000			
d: 2	0001			
e: 13	0010			
g: 14	0011			
i: 8	0100			
k: 1	0101			
l: 9	0110			
n: 3	0111			
p: 1	1000			
q: 1	1001			
r: 2	1010			
s: 3	1011			
u: 1	1100			
w: 6	1101			
y: 2	1110			

10

More efficient coding

Morse Code

Problem with Morse Code

International Morse Code

- 1. The length of a dot is one unit.
- 2. A dash is three units.
- 3. The space between parts of the same letter is one unit.
- 4. The space between letters is three units.
- 5. The space between words is seven units.

Ambiguous Decoding

Prefix-Free Code

• A prefix-free code is codeword table T such that for any two characters c_1, c_2 , if $c_1 \neq c_2$ then $code(c_1)$ is not a prefix of $code(c_2)$

Binary Trees = Prefix-free Codes

- I can represent any prefix-free code as a binary tree
- I can create a prefix-free code from any binary tree

Goal: Shortest Prefix-Free Encoding

- Input: A set of character frequencies $\{f_c\}$
- Output: A prefix-free code *T* which minimizes

$$B(T, \{f_c\}) = \sum_{character c} \ell_c f_c$$

Greedy Algorithms

- Require Optimal Substructure
 - Solution to larger problem contains the solution to a smaller one
 - Only one subproblem to consider!
- Idea:
 - 1. Identify a greedy choice property
 - How to make a choice guaranteed to be included in some optimal solution
 - 2. Repeatedly apply the choice property until no subproblems remain

• Choose the least frequent pair, combine into a subtree

Subproblem of size n - 1!

25

Exchange argument

- Shows correctness of a greedy algorithm
- Idea:
 - Show exchanging an item from an arbitrary optimal solution with your greedy choice makes the new solution no worse
 - How to show my sandwich is at least as good as yours:
 - Show: "I can remove any item from your sandwich, and it would be no worse by replacing it with the same item from my sandwich"

Showing Huffman is Optimal

- Overview:
 - Show that there is **an** optimal tree in which the least frequent characters are siblings
 - Exchange argument
 - Show that making them siblings and solving the new smaller subproblem <u>results in</u> an optimal solution
 - Proof by contradiction

Showing Huffman is Optimal

• First Step: Show any optimal tree is "full" (each node has either 0 or 2 children)

Huffman Exchange Argument

- Claim: if c₁, c₂ are the least-frequent characters, then there is an optimal prefix-free code s.t. c₁, c₂ are siblings
 - i.e. codes for c_1, c_2 are the same length and differ only by their last bit

Case 1: Consider some optimal tree T_{opt} . If c_1, c_2 are siblings in this tree, then claim holds

Huffman Exchange Argument

- Claim: if c₁, c₂ are the least-frequent characters, then there is an optimal prefix-free code s.t. c₁, c₂ are siblings
 - i.e. codes for c_1, c_2 are the same length and differ only by their last bit

Case 2: Consider some optimal tree T_{opt} , in which c_1, c_2 are not siblings

Let *a*, *b* be the two characters of lowest depth that are siblings (Why must they exist?)

Idea: show that swapping c_1 with a does not increase cost of the tree. Similar for c_2 and bAssume: $f_{c1} \leq f_a$ and $f_{c2} \leq f_b$

Case 2: c_1, c_2 are not siblings in T_{opt}

 Claim: the least-frequent characters (c₁, c₂), are siblings in some optimal tree

a, b =lowest-depth siblings

Idea: show that swapping c_1 with a does not increase cost of the tree. Assume: $f_{c1} \leq f_a$

Case 2: c_1, c_2 are not siblings in T_{opt}

 Claim: the least-frequent characters (c₁, c₂), are siblings in some optimal tree

a, b =lowest-depth siblings

Idea: show that swapping c_1 with a does not increase cost of the tree. Assume: $f_{c1} \leq f_a$

$$B(T_{opt}) = C + f_{c1}\ell_{c1} + f_a\ell_a \qquad B(T') = C + f_{c1}\ell_a + f_a\ell_{c1}$$

$$\geq 0 \Rightarrow T' \text{ optimal}$$

$$B(T_{opt}) - B(T') = C + f_{c1}\ell_{c1} + f_a\ell_a - (C + f_{c1}\ell_a + f_a\ell_{c1})$$

$$= f_{c1}\ell_{c1} + f_a\ell_a - f_{c1}\ell_a - f_a\ell_{c1}$$

$$= f_{c1}(\ell_{c1} - \ell_a) + f_a(\ell_a - \ell_{c1})$$

$$= (f_a - f_{c1})(\ell_a - \ell_{c1})$$

Case 2: c_1 , c_2 are not siblings in T_{opt}

 Claim: the least-frequent characters (c₁, c₂), are siblings in some optimal tree

a, b =lowest-depth siblings

Idea: show that swapping c_1 with a does not increase cost of the tree. Assume: $f_{c1} \leq f_a$

Case 2:Repeat to swap c_2 , b!

 Claim: the least-frequent characters (c₁, c₂), are siblings in some optimal tree

a, b =lowest-depth siblings

Idea: show that swapping c_2 with b does not increase cost of the tree. Assume: $f_{c2} \leq f_b$

Showing Huffman is Optimal

- Overview:
 - Show that there is an optimal tree in which the least frequent characters are siblings
 - Exchange argument
 - Show that making them siblings and solving the new smaller subproblem results in an optimal solution
 - Proof by contradiction

Finishing the Proof

- Show Optimal Substructure
 - Show treating c_1, c_2 as a new "combined" character gives optimal solution

Why does solving this smaller problem:

Give an optimal solution to this?:

• Claim: An optimal solution for F involves finding an optimal solution for F', then adding c_1, c_2 as children to σ

• Claim: An optimal solution for F involves finding an optimal solution for F', then adding c_1, c_2 as children to σ

 Claim: An optimal solution for F involves finding an optimal solution for F', then adding c_1 , c_2 as children to σ

Toward contradiction Suppose T is not optimal Let U be a lower-cost tree B(U) < B(T) σ C_1 C_2 C_1 C_2

• Claim: An optimal solution for F involves finding an optimal solution for F', then adding c_1, c_2 as children to σ

B(U) < B(T)

• Claim: An optimal solution for F involves finding an optimal solution for F', then adding c_1, c_2 as children to σ

Mental Stretch

Why is an algorithm's space complexity (how much memory it uses) important?

Why might a memory-intensive algorithm be a "bad" one?

Why lots of memory is "bad"

Caching Problem

• Why is using too much memory a bad thing?

Von Neumann Bottleneck

- Named for John von Neumann
- Inventor of modern computer architecture
- Other notable influences include:
 - Mathematics
 - Physics
 - Economics
 - Computer Science

Von Neumann Bottleneck

- Reading from memory is VERY slow
- Big memory = slow memory
- Solution: hierarchical memory
- Takeaway for Algorithms: Memory is time, more memory is a lot more time

Caching Problem

- Cache misses are very expensive
- When we load something new into cache, we must eliminate something already there
- We want the best cache "schedule" to minimize the number of misses

Caching Problem Definition

- Input:
 - -k = size of the cache

 $-M = [m_1, m_2, \dots m_n] = memory access pattern$

- Output:
 - "schedule" for the cache (list of items in the cache at each time) which minimizes cache fetches

$\begin{bmatrix} A & A \\ B & B \\ C & C \end{bmatrix}$ $\begin{bmatrix} A & B \\ A & B \end{bmatrix}$ $\begin{bmatrix} C & D \\ A & D \end{bmatrix}$ $\begin{bmatrix} A & D \\ A & D \end{bmatrix}$ $\begin{bmatrix} A & D \\ A \end{bmatrix}$ $\begin{bmatrix} A$

A A A B B B C C C A B C D A D E A D B A E C E A

Our Problem vs Reality

- Assuming we know the entire access pattern
- Cache is Fully Associative
- Counting # of fetches (not necessarily misses)
- "Reduced" Schedule: Address only loaded on the cycle it's required
 - Reduced == Unreduced (by number of misses)

Greedy Algorithms

- Require Optimal Substructure
 - Solution to larger problem contains the solution to a smaller one
 - Only one subproblem to consider!
- Idea:
 - 1. Identify a greedy choice property
 - How to make a choice guaranteed to be included in some optimal solution
 - 2. Repeatedly apply the choice property until no subproblems remain

- Belady evict rule:
 - Evict the item accessed farthest in the future

- Belady evict rule:
 - Evict the item accessed farthest in the future

- Belady evict rule:
 - Evict the item accessed farthest in the future

- Belady evict rule:
 - Evict the item accessed farthest in the future

- Belady evict rule:
 - Evict the item accessed farthest in the future

4 Cache Misses

Greedy Algorithms

- Require Optimal Substructure
 - Solution to larger problem contains the solution to a smaller one
 - Only one subproblem to consider!
- Idea:
 - 1. Identify a greedy choice property
 - How to make a choice guaranteed to be included in some optimal solution
 - 2. Repeatedly apply the choice property until no subproblems remain

Caching Greedy Algorithm

```
O(k)
Initialize cache = first k accesses
                                 n times
For each m_i \in M:
                                  O(k)
     if m_i \in cache:
                                    O(k)
            print cache
     else:
                                                           O(kn)
            m = furthest-in-future from cache
                                            0(1)
            evict m_i load m_i
                                     O(k)
            print cache
                                               O(kn^2)
```

Exchange argument

- Shows correctness of a greedy algorithm
- Idea:
 - Show exchanging an item from an arbitrary optimal solution with your greedy choice makes the new solution no worse
 - How to show my sandwich is at least as good as yours:
 - Show: "I can remove any item from your sandwich, and it would be no worse by replacing it with the same item from mv sandwich"

Belady Exchange Lemma

Let S_{ff} be the schedule chosen by our greedy algorithm Let S_i be a schedule which agrees with S_{ff} for the first imemory accesses.

We will show: there is a schedule S_{i+1} which agrees with S_{ff} for the first i + 1 memory accesses, and has no more misses than S_i

(i.e.
$$misses(S_{i+1}) \le misses(S_i)$$
)

Belady Exchange Proof Idea

Proof of Lemma

Goal: find S_{i+1} s.t. $misses(S_{i+1}) \le misses(S_i)$ Since S_i agrees with S_{ff} for the first i accesses, the state of the cache at access i + 1 will be the same S_i Cache after i e f = S_{ff} Cache after i e fConsider access $m_{i+1} = d$

Case 1: if d is in the cache, then neither S_i nor S_{ff} evict from the cache, use the same cache for S_{i+1}

Proof of Lemma

Goal: find S_{i+1} s.t. $misses(S_{i+1}) \le misses(S_i)$ Since S_i agrees with S_{ff} for the first *i* accesses, the state of the cache at access i + 1 will be the same S_i Cache after *i* e f = S_{ff} Cache after *i* e f

Consider access $m_{i+1} = d$

Case 2: if d isn't in the cache, and both S_i and S_{ff} evict f from the cache, evict f for d in S_{i+1}

Proof of Lemma

Goal: find S_{i+1} s.t. $misses(S_{i+1}) \leq misses(S_i)$ Since S_i agrees with S_{ff} for the first *i* accesses, the state of the cache at access i + 1 will be the same е S_{ff} Cache after *i* е S_i Cache after iConsider access $m_{i+1} = d$ Case 3: if d isn't in the cache, S_i evicts e and S_{ff} evicts f from the cache

 m_t = the first access after i + 1 in which S_i involves with e or f $m_t = e$ or $m_t = f$ or $m_t = x \neq e, f$

Case 3, $m_t = e$

 m_t = the first access after i + 1 in which S_i deals with e or f
Case 3, $m_t = e$

Goal: find
$$S_{i+1}$$
 s.t. $misses(S_{i+1}) \le misses(S_i)$

 S_{i+1} behaved exactly the same as S_i between i and t, and has the same cache after t, therefore $misses(S_{i+1}) = misses(S_i)$

Case 3, $m_t = f$

 m_t = the first access after i + 1 in which S_i deals with e or f $m_t = e$ or $m_t = f$ or $m_t = x \neq e, f$

Case 3, $m_t = f$

Case 3, $m_t = x \neq e, f$

 m_t = the first access after i + 1 in which S_i deals with e or f $m_t = e$ or $m_t = f$ or $m_t = x \neq e, f$

Case 3, $m_t = x \neq e$, f

Goal: find
$$S_{i+1}$$
 s.t. $misses(S_{i+1}) \le misses(S_i)$

The caches now match!

 S_{i+1} behaved exactly the same as S_i between i and t, and has the same cache after t, therefore $misses(S_{i+1}) = misses(S_i)$

Entire Huffman Derivation Follows

• Not covered in class, just for your review

 Choose the least frequent pair, combine into a subtree 41 27 0 1 17 G:14 E:13 24 0 1 14 10 L:9 1:8 1 W:6 8 6 4 N:3 S:3 2 2 4 4 Y:2 A:2 D:2 K:1 P:1 R:2 Q:1 U:1

