
CS4102 Algorithms
Spring 2022

Warm up
Decode the line below into English

(hint: use Google or Wolfram Alpha)

1
·· ·-·· ·· -·- · ·- ·-·· --· --- ·-· ·· - ···· -- ···

CS4102 Algorithms
Spring 2022

Warm up
Decode the line below into English

(hint: use Google or Wolfram Alpha)

2
·· ·-·· ·· -·- · ·- ·-·· --· --- ·-· ·· - ···· -- ···

Today’s Keywords

• Greedy Algorithms
• Exchange Argument
• Choice Function
• Prefix-free code
• Compression
• Huffman Code

3CLRS: Chapter 16

Announcements

• Unit B
– Advanced due Friday, 11:30pm
– Programming due Friday, 4/15, 11:30pm

• Unit C
– Basic 1 released, due Friday, 4/15, 11:30pm
– Basic 2 coming soon!
– Advanced due Friday, 4/22
– Programming due Friday 4/22 – Seam carving!

4

Greedy Algorithms

• Require Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones
• Or: If S is an optimal solution to a problem, then the components of S are

optimal solutions to sub-problems

– Only one subproblem to consider!

• Idea:
1. Identify a greedy choice property
• How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain

5

Exchange argument

• Shows correctness of a greedy algorithm
• Idea:
– Show exchanging an item from an arbitrary optimal solution with

your greedy choice makes the new solution no worse
– How to show my sandwich is at least as good as yours:
• Show: “I can remove any item from your sandwich, and it would be no worse

by replacing it with the same item from my sandwich”

6

Sam Morse

• Engineer
and artist

7

Message Encoding
• Problem: need to electronically send a message

to two people at a distance.
• Channel for message is binary (either on or off)

8

𝑚

How can we do it?

• Take the message, send it over
character-by-character with an
encoding

9

wiggle, wiggle, wiggle like a gypsy queen
wiggle, wiggle, wiggle all dressed in green a: 2

d: 2
e: 13
g: 14
i: 8
k: 1
l: 9
n: 3
p: 1
q: 1
r: 2
s: 3
u: 1
w: 6
y: 2

Character
Frequency

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110

Encoding

How efficient is this?

Each character requires 4 bits
ℓ! = 4

10

wiggle wiggle wiggle like a gypsy queen
wiggle wiggle wiggle all dressed in green

Cost of encoding:

𝐵 𝑇, 𝑓! = &
!"#$#!%&$!

ℓ!𝑓! = 68 ⋅ 4 = 272

Better Solution: Allow for different
characters to have different-size encodings
(high frequency → short code)

a: 2
d: 2
e: 13
g: 14
i: 8
k: 1
l: 9
n: 3
p: 1
q: 1
r: 2
s: 3
u: 1
w: 6
y: 2

Character
Frequency

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110

Encoding

More efficient coding

11

𝐵 𝑇, 𝑓! = &
!"#$#!%&$!

ℓ!𝑓!

When this is big

Make this small

Codeword Size

Ch
ar

ac
te

r F
re

qu
en

cy

Morse Code

12
Codeword Size

Ch
ar

ac
te

r F
re

qu
en

cy

Problem with Morse Code

13

Decode:
A A

ET ET
R T
EN T

Ambiguous Decoding

Prefix-Free Code

• A prefix-free code is codeword table 𝑇 such
that for any two characters 𝑐", 𝑐#, if 𝑐" ≠ 𝑐#
then 𝑐𝑜𝑑𝑒(𝑐") is not a prefix of 𝑐𝑜𝑑𝑒(𝑐#)

14

g
e
l
i
w
…

0
10
110
1110
11110
…

1111011100011010
w i gg l e

Binary Trees = Prefix-free Codes

• I can represent any prefix-free code as a binary tree
• I can create a prefix-free code from any binary tree

15

g
e
l
i
w
…

0
10
110
1110
11110
…

g

e

l

i

w

0

0

0

0

0

1

1

1

1

g e l i w

g
e
l
i
w
…

00
01
10
110
111
…

0

0 0
0

1

1
1

1

Goal: Shortest Prefix-Free Encoding

• Input: A set of character frequencies {𝑓!}
• Output: A prefix-free code 𝑇 which minimizes

𝐵 𝑇, 𝑓! = 1
!$%&%!'(& !

ℓ!𝑓!

16

Huffman Coding!!

Greedy Algorithms

• Require Optimal Substructure
– Solution to larger problem contains the solution to a smaller one
– Only one subproblem to consider!

• Idea:
1. Identify a greedy choice property
• How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain

17

Huffman Algorithm

• Choose the least frequent pair,
combine into a subtree

18

G:14 E:13 L:9 I:8 W:6 N:3 S:3 A:2 D:2 R:2 Y:2 K:1 P:1 Q:1 U:1

Huffman Algorithm

• Choose the least frequent pair,
combine into a subtree

19

G:14 E:13 L:9 I:8 W:6 N:3 S:3 A:2 D:2 R:2 Y:2 K:1 P:1

Q:1 U:1

2
0 1

Subproblem of size 𝑛 − 1!

Huffman Algorithm

• Choose the least frequent pair,
combine into a subtree

20

G:14 E:13 L:9 I:8 W:6 N:3 S:3 A:2 D:2 R:2 Y:2

Q:1 U:1

2
0 1

K:1 P:1

2
0 1

Huffman Algorithm

• Choose the least frequent pair,
combine into a subtree

21

G:14 E:13 L:9 I:8 W:6 N:3 S:3 A:2 D:2 R:2 Y:2

Q:1 U:1

2
0 1

K:1 P:1

2
0 1

4
0 1

Huffman Algorithm

• Choose the least frequent pair,
combine into a subtree

22

G:14 E:13 L:9 I:8 W:6 N:3 S:3 A:2 D:2

Q:1 U:1

2
0 1

K:1 P:1

2
0 1

4
0 1

R:2 Y:2

4
0 1

Huffman Algorithm

• Choose the least frequent pair,
combine into a subtree

23

G:14 E:13 L:9 I:8 W:6 N:3 S:3

Q:1 U:1

2
0 1

K:1 P:1

2
0 1

4
0 1

R:2 Y:2

4
0 1

A:2 D:2

4
0 1

Huffman Algorithm

• Choose the least frequent pair,
combine into a subtree

24

G:14 E:13 L:9 I:8 W:6

Q:1 U:1

2
0 1

K:1 P:1

2
0 1

4
0 1

R:2 Y:2

4
0 1

A:2 D:2

4
0 1

N:3 S:3

6
0 1

Huffman Algorithm
• Choose the least frequent pair,

combine into a subtree

25

G:14 E:13

27
0 1

L:9 I:8

17
0 1

Q:1 U:1

2
0 1

K:1 P:1

2
0 1

4
0 1

N:3 S:3

6
0 1

10

0 1

W:6

R:2 Y:2

4
0 1

A:2 D:2

4
0 1

8
0 1

14

0 1

240 1

410 1

680 1

Exchange argument

• Shows correctness of a greedy algorithm
• Idea:
– Show exchanging an item from an arbitrary optimal solution with

your greedy choice makes the new solution no worse
– How to show my sandwich is at least as good as yours:
• Show: “I can remove any item from your sandwich, and it would be no worse

by replacing it with the same item from my sandwich”

26

Showing Huffman is Optimal

• Overview:
– Show that there is an optimal tree in which the least frequent

characters are siblings
• Exchange argument

– Show that making them siblings and solving the new smaller sub-
problem results in an optimal solution
• Proof by contradiction

27

Showing Huffman is Optimal

• First Step: Show any optimal tree is “full” (each node has either
0 or 2 children)

28

W

R Y

0 1

0

0 1

W

R Y

10

0 1
𝑇 𝑇′

𝑇′ is a “better” tree than 𝑇, because all codes in
red subtree are shorter in 𝑇′, without creating
any longer codes

Huffman Exchange Argument
• Claim: if 𝑐", 𝑐# are the least-frequent characters, then there is

an optimal prefix-free code s.t. 𝑐", 𝑐# are siblings
– i.e. codes for 𝑐!, 𝑐" are the same length and differ only by their last

bit

29𝑐'

𝑇)*'

𝑐(

Case 1: Consider some optimal tree 𝑇)*%. If 𝑐', 𝑐(are siblings in this
tree, then claim holds

Huffman Exchange Argument
• Claim: if 𝑐", 𝑐# are the least-frequent characters, then there is

an optimal prefix-free code s.t. 𝑐", 𝑐# are siblings
– i.e. codes for 𝑐!, 𝑐" are the same length and differ only by their last

bit

30

𝑐(

𝑎

𝑐'

𝑇)*'

𝑏

Case 2: Consider some optimal tree 𝑇)*%, in which 𝑐', 𝑐(are not siblings

Let 𝑎, 𝑏 be the two characters of lowest
depth that are siblings
(Why must they exist?)

Idea: show that swapping 𝑐' with 𝑎 does
not increase cost of the tree.
Similar for 𝑐(and 𝑏
Assume: 𝑓!' ≤ 𝑓# and 𝑓!(≤ 𝑓+

Case 2: 𝑐5, 𝑐6 are not siblings in 𝑇789

31

𝑐(

𝑎

𝑐'

𝑇)*'

𝑏

• Claim: the least-frequent characters (𝑐", 𝑐#), are siblings in
some optimal tree
𝑎, 𝑏 = lowest-depth siblings
Idea: show that swapping 𝑐' with 𝑎 does not increase cost of the tree.
Assume: 𝑓!' ≤ 𝑓#

𝑐(

𝑐'

𝑎

𝑇′

𝑏

𝐵 𝑇)*% = 𝐶 + 𝑓!'ℓ!' + 𝑓#ℓ# 𝐵 𝑇′ = 𝐶 + 𝑓!'ℓ# + 𝑓#ℓ!'

Case 2: 𝑐5, 𝑐6 are not siblings in 𝑇789

32

𝑎, 𝑏 = lowest-depth siblings
Idea: show that swapping 𝑐' with 𝑎 does not increase cost of the tree.
Assume: 𝑓!' ≤ 𝑓#

𝐵 𝑇)*% = 𝐶 + 𝑓!'ℓ!' + 𝑓#ℓ# 𝐵 𝑇′ = 𝐶 + 𝑓!'ℓ# + 𝑓#ℓ!'

𝐵 𝑇)*% − 𝐵 𝑇, = 𝐶 + 𝑓!'ℓ!' + 𝑓#ℓ# − (𝐶 + 𝑓!'ℓ# + 𝑓#ℓ!')

= 𝑓!'ℓ!' + 𝑓#ℓ# − 𝑓!'ℓ# − 𝑓#ℓ!'
= 𝑓!'(ℓ!' − ℓ#) + 𝑓#(ℓ# − ℓ!')
= (𝑓#−𝑓!')(ℓ# − ℓ!')

≥ 0 ⇒ 𝑇′ optimal

• Claim: the least-frequent characters (𝑐", 𝑐#), are siblings in
some optimal tree

Case 2: 𝑐5, 𝑐6 are not siblings in 𝑇789

33

𝑐(

𝑎

𝑐'

𝑇)*'

𝑏

𝑎, 𝑏 = lowest-depth siblings
Idea: show that swapping 𝑐' with 𝑎 does not increase cost of the tree.
Assume: 𝑓!' ≤ 𝑓#

𝑐(

𝑐'

𝑎

𝑇′

𝑏

𝐵 𝑇)*% = 𝐶 + 𝑓!'ℓ!' + 𝑓#ℓ# 𝐵 𝑇′ = 𝐶 + 𝑓!'ℓ# + 𝑓#ℓ!'

𝐵 𝑇)*% − 𝐵 𝑇, = (𝑓#−𝑓!')(ℓ# − ℓ!')
≥ 0 ≥ 0

𝐵 𝑇)*% − 𝐵 𝑇, ≥ 0
𝑇′ is also optimal!

• Claim: the least-frequent characters (𝑐", 𝑐#), are siblings in
some optimal tree

Case 2:Repeat to swap 𝑐6, 𝑏!

34

𝑐(

𝑐'

𝑎

𝑇′

𝑏

𝑎, 𝑏 = lowest-depth siblings
Idea: show that swapping 𝑐(with 𝑏 does not increase cost of the tree.
Assume: 𝑓!(≤ 𝑓+

𝑏

𝑐'

𝑎

𝑇′′

𝑐(

𝐵 𝑇′ = 𝐶 + 𝑓!(ℓ!(+ 𝑓+ℓ+ 𝐵 𝑇′′ = 𝐶 + 𝑓!(ℓ+ + 𝑓+ℓ!(

𝐵 𝑇′ − 𝐵 𝑇,, = (𝑓+−𝑓!()(ℓ+ − ℓ!()
≥ 0 ≥ 0

𝐵 𝑇′ − 𝐵 𝑇,, ≥ 0
𝑇′′ is also optimal! Claim holds!

• Claim: the least-frequent characters (𝑐", 𝑐#), are siblings in
some optimal tree

Showing Huffman is Optimal

• Overview:
– Show that there is an optimal tree in which the least frequent

characters are siblings
• Exchange argument

– Show that making them siblings and solving the new smaller sub-
problem results in an optimal solution
• Proof by contradiction

35

Finishing the Proof

• Show Optimal Substructure
– Show treating 𝑐!, 𝑐" as a new “combined” character gives optimal

solution

36

Why does solving this smaller problem:

Give an optimal solution to this?:
𝑐! 𝑐"

𝑐! 𝑐"

𝜎

Optimal Substructure

• Claim: An optimal solution for 𝐹 involves finding an optimal
solution for 𝐹′, then adding 𝑐", 𝑐# as children to 𝜎

37

𝑐! 𝑐"

𝑐! 𝑐"

𝜎

𝐹′

𝐹

Optimal Substructure
• Claim: An optimal solution for 𝐹 involves finding an optimal

solution for 𝐹′, then adding 𝑐", 𝑐# as children to 𝜎

38

𝑇

𝑐'

𝜎

𝑐(

𝑇′
𝜎

If this is optimal Then this is optimal

𝑓# = 𝑓$! + 𝑓$"

𝐵 𝑇% = 𝐵 𝑇 − 𝑓$! − 𝑓$"

ℓ$! = ℓ# + 1
ℓ$" = ℓ# + 1

Optimal Substructure
• Claim: An optimal solution for 𝐹 involves finding an optimal

solution for 𝐹′, then adding 𝑐", 𝑐# as children to 𝜎

39

𝑇

𝑐'

𝜎

𝑐(

Suppose 𝑇 is not optimal
Let 𝑈 be a lower-cost tree

𝐵 𝑈 < 𝐵(𝑇)

𝑐'

𝑈

𝑐(

Toward contradiction

Optimal Substructure

40

𝑈′

𝜎

𝐵 𝑈 < 𝐵(𝑇)

𝑐'

𝑈

𝑐(

𝐵 𝑈′ = 𝐵 𝑈 − 𝑓$! − 𝑓$"
< 𝐵 𝑇 − 𝑓$! − 𝑓$"
= 𝐵 𝑇′

Contradicts optimality of 𝑇′, so 𝑇 is
optimal!

• Claim: An optimal solution for 𝐹 involves finding an optimal
solution for 𝐹′, then adding 𝑐", 𝑐# as children to 𝜎

Optimal Substructure

• Claim: An optimal solution for 𝐹 involves finding an optimal
solution for 𝐹′, then adding 𝑐", 𝑐# as children to 𝜎

41

𝑐! 𝑐"

𝑐! 𝑐"

𝜎

𝐹′

𝐹

𝑈′

𝜎

𝑇′
𝜎

𝑇

𝑐'

𝜎
𝑐(

𝑐'

𝑈

𝑐(

>
>Contradiction!

Mental Stretch

Why is an algorithm’s space complexity (how much
memory it uses) important?

Why might a memory-intensive algorithm be a “bad”
one?

44

Why lots of memory is “bad”

45

Caching Problem

• Why is using too much memory a bad thing?

46

Von Neumann Bottleneck

• Named for John von Neumann
• Inventor of modern computer architecture
• Other notable influences include:
– Mathematics
– Physics
– Economics
– Computer Science

47

Von Neumann Bottleneck
• Reading from memory is VERY slow
• Big memory = slow memory
• Solution: hierarchical memory
• Takeaway for Algorithms: Memory is time,

more memory is a lot more time

48

CPU,
registers

Cache Disk

If not look hereHopefully your
data in here

Hope it’s not here

Access time:
1 cycle Access time:

10 cycles

Access time:
1,000,000 cycles

Caching Problem

• Cache misses are very expensive
• When we load something new into cache, we must eliminate

something already there
• We want the best cache “schedule” to minimize the number of

misses

49

Caching Problem Definition

• Input:
– 𝑘 = size of the cache
–𝑀 = 𝑚!, 𝑚", …𝑚& = memory access pattern

• Output:
– “schedule” for the cache (list of items in the cache at each time)

which minimizes cache fetches

50

Example

51

A B C D A D E A D B A E C E A

A

B

C

Example

52

A B C D A D E A D B A E C E A

A

B

C

A

B

C

Example

53

A B C D A D E A D B A E C E A

A

B

C

A

B

C

A

B

C

Example

54

A B C D A D E A D B A E C E A

A

B

C

We must evict
something to make
room for D

A

B

C

A

B

C

A

B

C

Example

55

A B C D A D E A D B A E C E A

D

B

C

If we evict AA

B

C

A

B

C

A

B

C

A

B

C

Example

56

A B C D A D E A D B A E C E A

A

B

D

If we evict CA

B

C

A

B

C

A

B

C

A

B

C

Our Problem vs Reality
• Assuming we know the entire access pattern
• Cache is Fully Associative
• Counting # of fetches (not necessarily misses)
• “Reduced” Schedule: Address only loaded on the cycle it’s required
– Reduced == Unreduced (by number of misses)

57

A B C D A D E A D B A E C E A

A B C D A D E A D B A E C E A

A
B
C

A
B
C

A
B
C

A
B
C

D
B
C

D
B
C

A
B
C

A
B
C

Unreduced

Reduced
Leaving A in longer does
not save fetches

Greedy Algorithms

• Require Optimal Substructure
– Solution to larger problem contains the solution to a smaller one
– Only one subproblem to consider!

• Idea:
1. Identify a greedy choice property
• How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain

58

Greedy choice property

• Belady evict rule:
– Evict the item accessed farthest in the future

59

A B C D A D E A D B A E C E A

A

B

C Evict C

A

B

C

A

B

C

A

B

C

Greedy choice property

• Belady evict rule:
– Evict the item accessed farthest in the future

60

A B C D A D E A D B A E C E A

A

B

D

A

B

C

A

B

C

A

B

C

A

B

D

A

B

D

A

E

D Evict B

Greedy choice property

• Belady evict rule:
– Evict the item accessed farthest in the future

61

A B C D A D E A D B A E C E A

A

B

D

A

B

C

A

B

C

A

B

C

A

B

D

A

B

D

A

E

D

A

E

D

A

E

D

A

E

B Evict D

Greedy choice property

• Belady evict rule:
– Evict the item accessed farthest in the future

62

A B C D A D E A D B A E C E A

A

B

D

A

B

C

A

B

C

A

B

C

A

B

D

A

B

D

A

E

D

A

E

D

A

E

D

A

E

B

A

E

B

A

E

B

A

E

C Evict B

Greedy choice property

• Belady evict rule:
– Evict the item accessed farthest in the future

63

A B C D A D E A D B A E C E A

A

B

D

A

B

C

A

B

C

A

B

C

A

B

D

A

B

D

A

E

D

A

E

D

A

E

D

A

E

B

A

E

B

A

E

B

A

E

C

A

E

C

A

E

C

4 Cache Misses

Greedy Algorithms

• Require Optimal Substructure
– Solution to larger problem contains the solution to a smaller one
– Only one subproblem to consider!

• Idea:
1. Identify a greedy choice property
• How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain

64

Caching Greedy Algorithm

Initialize 𝑐𝑎𝑐ℎ𝑒= first k accesses
For each 𝑚+ ∈ 𝑀:

if 𝑚+ ∈ 𝑐𝑎𝑐ℎ𝑒:
print 𝑐𝑎𝑐ℎ𝑒

else:
𝑚 = furthest-in-future from cache
evict 𝑚, load 𝑚+
print 𝑐𝑎𝑐ℎ𝑒

65

𝑂(𝑘)
𝑛 times

𝑂(𝑘)
𝑂(𝑘)

𝑂(𝑘𝑛)
𝑂(1)

𝑂(𝑘)

𝑂(𝑘𝑛!)

Exchange argument

• Shows correctness of a greedy algorithm
• Idea:
– Show exchanging an item from an arbitrary optimal solution with

your greedy choice makes the new solution no worse
– How to show my sandwich is at least as good as yours:
• Show: “I can remove any item from your sandwich, and it would be no worse

by replacing it with the same item from my sandwich”

66

Belady Exchange Lemma

Let 𝑆'' be the schedule chosen by our greedy algorithm
Let 𝑆(be a schedule which agrees with 𝑆'' for the first 𝑖
memory accesses.
We will show: there is a schedule 𝑆()! which agrees
with 𝑆'' for the first 𝑖 + 1 memory accesses, and has
no more misses than 𝑆(
(i.e. 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆()! ≤ 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆())

67

𝑆∗
Agrees with
𝑆## on first 0
accesses

𝑆# 𝑆!
Agrees with
𝑆## on first
access

Agrees with
𝑆## on first 2
accesses

… 𝑆$$
Agrees with
𝑆## on all 𝑛
accesses

Lemma Lemma Lemma Lemma
Optimal Greedy

Belady Exchange Proof Idea

68

𝑆(

𝑆''

𝑆()!

First 𝑖 accesses

Must agree with 𝑆77

Need to fill in the rest
of 𝑆89' to have no

more misses than 𝑆8

𝑆$ Cache after 𝑖

Proof of Lemma

Goal: find 𝑆!"# s.t. 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆!"# ≤ 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆!)
Since 𝑆! agrees with 𝑆$$ for the first 𝑖 accesses, the
state of the cache at access 𝑖 + 1 will be the same

69

𝑆## Cache after 𝑖=
Consider access 𝑚()! = 𝑑

Case 1: if 𝑑 is in the cache, then neither 𝑆! nor 𝑆$$
evict from the cache, use the same cache for 𝑆!"#

𝑓𝑒 𝑓𝑒

𝑆$%! Cache after 𝑖 𝑓𝑒

𝑆$ Cache after 𝑖

Proof of Lemma

Goal: find 𝑆!"# s.t. 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆!"# ≤ 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆!)
Since 𝑆! agrees with 𝑆$$ for the first 𝑖 accesses, the
state of the cache at access 𝑖 + 1 will be the same

70

𝑆## Cache after 𝑖=
Consider access 𝑚()! = 𝑑

𝑓𝑒 𝑓𝑒

Case 2: if 𝑑 isn’t in the cache, and both 𝑆+ and
𝑆,, evict 𝑓 from the cache, evict 𝑓 for 𝑑 in 𝑆+-"

𝑆$%! Cache after 𝑖 𝑑𝑒

𝑆$ Cache after 𝑖

Proof of Lemma

Goal: find 𝑆!"# s.t. 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆!"# ≤ 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆!)
Since 𝑆! agrees with 𝑆$$ for the first 𝑖 accesses, the
state of the cache at access 𝑖 + 1 will be the same

71

𝑆## Cache after 𝑖=
Consider access 𝑚()! = 𝑑

𝑓𝑒 𝑓𝑒

Case 3: if 𝑑 isn’t in the cache, 𝑆+ evicts 𝑒 and 𝑆,,
evicts 𝑓 from the cache

𝑆$ Cache after 𝑖 + 1 𝑆## Cache after 𝑖 + 1≠𝑓𝑑 𝑑𝑒

Case 3

72

𝑆(

𝑆''

𝑆()!

First 𝑖 accesses

Must agree with 𝑆77

Need to fill in the rest
of 𝑆89' to have no

more misses than 𝑆8

Case 3

73

𝑆(

𝑆''

𝑆()! 𝑚%

First 𝑖 accesses

First place 𝑆8 involves 𝑒 or 𝑓

Copy 𝑆$

𝑚* = the first access after 𝑖 + 1 in which 𝑆(involveswith 𝑒 or 𝑓
𝒎𝒕 = 𝒆 or 𝒎𝒕 = 𝒇 or 𝒎𝒕 = 𝒙 ≠ 𝒆, 𝒇

Case 3, 𝑚9 = 𝑒

74

𝑆(

𝑆''

𝑆()! 𝑒

First 𝑖 accesses

First place 𝑆8 uses 𝑒 or 𝑓

Copy 𝑆$

𝑚* = the first access after 𝑖 + 1 in which 𝑆(deals with 𝑒 or 𝑓

Case 3, 𝑚9 = 𝑒
Goal: find 𝑆+-" s.t. 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆+-" ≤ 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆+)

75

𝑆$ Cache after 𝑡 − 1 𝑆$%! Cache after 𝑡 − 1≠𝑓𝑑 𝑑𝑒

𝑆+ must load 𝑒 into
the cache, assume it
evicts 𝑥

𝑆+-" will load 𝑓 into
the cache, evicting 𝑥

𝑆!"# behaved exactly the same as 𝑆! between 𝑖
and 𝑡, and has the same cache after 𝑡,
therefore 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆!"# = 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆!)

The caches now match!

𝑥 𝑥

𝑒 𝑓

Case 3, 𝑚9 = 𝑓

76

𝑆(

𝑆''

𝑆()! 𝑓

First 𝑖 accesses

First place 𝑆8 uses 𝑒 or 𝑓

Copy 𝑆$

𝑚* = the first access after 𝑖 + 1 in which 𝑆(deals with 𝑒 or 𝑓
𝒎𝒕 = 𝒆 or 𝒎𝒕 = 𝒇 or 𝒎𝒕 = 𝒙 ≠ 𝒆, 𝒇

Case 3, 𝑚9 = 𝑓

Cannot Happen!

77

𝑆(

𝑆''

𝑆()! 𝑓

First place 𝑆8 uses 𝑒 or 𝑓

“Evict 𝑓"

“Evict 𝑓"

Means 𝑓 not farthest future access!

Case 3, 𝑚9 = 𝑥 ≠ 𝑒, 𝑓

78

𝑆(

𝑆''

𝑆()! 𝑥

First 𝑖 accesses

First place 𝑆8 uses 𝑒 or 𝑓

Copy 𝑆$

𝑚* = the first access after 𝑖 + 1 in which 𝑆(deals with 𝑒 or 𝑓
𝑚* = 𝑒 or 𝑚* = 𝑓 or 𝑚* = 𝑥 ≠ 𝑒, 𝑓

Case 3, 𝑚9 = 𝑥 ≠ 𝑒, 𝑓

Goal: find 𝑆+-" s.t. 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆+-" ≤ 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆+)

79

𝑆$ Cache after 𝑡 − 1 𝑆$%! Cache after 𝑡 − 1≠𝑓𝑑 𝑑𝑒

𝑆+ loads 𝑥 into the
cache, it must be
evicting 𝑓

𝑆+-" will load 𝑥 into
the cache, evicting 𝑒

𝑆!"# behaved exactly the same as 𝑆! between 𝑖
and 𝑡, and has the same cache after 𝑡,
therefore 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆!"# = 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆!)

𝑥 𝑥

The caches now match!

80

Entire Huffman Derivation Follows

• Not covered in class, just for your review

81

Huffman Algorithm

• Choose the least frequent pair,
combine into a subtree

82

G:14 E:13 L:9 I:8 W:6 N:3 S:3 A:2 D:2 R:2 Y:2 K:1 P:1 Q:1 U:1

Huffman Algorithm

• Choose the least frequent pair,
combine into a subtree

83

G:14 E:13 L:9 I:8 W:6 N:3 S:3 A:2 D:2 R:2 Y:2 K:1 P:1

Q:1 U:1

2
0 1

Huffman Algorithm

• Choose the least frequent pair,
combine into a subtree

84

G:14 E:13 L:9 I:8 W:6 N:3 S:3 A:2 D:2 R:2 Y:2

Q:1 U:1

2
0 1

K:1 P:1

2
0 1

Huffman Algorithm

• Choose the least frequent pair,
combine into a subtree

85

G:14 E:13 L:9 I:8 W:6 N:3 S:3 A:2 D:2 R:2 Y:2

Q:1 U:1

2
0 1

K:1 P:1

2
0 1

4
0 1

Huffman Algorithm

• Choose the least frequent pair,
combine into a subtree

86

G:14 E:13 L:9 I:8 W:6 N:3 S:3 A:2 D:2

Q:1 U:1

2
0 1

K:1 P:1

2
0 1

4
0 1

R:2 Y:2

4
0 1

Huffman Algorithm

• Choose the least frequent pair,
combine into a subtree

87

G:14 E:13 L:9 I:8 W:6 N:3 S:3

Q:1 U:1

2
0 1

K:1 P:1

2
0 1

4
0 1

R:2 Y:2

4
0 1

A:2 D:2

4
0 1

Huffman Algorithm

• Choose the least frequent pair,
combine into a subtree

88

G:14 E:13 L:9 I:8 W:6

Q:1 U:1

2
0 1

K:1 P:1

2
0 1

4
0 1

R:2 Y:2

4
0 1

A:2 D:2

4
0 1

N:3 S:3

6
0 1

Huffman Algorithm

• Choose the least frequent pair,
combine into a subtree

89

G:14 E:13 L:9 I:8 W:6

Q:1 U:1

2
0 1

K:1 P:1

2
0 1

4
0 1

N:3 S:3

6
0 1

R:2 Y:2

4
0 1

A:2 D:2

4
0 1

8
0 1

Huffman Algorithm

• Choose the least frequent pair,
combine into a subtree

90

G:14 E:13 L:9 I:8 W:6

R:2 Y:2

4
0 1

A:2 D:2

4
0 1

8
0 1

Q:1 U:1

2
0 1

K:1 P:1

2
0 1

4
0 1

N:3 S:3

6
0 1

10

0 1

Huffman Algorithm

• Choose the least frequent pair,
combine into a subtree

91

G:14 E:13 L:9 I:8

Q:1 U:1

2
0 1

K:1 P:1

2
0 1

4
0 1

N:3 S:3

6
0 1

10

0 1

W:6

R:2 Y:2

4
0 1

A:2 D:2

4
0 1

8
0 1

14

0 1

Huffman Algorithm

• Choose the least frequent pair,
combine into a subtree

92

G:14 E:13

Q:1 U:1

2
0 1

K:1 P:1

2
0 1

4
0 1

N:3 S:3

6
0 1

10

0 1

W:6

R:2 Y:2

4
0 1

A:2 D:2

4
0 1

8
0 1

14

0 1
L:9 I:8

17
0 1

Huffman Algorithm
• Choose the least frequent pair,

combine into a subtree

93

G:14 E:13

L:9 I:8

17
0 1

Q:1 U:1

2
0 1

K:1 P:1

2
0 1

4
0 1

N:3 S:3

6
0 1

10

0 1

W:6

R:2 Y:2

4
0 1

A:2 D:2

4
0 1

8
0 1

14

0 1

240 1

Huffman Algorithm
• Choose the least frequent pair,

combine into a subtree

94

L:9 I:8

17
0 1

G:14 E:13

27
0 1

Q:1 U:1

2
0 1

K:1 P:1

2
0 1

4
0 1

N:3 S:3

6
0 1

10

0 1

W:6

R:2 Y:2

4
0 1

A:2 D:2

4
0 1

8
0 1

14

0 1

240 1

Huffman Algorithm
• Choose the least frequent pair,

combine into a subtree

95

G:14 E:13

27
0 1

L:9 I:8

17
0 1

Q:1 U:1

2
0 1

K:1 P:1

2
0 1

4
0 1

N:3 S:3

6
0 1

10

0 1

W:6

R:2 Y:2

4
0 1

A:2 D:2

4
0 1

8
0 1

14

0 1

240 1

410 1

Huffman Algorithm
• Choose the least frequent pair,

combine into a subtree

96

G:14 E:13

27
0 1

L:9 I:8

17
0 1

Q:1 U:1

2
0 1

K:1 P:1

2
0 1

4
0 1

N:3 S:3

6
0 1

10

0 1

W:6

R:2 Y:2

4
0 1

A:2 D:2

4
0 1

8
0 1

14

0 1

240 1

410 1

680 1

