CS4102 Algorithms

Spring 2022

Warm up

Decode the line below into English

(hint: use Google or Wolfram Alpha)

2
=
e
=
-
O
>
<
AN
-
o
4
N
O

QN
o\
@)
AN
®)
£
-
Q
)

D>2X>N

ABCDEFGHIJKLMNOPQRST

Warm up

Decode the line below into English

(hint: use Google or Wolfram Alpha)

Today’s Keywords

* Greedy Algorithms
* Exchange Argument
* Choice Function

* Prefix-free code

* Compression
 Huffman Code

CLRS: Chapter 16 .

Announcements

* Unit B
— Advanced due Friday, 11:30pm
— Programming due Friday, 4/15, 11:30pm
e UnitC
— Basic 1 released, due Friday, 4/15, 11:30pm
— Basic 2 coming soon!
— Advanced due Friday, 4/22
— Programming due Friday 4/22 — Seam carving!

Greedy Algorithms

* Require Optimal Substructure

— Solution to larger problem contains the solutions to smaller ones

* Or: If Sis an optimal solution to a problem, then the components of S are
optimal solutions to sub-problems

— Only one subproblem to consider!

* |dea:
1. Identify a greedy choice property

* How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain

Exchange argument

* Shows correctness of a greedy algorithm

e |dea:

— Show exchanging an item from an arbitrary optimal solution with
your greedy choice makes the new solution no worse
— How to show my sandwich is at least as good as yours:

* Show: “I can remove any item from your sandwich, and it would be no worse
by replacing it with the same item from my sandwich”

Sam Morse

Ineer

* Eng

.
D
=
| -
(qV)
e
-
(qV)

Message Encoding

* Problem: need to electronically send a message
to two people at a distance.

* Channel for message is binary (either on or off)

How can we do it?

. _ _ _ Character
wiggle, wiggle, wiggle like a gypsy queen Frequency Encoding

wiggle, wiggle, wiggle all dressed in green 0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110 | o

Q
N

B~ W

* Take the message, send it over
character-by-character with an
encoding

NghFRP®N b wPr @y

<SEVTOQTITATR OO

How efficient is this?

]] . . Character

wiggle wiggle wiggle like a gypsy queen Frequency Encoding

wiggle wiggle wiggle all dressed in green a: 2 0000

d: 2 0001

Each character requires 4 bits e: 13 0010

P =4 g: 14 0011

¢ i 8 0100

Cost of encoding: k: 1 0101

I: 9 0110

B, ()=) 4cfc=68-4=272 3| o

character c p:1 1000

g:1 1001

r: 2 1010

s: 3 1011

Better Solution: Allow for different u: 1 1100

characters to have different-size encodings wW: 6 1101

(high frequency - short code) y: 2 1110

More efticient coding

0.14 When this is big

0.12

BUL D=) L.

character c

0.1

0.08 Make this small

0.06

Character Frequency

0.04

0.02

etaoinshrdlcumwfgypbvk |xaqz

s 11

Morse Code

0.14 International Morse Code

1. The length of a dot is one unit.

2. A dash is three units.

3. The space between parts of the same letter is one unit.
0.12 4. The space between letters is three units.

5. The space between words is seven units.

5 01 A e mm Ue ¢ mm
c Bumeeoo Veeoomm
g Commomme We mm mm
T 0.08 Demm oo X mmm o ¢ mm
v - Ee Y mum o mmm mmm
LL Foeomme Zmmm mmm o o
3 G um mm o
+ 0.06 Heeoeoe
© | @@
(©] o mmm mmm =
S 004 K omm o mum
Lommeoeo
M o -
0.02 N s o
' O mm mmm mm
Ponum mmeo
Qmm mmm ¢ I
0 Remme
etaoinshrdlcumwfgypbvk |jxaqz Seee
T o

12

Problem with Morse Code

International Morse Code

1. The length of a dot is one unit.
2. A dash is three units.

3. The space between parts of the same letter is one unit. A A
4. The space between letters is three units.
5. The space between words is seven units.

Decode: PR P —

oo Veoomm ET ET
EEE 0 ImN © We mm mmm

e e X mmm o o mum R T
° Y smm o mmm mmm

o0 Zmmm e e

EN T

Ambiguous Decoding

40X OUVO0OZErAR——IOMMUuOm™>
. |
° °

13

Prefix-Free Code

* A prefix-free code is codeword table T such
that for any two characters ¢4, ¢,, if ¢; # ¢y

then code(c,) is not a prefix of code(c,)

g O 1111011100011010
e 10 w | ggl e
| 110

i 1110

w 11110

14

Binary Trees = Prefix-free Codes

* | can represent any prefix-free code as a binary tree

* | can create a prefix-free code from any binary tree

s — — o 09

0

10

110 00

1110 01

11110 . 10
i 110

111

15

Goal: Shortest Prefix-Free Encoding

* Input: A set of character frequencies {f,}
e Qutput: A prefix-free code T which minimizes

B, D=) L.

character c

Huffman Coding!!

Greedy Algorithms

* Require Optimal Substructure
— Solution to larger problem contains the solution to a smaller one

— Only one subproblem to consider!

* |dea:
1. Identify a greedy choice property

* How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain

17

Huffman Algorithm

* Choose the least frequent pair,
combine into a subtree

[G:14 I E:13I L:9 I 1:8 IW:BI N:3 I S:3 I A:2 I D:2 I R:2 I Y:2 I K:1 I P:1 | Q:1 :U:l

18

Huffman Algorithm

* Choose the least frequent pair,
combine into a subtree

[G:14 I E:13I L:9 I 1:8 IW:BI N:3 I S:3 I A:2 I D:2 I R:2 I Y:2

Subproblem of sizen — 1!

19

Huffman Algorithm

* Choose the least frequent pair,
combine into a subtree

[G:14 I E:13I L:9 I 1:8 IW:BI N:3 I S:3 I A:2 I D:2 I R:2 I Yz#‘%

20

Huffman Algorithm

* Choose the least frequent pair,
combine into a subtree

oo 1o wo [o 9] w2 o2 5252

21

Huffman Algorithm

* Choose the least frequent pair,
combine into a subtree

22

Huffman Algorithm

* Choose the least frequent pair,
combine into a subtree

o e 19 10w Mﬂ

23

Huffman Algorithm

* Choose the least frequent pair,

combine into a subtree
1 1
R:2 Y:2 A:2 D:2
1

[G:14 I E:13I L:9 I 1:8 IW#L‘

24

Huffman Algorithm

* Choose the least frequent pair,
combine into a subtree °

E:13]

25

Exchange argument

* Shows correctness of a greedy algorithm

e |dea:

— Show exchanging an item from an arbitrary optimal solution with
your greedy choice makes the new solution no worse
— How to show my sandwich is at least as good as yours:

* Show: “I can remove any item from your sandwich, and it would be no worse
by replacing it with the same item from my sandwich”

y

Showing Huffman is Optimal

* Overview:
— Show that there is an optimal tree in which the least frequent
characters are siblings

e Exchange argument

— Show that making them siblings and solving the new smaller sub-
problem results in an optimal solution

* Proof by contradiction

27

Showing Huffman is Optimal

* First Step: Show any optimal tree is “full” (each node has either
0 or 2 children)

T'is a “better” tree than T, because all codes in
red subtree are shorter in T, without creating
any longer codes

28

Huffman Exchange Argument

* Claim:if ¢4, c, are the least-frequent characters, then there is
an optimal prefix-free code s.t. ¢4, ¢, are siblings

— i.e. codes for ¢4, ¢, are the same length and differ only by their last
bit
Case 1: Consider some optimal tree Ty, If ¢1, €3 are siblings in this
tree, then claim holds

29

Huffman Exchange Argument

* Claim:if ¢4, c, are the least-frequent characters, then there is
an optimal prefix-free code s.t. ¢4, ¢, are siblings
— i.e. codes for ¢4, ¢, are the same length and differ only by their last
bit

Case 2: Consider some optimal tree Ty, in which ¢y, ¢c; are not siblings

Let a, b be the two characters of lowest
depth that are siblings
(Why must they exist?)

ldea: show that swapping ¢; with a does
not increase cost of the tree.

Similar for ¢, and b
Assume: f.q < foand f» < fp

30

Case 2: ¢4, c; are not siblings in Ty
* Claim: the least-frequent characters (cq, ¢,), are siblings in
some optimal tree

a, b = lowest-depth siblings

ldea: show that swapping ¢; with a does not increase cost of the tree.
Assume: f.1 < [,

B(Topt) =CH+ ff:1 T+ fafy B(T") =C+ fo1ta + fatcr

31

Case 2: ¢4, c; are not siblings in Ty

* Claim: the least-frequent characters (c4, ¢,), are siblings in
some optimal tree

a, b = lowest-depth siblings

ldea: show that swapping ¢; with a does not increase cost of the tree.
Assume: f.1 < [,

B(Topt) =CH+ ff:1 T+ fafy B(T") =C+ feafa + fafc
> 0 = T’ optimal
B(Topt) —B(T") =C+ fe1ter + fala — (C + ferta + fatfcr)
= fe1ter + fata — ferfa — fatcr
= fe1(fe1 —4a) + falfa — c1)
= (fa—fe)Ea —¥c1)

32

Case 2: ¢4, c; are not siblings in Ty
* Claim: the least-frequent characters (cq, ¢,), are siblings in
some optimal tree

a, b = lowest-depth siblings

ldea: show that swapping ¢; with a does not increase cost of the tree.
Assume: f.1 < [,

B(Topt) = C + ferler + futa B(I') = C+ ferta + fater

B(Topt) — B(T") = (fa—fe1) (Ba — £c1)
>0

=0

B(T,pt) —B(T") =0
T' is also optimal!

Case 2:Repeat to swap ¢, b!

* Claim: the least-frequent characters (c4, ¢,), are siblings in
some optimal tree

a, b = lowest-depth siblings

ldea: show that swapping ¢, with b does not increase cost of the tree.
Assume: f., < fp

B(T,)=C+fC2'€C2 +fb’£b B(T”)=C+f62£b+fb€C2

R
B(T") = B(T") = (fp—fe2) (€p — £c2)

B(T')—B(T") =0

T" is also optimal! Claim holds!

C1 Cy |

Showing Huffman is Optimal

e QOverview:

— Show that there is an optimal tree in which the least frequent

characters are siblings V

e Exchange argument

— Show that making them siblings and solving the new smaller sub-
problem results in an optimal solution

* Proof by contradiction

35

Finishing the Proot

* Show Optimal Substructure

— Show treating ¢4, ¢, as a new “combined” character gives optimal
solution

Why does solving this smaller problem:

C LT e)

Give an optimal solution to this?:

e e e

36

Optimal Substructure

* Claim: An optimal solution for F involves finding an optimal
solution for F’, then adding ¢, ¢, as children to o

-
[IIIIIIIIIIAI]

F

e e e

Optimal Substructure

* Claim: An optimal solution for F involves finding an optimal
solution for F’, then adding ¢, ¢, as children to o

If this is optimal Then this is optimal

fo = fe1 t fe2

B(T,):B(T)_fcl_fcz 38

Optimal Substructure

* Claim: An optimal solution for F involves finding an optimal
solution for F’, then adding ¢, ¢, as children to o

Toward contradiction

Suppose T is not optimal

Let U be a lower-cost tree
B(U) < B(T)

39

Optimal Substructure

* Claim: An optimal solution for F involves finding an optimal
solution for F’, then adding ¢, ¢, as children to o

B(U) < B(T)

B(U’) — B(U) _fcl _fcz
< B(T) _fcl _fcz
= B(T")

0}

Contradicts optimality of T', so T is
optimall 40

Optimal Substructure

* Claim: An optimal solution for F involves finding an optimal
solution for F’, then adding ¢, ¢, as children to o

Contradiction!

41

Mental Stretch

Why is an algorithm’s space complexity (how much
memory it uses) important?

Why might a memory-intensive algorithm be a “bad”
onhe?

44

Why lots of memory is “bad’

Caching Problem

 Why is using too much memory a bad thing?

46

Von Neumann Bottleneck

* Named for John von Neumann
* |[nventor of modern computer architecture

* Other notable influences include:
— Mathematics
— Physics
— Economics
— Computer Science

47

Von Neumann Bottleneck

* Reading from memory is VERY slow
* Big memory = slow memory
* Solution: hierarchical memory

* Takeaway for Algorithms: Memory is time,
more memory is a lot more time

Hope it’s not here

Hopefully your If not look here

data in here
CPU,
registers
?CCE?S time: A e Access time:
cycle ccess time: 1,000,000 cycles 48

10 cycles

Caching Problem

* Cache misses are very expensive

* When we load something new into cache, we must eliminate
something already there

e We want the best cache “schedule” to minimize the number of
misses

49

Caching Problem Definition

* |nput:

— k = size of the cache

— M = |mq,,m,, ...m,] = memory access pattern
* Qutput:

— “schedule” for the cache (list of items in the cache at each time)
which minimizes cache fetches

50

ﬁBCDADEADBAECEA

51

A BCDADEADUBAECEA
v v

52

A BCDADEADUBAECEA
v v

53

We must evict

something to make
room for D

A B

CDADEADIBAECEA
v vV VR

54

\ If we evict A

A B

CDADEADBAECEA
VR R

55

If we evict C

A BCDADEADUBAECEA
v VR

56

Our Problem vs Reality

* Assuming we know the entire access pattern
* Cache is Fully Associative
* Counting # of fetches (not necessarily misses)

 “Reduced” Schedule: Address only loaded on the cycle it’s required
— Reduced == Unreduced (by number of misses)

N

Unreduced

ABCDADEADUBAETCTEA

N Leaving A in longer does
Reduced not save fetches

A BCDADTEADUBAETCTEA 7

Greedy Algorithms

* Require Optimal Substructure
— Solution to larger problem contains the solution to a smaller one

— Only one subproblem to consider!

* |dea:
1. Identify a greedy choice property

* How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain

58

Greedy choice property

* Belady evict rule:

— Evict the item accessed farthest in the future

Evict C

A DEADZBAECEA

A B CD
v vV VR

59

Greedy choice property

* Belady evict rule:

— Evict the item accessed farthest in the future

Evict B

A BCDADEADZBAETCEA
VAVANE SVAVER

60

Greedy choice property

* Belady evict rule:

— Evict the item accessed farthest in the future

Evict D

\m
x:>
Nw
>
o
Ao

A B
v v

61

Greedy choice property

* Belady evict rule:

— Evict the item accessed farthest in the future

Evict B

A B C A DEAD A ECEA
/// X VvV VR //x

62

Greedy choice property

* Belady evict rule:

— Evict the item accessed farthest in the future

A B C A DEAD A ECEA
/// X VvV VYR //x//

4 Cache Misses

63

Greedy Algorithms

* Require Optimal Substructure
— Solution to larger problem contains the solution to a smaller one

— Only one subproblem to consider!

* |dea:
1. Identify a greedy choice property

* How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain

64

Caching Greedy Algorithm

Initialize cache= first k accesses 0 (k)
For each m; € M: ntimes
if m; € cache: 0(k)
print cache 0(k)
else:
m = furthest-in-future from cache O (kn)

evict m, load m; o)

print cache 0(k)

0 (kn?)

65

Exchange argument

* Shows correctness of a greedy algorithm
* |dea:

— Show exchanging an item from an arbitrary optimal solution with
your greedy choice makes the new solution no worse

— How to show my sandwich is at least as good as yours:

* Show: “I can remove any item from your sandwich, and it would be no worse
by replacing it with the same item from mv sandwich”

66

Let 5¢¢ be the schedule chosen by our greedy algorithm
Let 5; be a schedule which agrees with 5S¢+ for the first i
memory accesses.

We will show: there is a schedule 5;,; which agrees
with S¢ ¢ for the first i + 1 memory accesses, and has

no more misses than §;

(i.e. misses(S;; 1) < misses(S;))

Optimal Greedy
Lemma Lemma Lemma Lemma
) | LY S, Ser
Agrees with Agrees with Agrees with Agrees with
S¢r on first O S¢r on first S¢r on first 2 S¢ronalln

daccesses access accesses accesses

67

Belady Exchange Proof [dea

First i accesses

A
| \
s I I [[[

Need to fill in the rest

Si+1 - -- *- -- - of 5;+1 to have no

more misses than §;

Must agree with S¢¢

s | [I I I

Proof of

Goal: find S;; ;1 s.t. misses(S;,,) < misses(S;)

Since 5; agrees with 5S¢ for the first i accesses, the
state of the cache at access i + 1 will be the same

S; Cache after i e f - S¢r Cache after i € f

Consider accessm;,; = d

Case 1:if d is in the cache, then neither 5; nor S¢¢
evict from the cache, use the same cache for ;. ;

S;+1 Cache after i e f

69

Goal: find S;; ;1 s.t. misses(S;,,) < misses(S;)
Since 5; agrees with 5S¢ for the first i accesses, the
state of the cache at access i + 1 will be the same

S; Cache after i e f - S¢r Cache after i € f

Consider accessm;,; = d

Case 2: if d isn’t in the cache, and both S; and
S¢r evict f from the cache, evict f ford in 5; 4

S;+1 Cache after i < d

70

Proof of

Goal: find S;; ;1 s.t. misses(S;,,) < misses(S;)

Since 5; agrees with 5S¢ for the first i accesses, the
state of the cache at access i + 1 will be the same

S; Cache after i

Consider accessm;,; = d

Sff Cache afteri

Case 3:if d isn’tin the cache, 5; evicts e and 5S¢

evicts f from the cache

S; Cache afteri + 1 d f

Sff Cache afteri + 1 < d

71

First i accesses

A
| \
s I I [[[

Need to fill in the rest

Si+1 - -- *- -- - of 5;+1 to have no

more misses than §;

Must agree with S¢¢

s | [I I I

First i accesses

A
| \
s I I [[[

Copy 5;

%ﬂllllii@l

First place S; involves e or f

s | [I I I

m; = the first access after i + 1 in which S; involveswith e or f

m;,=eorm;=form=x+e,f

Case 3, m; =e

First i accesses

A
| \
s I I [[[

Copy 5;

%ﬂlllliigl

First place S; usese or f

s | [I I I

m; = the first access after i + 1 in which 5; deals with e or f

Case 3, m; =e

Goal: find S; ., s.t. misses(S;,,) < misses(S);)

d

S; Cache aftert — 1 S;.1 Cache aftert —1 % €

f
5; must load e into S;+1 will load f into
the cache, assume it the cache, evicting x
evicts x

The caches now match!

S;+1 behaved exactly the same as 5; between i
and t, and has the same cache after ¢,
therefore misses(S;,,) = misses(S;) 7

First i accesses

A
| \
s I I [[[

Copy 5;

%ﬂlllliiQI

First place S; usese or f

s | [I I I

m; = the first access after i + 1 in which 5; deals with e or f

m;,=eorm;=form=x+e,f

CrEEEENEEN

“Evict f"

smlllﬁllql

First place S; usese or f
Means f not farthest future access!

%TIII*IIII

“Evict f"

Case 3, mi=x+e,f

First i accesses

A
| \
s I I [[[

Copy 5;

%ﬂllllii?I

First place S; usese or f

s | [I I I

m; = the first access after i + 1 in which 5; deals with e or f

m;=eorm;=form;=x*e,f

Case 3, mi=x+e,f

Goal: find S; ., s.t. misses(S;,,) < misses(S;)

S; Cache aftert — 1 a f #: S;+1 Cache aftert — 1 € d

X X

5; loads x into the S;+1 will load x into
cache, it must be the cache, evicting e
evicting f

The caches now match!

S;+1 behaved exactly the same as 5; between i
and t, and has the same cache after ¢,
therefore misses(S;,,) = misses(S;)

79

80

Entire Huffman Derivation Follows

* Not covered in class, just for your review

Huffman Algorithm

* Choose the least frequent pair,
combine into a subtree

[G:14 I E:13I L:9 I 1:8 IW:BI N:3 I S:3 I A:2 I D:2 I R:2 I Y:2 I K:1 I P:1 IQ:l U:l]

82

Huffman Algorithm

* Choose the least frequent pair,
combine into a subtree

[G:14 I E:13I L:9 I 1:8 IW:BI N:3 I S:3 I A:2 I D:2 I R:2 I Y:2] K:1 I P:1]

Q:1 U:1

83

Huffman Algorithm

* Choose the least frequent pair,
combine into a subtree

[G:14 I E:13I L:9 I 1:8 IW:BI N:3 I S:3 I A:2 I D:2 I R:2 I Yz#}%

84

Huffman Algorithm

* Choose the least frequent pair,
combine into a subtree

[G:14 I E:13I L:9 I 1:8 IW:B] N:3 I S:3 I A:2 I D:2 I R:2 I Y:2]

85

Huffman Algorithm

* Choose the least frequent pair,
combine into a subtree

[G:14 I E:13I L:9 I :8 IW:B

1N:3IS:3 IA:Z I D:Z]

R:2 ' Y:2

86

Huffman Algorithm

* Choose the least frequent pair,
combine into a subtree

[G:14 I E:131 L:9 I :8 IW:6

(a3

1

1
R:2 Y2 A2 D:2

87

Huffman Algorithm

* Choose the least frequent pair,

combine into a subtree
1 1
R:2 Y:2 A:2 D:2
1

[G:14 I E:13I L:9 I 1:8 IW#L‘

88

Huffman Algorithm

* Choose the least frequent pair,
combine into a subtree

89

Huffman Algorithm

* Choose the least frequent pair,
combine into a subtree

90

Huffman Algorithm

* Choose the least frequent pair,
combine into a subtree

[G:14 I E:13

91

Huffman Algorithm

* Choose the least frequent pair,
combine into a subtree

G:14IE:13

92

Huffman Algorithm

. oose the least frequent pair,
combine into a subtree

1 G:14IE:13]
1
L:9 I8

1

0 1 OA 0 1
N:3 S:3
0 : .:1 0 :.:1

R:2 Y2 A2 D:2 Q1 U1 K:1 P:1

0 1 0

93

Huffman Algorithm

. oose the least frequent pair,
combine into a subtree

0 1 0 1

0 1 OA 0 1
N:3 S:3
0 : .:1 0 :.:1

R:2 Y2 A2 D:2 Q1 U1 K:1 P:1

94

Huffman Algorithm

. oose the least frequent pair,
combine into a subtree

0 1 0 1

0 1 OA 0 1
N:3 S:3
0 : .:1 0 :.:1

R:2 Y2 A2 D:2 Q1 U1 K:1 P:1

95

Huffman Algorithm

° O0Se tne ieast Trequent palrf,

combine into a subtree o

E:13]

96

