CS4102 Algorithms

Can you fill a 8×8 board with the corners missing using dominoes?
Can you tile this?

With these?

CS4102 Algorithms

Can you fill a 8×8 board with the corners missing using dominoes?
Can you tile this?

With these?

Today's Keywords

- Dynamic Programming
- Gerrymandering

Announcements

- Unit B Adv and Programming due Friday 4/8
- Unit C Adv and Programming coming soon

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

Generic Top-Down Dynamic Programming Soln

```
mem = {}
def myDPalgo(problem):
    if mem[problem] not blank:
        return mem[problem]
    if baseCase(problem):
        solution = solve(problem)
        mem[problem] = solution
        return solution
    for subproblem of problem:
    subsolutions.append(myDPalgo(subproblem))
    solution = OptimalSubstructure(subsolutions)
    mem[problem] = solution
    return solution
```


DP Algorithms so far

- $2 \times n$ domino tiling (Fibonacci)
- Log cutting
- Matrix Chaining
- Longest Common Subsequence
- Seam Carving (Unit C Programming Problem)

Domino Tiling

Tile(n):
Initialize Memory M
$\mathrm{M}[0]=0$
$M[1]=0$
for $\mathrm{i}=0$ to n : $M[i]=M[i-1]+M[i-2]$
return $\mathrm{M}[\mathrm{n}]$

Log Cutting

Solve Smallest subproblem first

$$
\operatorname{Cut}(4)=\max \left\{\begin{array}{l}
\operatorname{Cut}(3)+P[1] \\
\operatorname{Cut}(2)+P[2] \\
\operatorname{Cut}(1)+P[3] \\
\operatorname{Cut}(0)+P[4]
\end{array}\right.
$$

Matrix Chaining

Longest Common Subsequence

$$
\operatorname{LCS}(i, j)= \begin{cases}0 & \text { if } i=0 \text { or } j=0 \\ \operatorname{LCS}(i-1, j-1)+1 & \text { if } X[i]=Y[j] \\ \max (\operatorname{LCS}(i, j-1), \operatorname{LCS}(i-1, j)) & \text { otherwise }\end{cases}
$$

」 $X=$		0	A 1	T 2	C 3		G 5	A 6	T 7
	0	0	0	0	0	0	0	0	0
T	1	0	0	1	1	1	1	1	1
G	2	0	0	1	1	1	2	2	2
C	3	0	0	1	2	2	2	2	2
A	4	0	1	1	2	2	2	3	3
T	5	0	1	2	2	3	3	3	4
A	6	0	1	2	2	3	3	4	4

To fill in cell (i, j) we need cells $(i-1, j-1),(i-1, j),(i, j-1)$
Fill from Top->Bottom, Left->Right (with any preference)

Seam Carving

- Removes "least energy seam" of pixels
- http://rsizr.com/, https://www.aryan.app/seam-carving/

Carved

Energy of a Seam

- Sum of the energies of each pixel
$-e(p)=$ energy of pixel p
- Many choices
- E.g.: change of gradient (how much the color of this pixel differs from its neighbors)
- Particular choice doesn't matter, we use it as a "black box"

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Or: If S is an optimal solution to a problem, then the components of S are optimal solutions to sub-problems
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

Identify Recursive Structure

Let $S(i, j)=$ least energy seam from the bottom of the image up to pixel $p_{i, j}$

Finding the Least Energy Seam

Want the least energy seam going from bottom to top, so delete:

$$
\min _{k=1}(S(n, k))
$$

Computing

Assume we know the least energy seams for all of row $n-1$
(i.e. we know $S(n-1, \ell)$ for all ℓ)

Known through $n-1$

Computing $S(n, k)$

Assume we know the least energy seams for all of row $n-1$ (i.e. we know $S(n-1, \ell)$ for all ℓ)

Computing $S(n, k)$

Assume we know the least energy seams for all of row $n-1$ (i.e. we know $S(n-1, \ell)$ for all ℓ)

$$
S(n, k)=\min -\left\{\begin{array}{l}
S(n-1, k-1)+e\left(p_{n, k}\right) \\
S(n-1, k)+e\left(p_{n, k}\right) \\
S(n-1, k+1)+e\left(p_{n, k}\right)
\end{array}\right.
$$

$S(n, k)$
$S(n-1, k-1)$

$$
S(n-1, k)
$$

$S(n-1, k+1)$

Seam Carving

- Details left to you! Unit C Programming assignment
- Note: Python or Java implementations only this time

Repeated Seam Removal

Only need to update pixels dependent on the removed seam $2 n$ pixels change $\quad \Theta(2 n)$ time to update pixels
$\Theta(n+m)$ time to find min+backtrack

Supreme Court Associate Justice Anthony Kennedy gave no sign that he has abandoned his view that extreme partisan gerrymandering might violate the Constitution. I Eric Thayer/Getty Images

Supreme Court eyes partisan gerrymandering

Anthony Kennedy is seen as the swing vote that could blunt GOP's map-drawing successes.

SUPREME COURT OF THE UNITED STATES
Syllabus
VIRGINIA HOUSE OF DELEGATES ET AL
SUPREME COURT OF THE UNITED STATES
Syllabus
RUCHO et al. v. CoMMON CAUSE ET AL.
Next Gerrymandering Battle

in North Carolina: Congress

f
an illegal gerrymand \oint
state to redraw the st:
f

* Supreme Court Rules Partisan
* Gerrymandering Is Beyond The Reach - Of Federal Courts
- June 27, 2019 • 10:17 AM ET

Heard on All Things Considered
(6) nina totenberg al demenico montanaro milles parks
(4-Minute Listen

+ plarlist $9 \ll$

Gerrymandering

- Manipulating electoral district boundaries to favor one political party over others
- Coined in an 1812 Political cartoon
- Governor Elbridge Gerry signed a bill that redistricted Massachusetts to benefit his DemocraticRepublican Party

According to the Supreme Court

- Gerrymandering cannot be used to:
- Disadvantage racial/ethnic/religious groups
- It can be used to:
- Disadvantage political parties

VA $5^{\text {th }}$ District

VA $5^{\text {th }}$ District

$5^{\text {th }}$ District 2020 HR Results

Some Thinking Before 2012 VA Congressional Redistricting

Redistricting commission proposal

The bipartisan panel created by the governor cited four measures as guides for its recommendations: Voting Rights Act considerations, equal population, compactness, and municipal and county boundary lines. This is one of three options it endorsed for new boundaries on Virginia's 11 congressional districts.

Political Reality and 2012 VA Congressional Redistricting

House-passed plan

Virginia's Senate and House of Delegates are advancing competing plans for the state's congressional districts. The House-passedmap, submitted by Del. William R. Janis (R-Goochland), would raise the percentage of black voters in the 3rd CongressionalDistrict, currently the state's only majority-minority district. This would preserve the partisan population makeup reflectedin the November election results.

Gerymandering Today

- Computers make it really effective

Gerrymandering Today - Seriously?

- Computers make it really effective
- Close-up on part of $3^{\text {rd }}$ District
- This was 2013-2017; court ordered it changed
- Virginia will do redistricting soon under a new system

Learn More about VA redistricting:

https://www.vpap.org/redistricting/
 https://redistricting.dls.virginia.gov/

VA State Senate District 25 (2020)

My house marked!

VA State Senate District 25 (2020)

VA State Senate District 25 (2020)

VA Redistricting - 2022-

Gerrymandering Today

THE EVOLUTION OF MARYLAND'S THIRD DISTRICT

SOURCE: Shapefiles maintained by Jeffrey B. Lowis, Brandon DeVine, Lincoln Pritcher and Kenneth C. Martis, UCLA. Drawn to scale.
GRAPHIC. The Washington Post. Published May 20, 2014

An Algorithm to Gerrymander

- States are broken into precincts
- All precincts have the same size
- We know the votes for 2 parties in each precinct
- Group precincts into districts to maximize the number of districts won by my party

Overall: R:217 D:183

```
Four precincts;
100 votes in each;
Group into 2
districts
```

The "Regular" Party

The "Diet" Party

How does it work?

- States are broken into precincts
- All precincts have the same size
- We know the votes for 2 parties in each precinct
- Group precincts into districts to maximize the number of districts won by my party

Overall: R:217 D:183

$R: 65$	$R: 45$
$D: 35$	$D: 55$
$R: 60$	$R: 47$
$D: 40$	$D: 53$

R:125	R:92
R:65	R:45
D:35	$\mathrm{D}: 55$
R:60	$\mathrm{R}: 47$
$\mathrm{D}: 40$	$\mathrm{D}: 53$

R:112	R:105
R:65	R:45
D:35	D:55
R:60	R:47
D:40	$D: 53$

Gerrymandering Problem Statement

- Given:
- A list of precincts $p_{1}, p_{2}, \ldots, p_{n}$ and $R\left(p_{i}\right)$, number of votes for "Regular Party"
- Each precinct has exactly m voters (So $m n$ total voters)
- Output:
- Two districts $D_{1}, D_{2} \subset\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$
- Where $\left|D_{1}\right|=\left|D_{2}\right|$
- So exactly $\frac{m n}{2}$ votes per district
$-R\left(D_{1}\right)>\frac{m n}{4} \quad$ and $\quad R\left(D_{2}\right)>\frac{m n}{4}$

Valid Gerrymandering: Both districts go to Regular Party!

- $R\left(D_{i}\right)$ gives number of "Regular Party" voters in D_{i}
- $R\left(D_{i}\right)>\frac{\mathrm{mn}}{4}$ means D_{i} is majority "Regular Party"
- "failure" if no such solution is possible

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

Consider the last precinct

Define Recursive Structure

$$
\begin{array}{ll}
S(j, k, x, y)=\text { True } \begin{array}{l}
\text { if from among the first } \boldsymbol{j} \text { precincts: } \\
\boldsymbol{k} \text { are assigned to } D_{1}
\end{array} \\
n \times n \times m n \times m n & \begin{array}{l}
\text { exactly } \boldsymbol{x} \text { vote for } \mathrm{R} \text { in } D_{1} \\
\text { exactly } \boldsymbol{y} \text { vote for } \mathrm{R} \text { in } D_{2}
\end{array}
\end{array}
$$

4D Dynamic Programming!!!

Two ways to satisfy $S(j, k, x, y)$:
\(\left.\begin{array}{l}D_{1}

k-1 precincts

x-R\left(p_{j}\right) voters for \mathrm{R}\end{array}\right) \quad\)| $S(j, k, x, y)=$ True if: |
| :--- |
| from among the first j precincts |
| k are assigned to D_{1} |
| exactly x vote for R in D_{1} |
| exactly y vote for R in D_{2} |
| $-k$ precincts |

p_{j} to D_{1}

OR
D_{1}
k precincts x voters for R
D_{2}
$j-k$ precincts
y voters for R
Then assign
p_{j} to D_{2}

$$
S(j, k, x, y)=S\left(j-1, k-1, x-R\left(p_{j}\right), y\right) \vee S\left(j-1, k, x, y-R\left(p_{j}\right)\right)
$$

Final Algorithm

$S(j, k, x, y)=S\left(j-1, k-1, x-R\left(p_{j}\right), y\right) \vee S\left(j-1, k, x, y-R\left(p_{j}\right)\right)$
Initialize $S(0,0,0,0)=$ True
for $j=1, \ldots, n$:
for $k=1, \ldots, \min \left(j, \frac{n}{2}\right)$: for $x=0, \ldots, j m$:

$$
\text { for } y=0, \ldots, j m:
$$

$$
S(j, k, x, y)=
$$

$$
S\left(j-1, k-1, x-R\left(p_{j}\right), y\right) \vee S\left(j-1, k, x, y-R\left(p_{j}\right)\right)
$$

Search for True entry at $S\left(n, \frac{n}{2},>\frac{m n}{4},>\frac{m n}{4}\right)$

Run Time

$S(j, k, x, y)=S\left(j-1, k-1, x-R\left(p_{j}\right), y\right) \vee S\left(j-1, k, x, y-R\left(p_{j}\right)\right)$
Initialize $S(0,0,0,0)=$ True
n for $j=1, \ldots, n$:
$\frac{n}{2}$ for $k=1, \ldots, \min \left(j, \frac{n}{2}\right)$:
$n m$ for $x=0, \ldots, j m$:
$n m$ for $y=0, \ldots, j m$:
$S(j, k, x, y)=$
$\Theta\left(n^{4} m^{2}\right)$

$$
S\left(j-1, k-1, x-R\left(p_{j}\right), y\right) \vee S\left(j-1, k, x, y-R\left(p_{j}\right)\right)
$$

Search for True entry at $S\left(n, \frac{n}{2},>\frac{m n}{4},>\frac{m n}{4}\right)$

Can We Visualize this 4D "Table"?

$S(j, k, x, y)=$ True if:
from among the first j precincts n k are assigned to $D_{1} \quad n / 2$
exactly x vote for R in $D_{1} \quad n m$
exactly y vote for R in $D_{2} \quad n m$

To get a solution: search for True entry at $S\left(n, \frac{n}{2},>\frac{m n}{4},>\frac{m n}{4}\right)$

$\Theta\left(n^{4} m^{2}\right)$

- This looks big! Yes, and it's interesting too! :)
- Inputs:
- List (size n) of precincts and counts of voters for Regular Party, $R\left(p_{i}\right)$
- Number of voters (integer m)
- n is a size of one of the inputs
- If n doubles, twice as many items in the list that's our input
- But m is an input value (not a size)
- If m doubles, it's still one integer, one input item
- But the amount of work grows
- The complexity depends on the size of this single integer

Size of a Numeric Input-Value

Question: How do we measure the size of an integer?
Answer: the number of bits to represent it.

Example:

The value 4 (decimal) in binary is 100 , so the size of "value 4 " is 3 . If the size grows by 1 , that's 4 bits. With 4 bits, the value could be 1000 or 8 decimal.

Wait, what? Size of input grows by 1 , and the value doubles (4 to 8). That sounds like exponential! 2^{n} vs. 2^{n+1}

Pseudo-Polynomial Time

Yes, the inputSize (in bits) of value m is $\log _{2} m$

```
inputSize \(=\log _{2} m\)
\(m=2^{\text {inputSize }}\)
So \(m^{2}=\left(2^{\text {inputSize }}\right)^{2}=2^{2 \cdot \text { inputSize }}\)
```


Gerrymandering's run-time is exponential because of size of input \boldsymbol{m}

- Because run-time $\Theta\left(n^{4} m^{2}\right)$ written in terms of the value of m, not the size of m
- Input size is really $n+|m|=n+\log m$

This is called pseudo-polynomial time (https://en.wikipedia.org/wiki/Pseudo-polynomial time) We've seen others like this! Knapsack DP $\Theta(n \cdot C)$ and Coin-changing DP $\Theta(n \cdot A)$

