CS 4102: Algorithms - Unit C

 Dynamic Programming
Co-instructors: Robbie Hott and Tom Horton

Spring 2022

CS4102 Algorithms

Spring 2022

Warm Up

How many arithmetic operations are required to multiply a $n \times m$ matrix with a $m \times p$ matrix?
(don't overthink this)

Warm Up

How many arithmetic operations are required to multiply a $n \times m$ Matrix with a $m \times p$ Matrix? (don't overthink this)

- multiplications and $m-1$ additions per element
- $n \cdot p$ elements to compute
- Total cost: $\mathrm{O}(m \cdot n \cdot p)$

Today's Keywords

- Dynamic Programming
- Matrix Chaining

CLRS Readings

- Chapter 15
- Section 15.1, Log/Rod cutting, optimal substructure property
- Note: r_{i} in book is called Cut() or C[] in our slides. We use their example.
- Section 15.3, More on elements of DP, including optimal substructure property
- Section 15.2, matrix-chain multiplication (later example)
- Section 15.4, longest common subsequence (even later example)

Announcements

- Updated Deadlines for Unit B
- Exam rescheduled for March 29
- Encouraged to submit early, Unit C assignments are coming soon

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Or: If S is an optimal solution to a problem, then the components of S are optimal solutions to sub-problems
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

Generic Top-Down Dynamic Programming Soln

```
mem = {}
def myDPalgo(problem):
    if mem[problem] not blank:
        return mem[problem]
    if baseCase(problem):
        solution = solve(problem)
        mem[problem] = solution
        return solution
    for subproblem of problem:
    subsolutions.append(myDPalgo(subproblem))
    solution = OptimalSubstructure(subsolutions)
    mem[problem] = solution
    return solution
```


Log Cutting Recursive Structure

$P[i]=$ value of a cut of length i
$\operatorname{Cut}(n)=$ value of best way to cut a log of length n

$$
\begin{aligned}
& \operatorname{Cut}(n)= \max \left\{\begin{array}{l}
\operatorname{Cut}(n-1)+P[1] \\
\operatorname{Cut}(n-2)+P[2] \\
\ldots \\
\operatorname{Cut}(0)+P[n]
\end{array}\right. \\
& \operatorname{Cut}\left(n-\ell_{n}\right)
\end{aligned}
$$

Matrix Chaining

- Given a sequence of Matrices $\left(M_{1}, \ldots, M_{n}\right)$, what is the most efficient way to multiply them?

Order Matters!

$$
\begin{aligned}
& c_{1}=r_{2} \\
& c_{2}=r_{3}
\end{aligned}
$$

Order Matters!

$$
\begin{aligned}
& c_{1}=r_{2} \\
& c_{2}=r_{3}
\end{aligned}
$$

Order Matters!

$$
\begin{aligned}
& c_{1}=r_{2} \\
& c_{2}=r_{3}
\end{aligned}
$$

- $\left(M_{1} \times M_{2}\right) \times M_{3}$
$-\operatorname{uses}\left(c_{1} \cdot r_{1} \cdot c_{2}\right)+c_{2} \cdot r_{1} \cdot c_{3}$ operations
$-(10 \cdot 7 \cdot 20)+20 \cdot 7 \cdot 8=2520$
- $M_{1} \times\left(M_{2} \times M_{3}\right)$
- uses $c_{1} \cdot r_{1} \cdot c_{3}+\left(c_{2} \cdot r_{2} \cdot c_{3}\right)$ operations
$-10 \cdot 7 \cdot 8+(20 \cdot 10 \cdot 8)=2160$

$$
\begin{gathered}
M_{1}=7 \times 10 \\
M_{2}=10 \times 20 \\
M_{3}=20 \times 8 \\
c_{1}=10 \\
c_{2}=20 \\
c_{3}=8 \\
r_{1}=7 \\
r_{2}=10 \\
r_{3}=20
\end{gathered}
$$

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

1. Identify the Recursive Structure of the Problem

$\operatorname{Best}(1, n)=$ cheapest way to multiply together M_{1} through M_{n}

1. Identify the Recursive Structure of the Problem

$\operatorname{Best}(1, n)=$ cheapest way to multiply together M_{1} through M_{n}

1. Identify the Recursive Structure of the Problem

$\operatorname{Best}(1, n)=$ cheapest way to multiply together M_{1} through M_{n}

1. Identify the Recursive Structure of the Problem

$\operatorname{Best}(1, n)=$ cheapest way to multiply together M_{1} through M_{n}

$$
\operatorname{Best}(1,4)=\min \left\{\begin{array}{l}
\operatorname{Best}(2,4)+r_{1} r_{2} c_{4} \\
\operatorname{Best}(1,2)+\operatorname{Best}(3,4)+r_{1} r_{3} c_{4} \\
\operatorname{Best}(1,3)+r_{1} r_{4} c_{4}
\end{array}\right.
$$

1. Identify the Recursive Structure of the Problem

- In general:

$$
\begin{aligned}
& \operatorname{Best}(i, j)=\text { cheapest way to multiply together } M_{i} \text { through } M_{j} \\
& \operatorname{Best}(i, j)=\min _{k=i}^{j-1}\left(\operatorname{Best}(i, k)+\operatorname{Best}(k+1, j)+r_{i} r_{k+1} c_{j}\right) \\
& \operatorname{Best}(i, i)=0
\end{aligned}
$$

$$
\operatorname{Best}(1, n)=\min \left\{\begin{array}{l}
\operatorname{Best}(2, n)+r_{1} r_{2} c_{n} \\
\operatorname{Best}(1,2)+\operatorname{Best}(3, n)+r_{1} r_{3} c_{n} \\
\operatorname{Best}(1,3)+\operatorname{Best}(4, n)+r_{1} r_{4} c_{n} \\
\operatorname{Best}(1,4)+\operatorname{Best}(5, n)+r_{1} r_{5} c_{n} \\
\ldots \\
\operatorname{Best}(1, n-1)+r_{1} r_{n} c_{n}
\end{array}\right.
$$

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

2. Save Subsolutions in Memory

- In general:

$$
\begin{aligned}
& \operatorname{Best}(i, j)=\text { cheapest way to multiply together } M_{i} \text { through } M_{j} \\
& \operatorname{Best}(i, j)=\min _{k=i}^{j-1}\left(\operatorname{Best}(i, k)+\operatorname{Best}(k+1, j)+r_{i} r_{k+1} c_{j}\right) \\
& \operatorname{Best}(i, i)=\underbrace{}_{\text {Read from } M[n]} \begin{array}{l}
\text { if present }
\end{array} \\
& \operatorname{Best}(1, n)=\min \left[\begin{array}{l}
\operatorname{Best}(2, n)+r_{1} r_{2} c_{n} \\
\operatorname{Best}(1,2)+\operatorname{Best}(3, n)+r_{1} r_{3} c_{n} \\
\operatorname{Best}(1,3)+\operatorname{Best}(4, n)+r_{1} r_{4} c_{n} \\
\operatorname{Best}(1,4)+\operatorname{Best}(5, n)+r_{1} r_{5} c_{n} \\
\ldots \\
\operatorname{Best}(1, n-1)+r_{1} r_{n} c_{n}
\end{array}\right.
\end{aligned}
$$

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

3. Select a good order for solving subproblems

- In general:

$$
\begin{aligned}
& \operatorname{Best}(i, j)=\text { cheapest way to multiply together } M_{i} \text { through } M_{j} \\
& \operatorname{Best}(i, j)=\min _{k=i}^{j-1}\left(\operatorname{Best}(i, k)+\operatorname{Best}(k+1, j)+r_{i} r_{k+1} c_{j}\right) \\
& \operatorname{Best}(i, i)=0 \quad \begin{array}{l}
\text { Read from } \mathrm{M}[\mathrm{n}] \\
\text { if present }
\end{array} \\
& \text { Save to } \mathrm{M}[\mathrm{n}] \quad \begin{array}{l}
\operatorname{Best}(2, n)+r_{1} r_{2} c_{n} \\
\operatorname{Best}(1,2)+\operatorname{Best}(3, n)+r_{1} r_{3} c_{n} \\
\operatorname{Best}(1,3)+\operatorname{Best}(4, n)+r_{1} r_{4} c_{n} \\
\operatorname{Best}(1,4)+\operatorname{Best}(5, n)+r_{1} r_{5} c_{n} \\
\cdots \\
\operatorname{Best}(1, n-1)+r_{1} r_{n} c_{n}
\end{array}
\end{aligned}
$$

3. Select a good order for solving subproblems

3. Select a good order for solving subproblems

3. Select a good order for solving subproblems

3. Select a good order for solving subproblems

3. Select a good order for solving subproblems

3. Select a good order for solving subproblems

Matrix Chaining

Run Time

1. Initialize Best $[i, i]$ to be all $0 s \quad \Theta\left(n^{2}\right)$ cells in the Array
2. Starting at the main diagonal, working to the upper-right, fill in each cell using:
3. Best $[i, i]=0$

Each "call" to Best() is a O(1) memory lookup
2. $\operatorname{Best}[i, j]=\min _{k=i}^{j-1}\left(\operatorname{Best}(i, k)+\operatorname{Best}(k+1, j)+r_{i} r_{k+1} c_{j}\right)$

Backtrack to find the best order

"remember" which choice of k was the minimum at each cell

Matrix Chaining

Storing and Recovering Optimal Solution

- Maintain table Choice[i,j] in addition to Best table - Choice[i,j] = k means the best "split" was right after M_{k} - Work backwards from value for whole problem, Choice[1,n]
- Note: Choice[i,i+1] = i because there are just 2 matrices
- From our example:
- Choice $[1,6]=3$. So $\left[M_{1} M_{2} M_{3}\right]\left[M_{4} M_{5} M_{6}\right]$
- We then need Choice $[1,3]=1$. So $\left[\left(M_{1}\right)\left(M_{2} M_{3}\right)\right]$
- Also need Choice $[4,6]=5$. So $\left[\left(M_{4} M_{5}\right) M_{6}\right]$
- Overall: $\left[\left(M_{1}\right)\left(M_{2} M_{3}\right)\right]\left[\left(M_{4} M_{5}\right) M_{6}\right]$

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Or: If S is an optimal solution to a problem, then the components of S are optimal solutions to sub-problems
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

Longest Common Subsequence

Given two sequences X and Y, find the length of their longest common subsequence

Example:
$X=$ ATCTGAT
$Y=$ TGCATA
$L C S=T C T A$

Brute force: Compare every subsequence of X with Y $\Omega\left(2^{n}\right)$

Applications other than bioinformatics? Of course, Including version control! http://cbx33.github.io/gitt/afterhours3-1.html

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

1. Identify Recursive Structure

Let $\operatorname{LCS}(i, j)=$ length of the LCS for the first i characters of X, first j character of Y Find $\operatorname{LCS}(i, j)$:

$$
\text { Case 1: } X[i]=Y[j] \quad \begin{aligned}
X & =\operatorname{ATCTGCGT} \\
Y & =\operatorname{TGCATAT} \\
& \operatorname{LCS}(i, j)
\end{aligned}=\operatorname{LCS}(i-1, j-1)+1 .
$$

Case 2: $X[i] \neq Y[j]$

$$
\begin{array}{rlrl}
X & =A T C T G C G A & X & =A T C T G C G A \\
Y & =T G C A T A C & Y & =T G C A T A C \\
\operatorname{LCS}(i, j) & =L C S(i, j-1) & \operatorname{LCS}(i, j) & =\operatorname{LCS}(i-1, j)
\end{array}
$$

$$
\operatorname{LCS}(i, j)= \begin{cases}0 & \text { if } i=0 \text { or } j=0 \\ \operatorname{LCS}(i-1, j-1)+1 & \text { if } X[i]=Y[j] \\ \max (\operatorname{LCS}(i, j-1), \operatorname{LCS}(i-1, j)) & \text { otherwise }\end{cases}
$$

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

1. Identify Recursive Structure

Let $\operatorname{LCS}(i, j)=$ length of the LCS for the first i characters of X, first j character of Y Find $\operatorname{LCS}(i, j)$:

$$
\begin{array}{rr}
\text { Case 1: } X[i]=Y[j] & Y=A T C T G C G T \\
& =T G C A T A T \\
\text { Case 2: } X[i] \neq Y[j] & X C S(i, j)=\operatorname{LCS}(i-1, j-1)+1 \\
X=A T C T G C G A & Y=A T C T G C G A \\
Y=T G C A T A C & L C S(i, j)=\operatorname{LCS}(i-1, j)
\end{array}
$$

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

3. Solve in a Good Order

$$
\operatorname{LCS}(i, j)= \begin{cases}0 & \text { if } i=0 \text { or } j=0 \\ \operatorname{LCS}(i-1, j-1)+1 & \text { if } X[i]=Y[j] \\ \max (\operatorname{LCS}(i, j-1), \operatorname{LCS}(i-1, j)) & \text { otherwise }\end{cases}
$$

$X=$		0	A 1	T 2	C 3	T 4	G 5	A 6	T 7
	0	0	0	0	0	0	0	0	0
T	1	0	0	1	1	1	1	1	1
G	2	0	0	1	1	1	2	2	2
C	3	0	0	1	2	2	2	2	2
A	4	0	1	1	2	2	2	3	3
T	5	0	1	2	2	3	3	3	4
A	6	0	1	2	2	3	3	4	4

To fill in cell (i, j) we need cells $(i-1, j-1),(i-1, j),(i, j-1)$
Fill from Top->Bottom, Left->Right (with any preference)

LCS Length Algorithm

LCS-Length(X, Y) // Y for M's rows, X for its columns

1. $\mathrm{n}=$ length $(\mathrm{X}) / /$ get the $\#$ of symbols in X
2. $\mathrm{m}=$ length $(\mathrm{Y}) / /$ get the $\#$ of symbols in Y
3. for $\mathrm{i}=1$ to $\mathrm{m} \quad \mathrm{M}[\mathrm{i}, 0]=0 \quad / /$ special case: Y_{0}
4. for $\mathrm{j}=1$ to $\mathrm{n} \quad \mathrm{M}[0, \mathrm{j}]=0 \quad / /$ special case: X_{0}
5. for $\mathrm{i}=1$ to $\mathrm{m} \quad / /$ for all Y_{i}
6. for $\mathrm{j}=1$ to n
// for all X_{j}
7. if $(X[i]==Y[j])$
8.

$$
\mathrm{M}[\mathrm{i}, \mathrm{j}]=\mathrm{M}[\mathrm{i}-1, \mathrm{j}-1]+1
$$

9. else $M[i, j]=\max (M[i-1, j], M[i, j-1])$
10. return $\mathrm{M}[\mathrm{m}, \mathrm{n}] / /$ return LCS length for Y and X

Run Time?

$$
\begin{aligned}
& \operatorname{CCS}(i, j)= \begin{cases}0 & \text { if } i=0 \text { or } j=0\end{cases} \\
& \operatorname{LCS}(i, j)= \begin{cases}\operatorname{LCS}(i-1, j-1)+1 & \text { if } X[i]=Y[j] \\
\max (\operatorname{LCS}(i, j-1), \operatorname{LCS}(i-1, j)) & \text { otherwise }\end{cases}
\end{aligned}
$$

Run Time: $\Theta(n \cdot m)$ (for $|X|=n,|Y|=m)$

Reconstructing the LCS

$$
\operatorname{LCS}(i, j)= \begin{cases}0 & \text { if } i=0 \text { or } j=0 \\ \operatorname{LCS}(i-1, j-1)+1 & \text { if } X[i]=Y[j] \\ \max (\operatorname{LCS}(i, j-1), \operatorname{LCS}(i-1, j)) & \text { otherwise }\end{cases}
$$

\& $X=$		0	A1	T2	C3	$\begin{array}{\|l} \hline T \\ \hline 4 \end{array}$	G	A	T 7
	0	0	0	0	0	0	0	0	0
T	1	0	0	1	1	1	1	1	1
G	2	0	0	1	1	1		2	2
C	3	0	0	1	2	2	2	2	2
A	4	0	1	1	2	2	2	3	3
T	5	0	1	2	2	3	3	3	4
A		0	1	2	2	3	3	4	4

Start from bottom right,
if symbols matched, print that symbol then go diagonally
else go to largest adjacent

Reconstructing the LCS

$$
\begin{array}{ll}
0 & \text { if } i=0 \text { or } j=0
\end{array}
$$

Start from bottom right,
if symbols matched, print that symbol then go diagonally
else go to largest adjacent

Reconstructing the LCS

$$
\operatorname{LCS}(i, j)= \begin{cases}0 & \text { if } i=0 \text { or } j=0 \\ \operatorname{LCS}(i-1, j-1)+1 & \text { if } X[i]=Y[j] \\ \max (\operatorname{LCS}(i, j-1), \operatorname{LCS}(i-1, j)) & \text { otherwise }\end{cases}
$$

Start from bottom right,
if symbols matched, print that symbol then go diagonally
else go to largest adjacent

Top-Down Solution with Memoization

We need two functions; one will be recursive.

LCS-Length(X, Y) // Y is M's cols.

1. $n=$ length (X)
2. $m=$ length (Y)
3. Create table $M[m, n]$
4. Assign -1 to all cells $M[i, j]$
// get value for entire sequences
5. return LCS-recur(X, Y, M, m, n)

LCS-recur(X, Y, M, i, j)

1. if $(i==0| | j==0)$ return 0
// have we already calculated this subproblem?
2. if ($M[i, j]$! $=-1$) return $M[i, j]$
3. if $(X[i]==Y[j])$
4. $M[i, j]=\operatorname{LCS}-\operatorname{recur}(X, Y, M, i-1, j-1)+1$
5. else
6. $M[i, j]=\max (\operatorname{LCS}-\operatorname{recur}(X, Y, M, i-1, j)$, LCS-recur(X, Y, M, i, j-1))
7. return $M[i, j]$

Time!

In Season 9 Episode 7 "The Slicer" of the hit 90s TV show Seinfeld, George discovers that, years prior, he had a heated argument with his new boss, Mr. Kruger. This argument ended in George throwing Mr. Kruger's boombox into the
 ocean. How did George make this discovery?

Seam Carving

- Method for image resizing that doesn't scale/crop the image

Seam Carving

- Method for image resizing that doesn't scale/crop the image

Seam Carving

- Method for image resizing that doesn't scale/crop the image

Cropped

Scaled

Carved

Cropping

- Removes a "block" of pixels

Scaling

- Removes "stripes" of pixels

Seam Carving

- Removes "least energy seam" of pixels from bottom to top
- https://www.aryan.app/seam-carving/ (also see Wikipedia page)
- http://rsiz.com/ - old, uses Flash : $^{\circ}$

Carved

Seattle Skyline

Energy of a Seam

- Sum of the energies of each pixel
$-e(p)=$ energy of pixel p
- Many choices
- E.g.: change of gradient (how much the color of this pixel differs from its neighbors)
- Particular choice doesn't matter, we use it as a "black box"

Identify Recursive Structure

Let $S(i, j)=$ least energy seam from the bottom of the image up to pixel $p_{i, j}$

Finding the Least Energy Seam

Want the least energy seam going from bottom to top, so delete:

$$
\min _{k=1}(S(n, k))
$$

Computing

Assume we know the least energy seams for all of row $n-1$
(i.e. we know $S(n-1, \ell)$ for all ℓ)

Known through $n-1$

Computing $S(n, k)$

Assume we know the least energy seams for all of row $n-1$ (i.e. we know $S(n-1, \ell)$ for all ℓ)

Computing $S(n, k)$

Assume we know the least energy seams for all of row $n-1$ (i.e. we know $S(n-1, \ell)$ for all ℓ)

$$
S(n, k)=\min -\left\{\begin{array}{l}
S(n-1, k-1)+e\left(p_{n, k}\right) \\
S(n-1, k)+e\left(p_{n, k}\right) \\
S(n-1, k+1)+e\left(p_{n, k}\right)
\end{array}\right.
$$

$S(n, k)$
$S(n-1, k-1)$

$$
S(n-1, k)
$$

$S(n-1, k+1)$

Seam Carving

- Details left to you! Unit C Programming assignment
- Note: Python or Java implementations only this time

Repeated Seam Removal

Only need to update pixels dependent on the removed seam $2 n$ pixels change $\quad \Theta(2 n)$ time to update pixels
$\Theta(n+m)$ time to find min+backtrack

