CS 4102: Algorithms – Unit C Dynamic Programming

Co-instructors: Robbie Hott and Tom Horton Spring 2022

CS4102 Algorithms Spring 2022

Warm Up

How many arithmetic operations are required to multiply a $n \times m$ matrix with a $m \times p$ matrix?

(don't overthink this)

Warm Up

How many arithmetic operations are required to multiply a $n \times m$ Matrix with a $m \times p$ Matrix? (don't overthink this)

- m multiplications and m-1 additions per element
- $n \cdot p$ elements to compute
- Total cost: $O(m \cdot n \cdot p)$

Today's Keywords

- Dynamic Programming
- Matrix Chaining

CLRS Readings

- Chapter 15
 - Section 15.1, Log/Rod cutting, optimal substructure property
 - Note: r_i in book is called Cut() or C[] in our slides. We use their example.
 - Section 15.3, More on elements of DP, including optimal substructure property
 - Section 15.2, matrix-chain multiplication (later example)
 - Section 15.4, longest common subsequence (even later example)

Announcements

- Updated Deadlines for Unit B
 - Exam rescheduled for March 29
 - Encouraged to submit early, Unit C assignments are coming soon

Dynamic Programming

- Requires Optimal Substructure
 - Solution to larger problem contains the solutions to smaller ones
 - Or: If S is an optimal solution to a problem, then the components of S are optimal solutions to sub-problems
- Idea:
 - 1. Identify the recursive structure of the problem
 - What is the "last thing" done?
 - 2. Save the solution to each subproblem in memory
 - 3. Select a good order for solving subproblems
 - "Top Down": Solve each recursively
 - "Bottom Up": Iteratively solve smallest to largest

Generic Top-Down Dynamic Programming Soln

```
mem = \{\}
def myDPalgo(problem):
      if mem[problem] not blank:
             return mem[problem]
      if baseCase(problem):
             solution = solve(problem)
             mem[problem] = solution
             return solution
      for subproblem of problem:
             subsolutions.append(myDPalgo(subproblem))
      solution = OptimalSubstructure(subsolutions)
      mem[problem] = solution
      return solution
```

Log Cutting Recursive Structure

P[i] = value of a cut of length i Cut(n) = value of best way to cut a log of length n $Cut(n) = \max - \begin{bmatrix} Cut(n-1) + P[1] \\ Cut(n-2) + P[2] \end{bmatrix}$ Cut(0) + P[n] $Cut(n-\ell_n)$ ℓ_n best way to cut a log of length $n - \ell_n$ Last Cut

Matrix Chaining

• Given a sequence of Matrices $(M_1, ..., M_n)$, what is the most efficient way to multiply them?

Order Matters!

 $c_1 = r_2$
 $c_2 = r_3$

• $(M_1 \times M_2) \times M_3$ - uses $(c_1 \cdot r_1 \cdot c_2) + c_2 \cdot r_1 \cdot c_3$ operations

Order Matters!

 $c_1 = r_2$
 $c_2 = r_3$

Order Matters!

$$c_1 = r_2$$
$$c_2 = r_3$$

- $(M_1 \times M_2) \times M_3$ - uses $(c_1 \cdot r_1 \cdot c_2) + c_2 \cdot r_1 \cdot c_3$ operations - $(10 \cdot 7 \cdot 20) + 20 \cdot 7 \cdot 8 = 2520$
- $M_1 \times (M_2 \times M_3)$ - uses $c_1 \cdot r_1 \cdot c_3 + (c_2 \cdot r_2 \cdot c_3)$ operations - 10 \cdot 7 \cdot 8 + (20 \cdot 10 \cdot 8) = 2160

 $M_{1} = 7 \times 10$ $M_{2} = 10 \times 20$ $M_{3} = 20 \times 8$ $c_{1} = 10$ $c_{2} = 20$ $c_{3} = 8$ $r_{1} = 7$ $r_{2} = 10$ $r_{3} = 20$

Dynamic Programming

• Requires Optimal Substructure

- Solution to larger problem contains the solutions to smaller ones

• Idea:

- 1. Identify the recursive structure of the problem
 - What is the "last thing" done?
- 2. Save the solution to each subproblem in memory
- 3. Select a good order for solving subproblems
 - "Top Down": Solve each recursively
 - "Bottom Up": Iteratively solve smallest to largest

Best(1, n) = cheapest way to multiply together M₁ through M_n

 $Best(1,n) = \text{cheapest way to multiply together } M_1 \text{ through } M_n$ $Best(1,4) = \min - \begin{bmatrix} Best(2,4) + r_1r_2c_4 \\ Best(1,2) + Best(3,4) + r_1r_3c_4 \\ Best(1,3) + r_1r_4c_4 \end{bmatrix}$

• In general:

Best(i, j) = cheapest way to multiply together M_i through M_j $Best(i,j) = \min_{k=i}^{j-1} \left(Best(i,k) + Best(k+1,j) + r_i r_{k+1} c_j \right)$ Best(i,i) = 0 $Best(2,n) + r_1r_2c_n$ $Best(1,2) + Best(3,n) + r_1r_3c_n$ $Best(1,3) + Best(4,n) + r_1r_4c_n$ $Best(1,n) = \min - Best(1,4) + Best(5,n) + r_1r_5c_n$ $Best(1, n - 1) + r_1 r_n c_n$

Dynamic Programming

- Requires Optimal Substructure
 - Solution to larger problem contains the solutions to smaller ones
- Idea:
 - 1. Identify the recursive structure of the problem
 - What is the "last thing" done?
 - 2. Save the solution to each subproblem in memory
 - 3. Select a good order for solving subproblems
 - "Top Down": Solve each recursively
 - "Bottom Up": Iteratively solve smallest to largest

2. Save Subsolutions in Memory

• In general:

Best(i, j) = cheapest way to multiply together M_i through M_j $Best(i,j) = \min_{k=i}^{j-1} \left(Best(i,k) + Best(k+1,j) + r_i r_{k+1} c_j \right)$ Best(i,i) = 0Read from M[n] if present Save to M[n] Best(2, n) + $r_1r_2c_n$ $Best(1,2) + Best(3,n) + r_1r_3c_n$ $Best(1,3) + Best(4,n) + r_1r_4c_n$ $Best(1,n) = \min$ $Best(1,4) + Best(5,n) + r_1r_5c_n$. . . $Best(1, n-1) + r_1 r_n c_n$

21

Dynamic Programming

- Requires Optimal Substructure
 - Solution to larger problem contains the solutions to smaller ones
- Idea:
 - 1. Identify the recursive structure of the problem
 - What is the "last thing" done?
 - 2. Save the solution to each subproblem in memory
 - 3. Select a good order for solving subproblems
 - "Top Down": Solve each recursively
 - "Bottom Up": Iteratively solve smallest to largest

• In general:

Best(i, j) = cheapest way to multiply together M_i through M_i $Best(i,j) = \min_{k=i}^{j-1} \left(Best(i,k) + Best(k+1,j) + r_i r_{k+1} c_j \right)$ Best(i,i) = 0Read from M[n] if present Save to M[n] Best(2, n) + $r_1r_2c_n$ $Best(1,2) + Best(3,n) + r_1r_3c_n$ $Best(1,3) + Best(4,n) + r_1r_4c_n$ $Best(1,n) = \min$ $Best(1,4) + Best(5,n) + r_1r_5c_n$. . . $Best(1, n-1) + r_1 r_n c_n$

25

27

28

Matrix Chaining

Run Time

- 1. Initialize Best[i, i] to be all 0s $\Theta(n^2)$ cells in the Array
- 2. Starting at the main diagonal, working to the upper-right, fill in each cell using:

1.
$$Best[i,i] = 0$$

 $\Theta(n)$ options for each cell
2. $Best[i,j] = \min_{k=i}^{j-1} (Best(i,k) + Best(k+1,j) + r_i r_{k+1} c_j)$
Each "call" to Best() is a O(1) memory lookup

$\Theta(n^3)$ overall run time

Backtrack to find the best order

"remember" which choice of k was the minimum at each cell

$$Best(i,j) = \min_{k=i}^{j-1} (Best(i,k) + Best(k+1,j) + r_i r_{k+1} c_j))$$

$$Best(i,i) = 0$$

$$j = 1 2 3 4 5 6$$

$$0 15750 7875 9375 11875 15125 3 1$$

$$0 2625 4375 7125 10500 2$$

$$0 750 2500 5375 3$$

$$Best(1,1) + Best(2,6) + r_1 r_2 c_6 0 1000 3500 4$$

$$Best(1,2) + Best(3,6) + r_1 r_3 c_6$$

$$Best(1,3) + Best(4,6) + r_1 r_4 c_6$$

$$Best(1,4) + Best(5,6) + r_1 r_5 c_6$$

$$Best(1,5) + Best(6,6) + r_1 r_6 c_6$$

$$0 32$$

32

Matrix Chaining

Storing and Recovering Optimal Solution

- Maintain table Choice[i,j] in addition to Best table
 - Choice[i,j] = k means the best "split" was right after M_k
 - Work backwards from value for whole problem, Choice[1,n]
 - Note: Choice[i,i+1] = i because there are just 2 matrices
- From our example:
 - Choice[1,6] = 3. So [M₁ M₂ M₃] [M₄ M₅ M₆]
 - We then need Choice[1,3] = 1. So $[(M_1) (M_2 M_3)]$
 - Also need Choice[4,6] = 5. So [(M₄ M₅) M₆]
 - Overall: $[(M_1) (M_2 M_3)] [(M_4 M_5) M_6]$

Dynamic Programming

- Requires Optimal Substructure
 - Solution to larger problem contains the solutions to smaller ones
 - Or: If S is an optimal solution to a problem, then the components of S are optimal solutions to sub-problems
- Idea:
 - 1. Identify the recursive structure of the problem
 - What is the "last thing" done?
 - 2. Save the solution to each subproblem in memory
 - 3. Select a good order for solving subproblems
 - "Top Down": Solve each recursively
 - "Bottom Up": Iteratively solve smallest to largest

Longest Common Subsequence

Given two sequences X and Y, find the length of their longest common subsequence

Example: X = ATCTGAT Y = TGCATALCS = TCTA

Brute force: Compare every subsequence of X with Y $\Omega(2^n)$

Applications other than bioinformatics? Of course, Including version control! <u>http://cbx33.github.io/gitt/afterhours3-1.html</u>

Dynamic Programming

• Requires Optimal Substructure

- Solution to larger problem contains the solutions to smaller ones

• Idea:

- 1. Identify the recursive structure of the problem
 - What is the "last thing" done?
- 2. Save the solution to each subproblem in memory
- 3. Select a good order for solving subproblems
 - "Top Down": Solve each recursively
 - "Bottom Up": Iteratively solve smallest to largest

1. Identify Recursive Structure

Let LCS(i, j) = length of the LCS for the first *i* characters of *X*, first *j* character of *Y* Find LCS(i, j):

> X = ATCTGCGTCase 1: X[i] = Y[j]Y = TGCATATLCS(i, j) = LCS(i - 1, j - 1) + 1Case 2: $X[i] \neq Y[j]$ X = ATCTGCGAX = ATCTGCGAY = TGCATACY = TGCATACLCS(i, j) = LCS(i, j - 1)LCS(i, j) = LCS(i - 1, j) $LCS(i,j) = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = \\ LCS(i-1,j-1) + 1 & \text{if } X[i] = Y[j] \\ \max(LCS(i,j-1), LCS(i-1,j)) & \text{otherwise} \end{cases}$ if i = 0 or j = 0

Dynamic Programming

- Requires Optimal Substructure
 - Solution to larger problem contains the solutions to smaller ones
- Idea:
 - 1. Identify the recursive structure of the problem
 - What is the "last thing" done?
 - 2. Save the solution to each subproblem in memory
 - 3. Select a good order for solving subproblems
 - "Top Down": Solve each recursively
 - "Bottom Up": Iteratively solve smallest to largest

1. Identify Recursive Structure

Let LCS(i, j) = length of the LCS for the first *i* characters of *X*, first *j* character of *Y* Find LCS(i, j):

X = ATCTGCGTCase 1: X[i] = Y[j]TGCATAT Y =LCS(i, j) = LCS(i - 1, j - 1) + 1Case 2: $X[i] \neq Y[j]$ X = ATCTGCGAX = ATCTGCGAY = TGCATACY = TGCATACLCS(i, j) = LCS(i, j - 1)LCS(i, j) = LCS(i - 1, j) \square Deed free on NAL: 1

$$LCS(i,j) = \begin{cases} 0 & \text{if } present \\ LCS(i-1,j-1) \neq 1 \\ max(LCS(i,j-1), LCS(i-1,j)) & \text{if } i = 0 \text{ or } j = 0 \\ \text{if } x[i] = Y[j] \\ \text{otherwise} \end{cases}$$

40

Dynamic Programming

- Requires Optimal Substructure
 - Solution to larger problem contains the solutions to smaller ones
- Idea:
 - 1. Identify the recursive structure of the problem
 - What is the "last thing" done?
 - 2. Save the solution to each subproblem in memory
 - 3. Select a good order for solving subproblems
 - "Top Down": Solve each recursively
 - "Bottom Up": Iteratively solve smallest to largest

3. Solve in a Good Order

To fill in cell (i, j) we need cells (i - 1, j - 1), (i - 1, j), (i, j - 1)Fill from Top->Bottom, Left->Right (with any preference)

4

LCS Length Algorithm

LCS-Length(X, Y) // Y for M's rows, X for its columns 1. n = length(X) // get the # of symbols in X2. m = length(Y) // get the # of symbols in Y 3. for i = 1 to m M[i,0] = 0 // special case: Y₀ 4. for j = 1 to n M[0,j] = 0 // special case: X_0 5. for i = 1 to m // for all Y_i 6. for j = 1 to n // for all X_i if (X[i] == Y[j])7. 8. M[i,j] = M[i-1,j-1] + 1else M[i,j] = max(M[i-1,j], M[i,j-1])9. 10. return M[m,n] // return LCS length for Y and X

Run Time?

$$LCS(i,j) = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0\\ LCS(i-1,j-1) + 1 & \text{if } X[i] = Y[j]\\ \max(LCS(i,j-1), LCS(i-1,j)) & \text{otherwise} \end{cases}$$

Run Time: $\Theta(n \cdot m)$ (for |X| = n, |Y| = m)

Reconstructing the LCS

Start from bottom right,

if symbols matched, print that symbol then go diagonally else go to largest adjacent

Reconstructing the LCS

Start from bottom right,

if symbols matched, print that symbol then go diagonally else go to largest adjacent

Reconstructing the LCS

Start from bottom right,

if symbols matched, print that symbol then go diagonally else go to largest adjacent

Top-Down Solution with Memoization

We need two functions; one will be recursive.

```
LCS-Length(X, Y) // Y is M's cols.
```

- 1. n = length(X)
- 2. m = length(Y)
- 3. Create table M[m,n]
- 4. Assign -1 to all cells M[i,j]
- // get value for entire sequences
- 5. return **LCS-recur**(X, Y, M, m, n)

LCS-recur(X, Y, M, i, j) 1. if (i == 0 | | i == 0) return 0 // have we already calculated this subproblem? 2. if (M[i,j] != -1) return M[i,j] 3. if (X[i] == Y[j])4. $M[i,j] = LCS-recur(X, Y, M, \frac{i-1}{j-1}) + 1$ 5. else M[i,j] = max(LCS-recur(X, Y, M, i-1, j))6. **LCS-recur**(X, Y, M, **i**, **j-1**)) 7. return M[i,j]

In Season 9 Episode 7 "The Slicer" of the hit 90s TV show Seinfeld, George discovers that, years prior, he had a heated argument with his new boss, Mr. Kruger. This argument ended in George throwing Mr. Kruger's boombox into the ocean. How did George make this discovery?

• Method for image resizing that doesn't scale/crop the image

Seam Carving

• Method for image resizing that doesn't scale/crop the image

Seam Carving

• Method for image resizing that doesn't scale/crop the image

Cropped

Scaled

Carved

Cropping

• Removes a "block" of pixels

Cropped

• Removes "stripes" of pixels

Scaled

Seam Carving

- Removes "least energy seam" of pixels from bottom to top
 - <u>https://www.aryan.app/seam-carving/</u> (also see Wikipedia page)
 - <u>http://rsizr.com/</u> old, uses Flash ☺

Carved

Seattle Skyline

Energy of a Seam

- Sum of the energies of each pixel -e(p) = energy of pixel p
- Many choices
 - E.g.: change of gradient (how much the color of this pixel differs from its neighbors)
 - Particular choice doesn't matter, we use it as a "black box"

Identify Recursive Structure

Let S(i, j) = least energy seam from the bottom of the image up to pixel $p_{i,j}$

Finding the Least Energy Seam

Want the least energy seam going from bottom to top, so delete: $\min_{k=1}^{m} (S(n,k))$

Computing S(n, k)

Computing S(n, k)

Assume we know the least energy seams for all of row n - 1 (i.e. we know $S(n - 1, \ell)$ for all ℓ)

Computing S(n, k)

Assume we know the least energy seams for all of row n-1 (i.e. we know $S(n-1, \ell)$ for all ℓ) $S(n,k) = min^{-1,k-1} + e(p_{n,k})$ $p_{n,k}$ $S(n-1,k) + e(p_{n,k})$ $S(n-1,k+1) + e(p_{n,k})$ S(n,k) S(n-1,k-1) S(n-1,k+1) S(n-1,k)

- Details left to you! Unit C Programming assignment
 - Note: Python or Java implementations only this time

Repeated Seam Removal

Only need to update pixels dependent on the removed seam 2n pixels change $\Theta(2n)$ time to update pixels $\Theta(n+m)$ time to find min+backtrack n