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How many arithmetic operations are required to multiply 
a 𝑛×𝑚 matrix with a 𝑚×𝑝 matrix? 

(don’t overthink this)
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Warm Up

• 𝑚 multiplications and 𝑚 − 1 additions per element
• 𝑛 ⋅ 𝑝 elements to compute
• Total cost: O(𝑚 ⋅ 𝑛 ⋅ 𝑝) 3
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How many arithmetic operations are required to multiply a 𝑛×𝑚
Matrix with a 𝑚×𝑝 Matrix? 

(don’t overthink this)



Today’s Keywords

• Dynamic Programming
• Matrix Chaining
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CLRS Readings

• Chapter 15
– Section 15.1, Log/Rod cutting, optimal substructure property
• Note: ri in book is called Cut() or C[] in our slides.  We use their example.

– Section 15.3, More on elements of DP, including optimal substructure 
property

– Section 15.2, matrix-chain multiplication (later example)
– Section 15.4, longest common subsequence (even later example)
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Announcements

• Updated Deadlines for Unit B
– Exam rescheduled for March 29
– Encouraged to submit early, Unit C assignments are coming soon
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Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones
– Or: If S is an optimal solution to a problem, then the components of S are 

optimal solutions to sub-problems
• Idea:

1. Identify the recursive structure of the problem
• What is the “last thing” done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest
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Generic Top-Down Dynamic Programming Soln

mem = {}
def myDPalgo(problem):

if mem[problem] not blank:
return mem[problem]

if baseCase(problem):
solution = solve(problem)
mem[problem] = solution
return solution

for subproblem of problem:
subsolutions.append(myDPalgo(subproblem))

solution = OptimalSubstructure(subsolutions)
mem[problem] = solution
return solution
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Log Cutting Recursive Structure
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𝐶𝑢𝑡(𝑛) = value of best way to cut a log of length 𝑛

ℓ&
𝐶𝑢𝑡(𝑛 − ℓ&)

𝐶𝑢𝑡 𝑛 = max
𝐶𝑢𝑡 𝑛 − 1 + 𝑃 1
𝐶𝑢𝑡 𝑛 − 2 + 𝑃 2
…
𝐶𝑢𝑡 0 + 𝑃[𝑛]

Last Cutbest way to cut a log of length 𝒏 − ℓ𝒏

𝑃 𝑖 = value of a cut of length 𝑖



Matrix Chaining
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𝑐$

• Given a sequence of Matrices (𝑀!, … ,𝑀"), what is the most 
efficient way to multiply them?

𝑀" 𝑀$



Order Matters!

• 𝑀!×𝑀# ×𝑀$
– uses 𝑐! ⋅ 𝑟! ⋅ 𝑐" + c" ⋅ 𝑟! ⋅ 𝑐# operations
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Order Matters!

• 𝑀!×(𝑀#×𝑀$)
– uses c! ⋅ r! ⋅ 𝑐# + (c" ⋅ 𝑟" ⋅ 𝑐#) operations

12

𝑟"

𝑐#

𝑐+ = 𝑟,
𝑐, = 𝑟-
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Order Matters!

• 𝑀!×𝑀# ×𝑀$
– uses 𝑐! ⋅ 𝑟! ⋅ 𝑐" + c" ⋅ 𝑟! ⋅ 𝑐# operations
– 10 ⋅ 7 ⋅ 20 + 20 ⋅ 7 ⋅ 8 = 2520

• 𝑀!×(𝑀#×𝑀$)
– uses 𝑐! ⋅ 𝑟! ⋅ 𝑐# + (c" ⋅ 𝑟" ⋅ 𝑐#) operations
– 10 ⋅ 7 ⋅ 8 + 20 ⋅ 10 ⋅ 8 = 2160
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𝑐+ = 𝑟,
𝑐, = 𝑟-

𝑐+ = 10
𝑐, = 20
𝑐- = 8
𝑟+ = 7
𝑟, = 10
𝑟- = 20

𝑀+ = 7×10
𝑀, = 10×20
𝑀- = 20×8



Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify the recursive structure of the problem
• What is the “last thing” done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems
• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest
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1. Identify the Recursive Structure of the Problem
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𝐵𝑒𝑠𝑡 1, 𝑛 = cheapest way to multiply together 𝑀+ through 𝑀&



1. Identify the Recursive Structure of the Problem
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𝐵𝑒𝑠𝑡 1,4 = min
𝐵𝑒𝑠𝑡 2,4 + 𝑟+𝑟,𝑐.
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1. Identify the Recursive Structure of the Problem
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1. Identify the Recursive Structure of the Problem
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𝐵𝑒𝑠𝑡 1,4 = min
𝐵𝑒𝑠𝑡 2,4 + 𝑟+𝑟,𝑐.
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𝐵𝑒𝑠𝑡 1,2 + 𝐵𝑒𝑠𝑡 3, 4 + 𝑟+𝑟-𝑐.
𝐵𝑒𝑠𝑡 1,3 + 𝑟+𝑟.𝑐.



1. Identify the Recursive Structure of the Problem

• In general:
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𝐵𝑒𝑠𝑡 𝑖, 𝑗 = cheapest way to multiply together 𝑀/ through 𝑀0

𝐵𝑒𝑠𝑡 1, 𝑛 = min

𝐵𝑒𝑠𝑡 2, 𝑛 + 𝑟+𝑟,𝑐&
𝐵𝑒𝑠𝑡 1,2 + 𝐵𝑒𝑠𝑡 3, 𝑛 + 𝑟+𝑟-𝑐&
𝐵𝑒𝑠𝑡 1,3 + 𝐵𝑒𝑠𝑡 4, 𝑛 + 𝑟+𝑟.𝑐&
𝐵𝑒𝑠𝑡 1,4 + 𝐵𝑒𝑠𝑡 5, 𝑛 + 𝑟+𝑟1𝑐&
…

𝐵𝑒𝑠𝑡 1, 𝑛 − 1 + 𝑟+𝑟&𝑐&

𝐵𝑒𝑠𝑡 𝑖, 𝑗 = min
02+

34/
𝐵𝑒𝑠𝑡 𝑖, 𝑘 + 𝐵𝑒𝑠𝑡 𝑘 + 1, 𝑗 + 𝑟/𝑟35+𝑐0

𝐵𝑒𝑠𝑡 𝑖, 𝑖 = 0



Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify the recursive structure of the problem
• What is the “last thing” done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems
• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest
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2. Save Subsolutions in Memory

• In general:
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𝐵𝑒𝑠𝑡 𝑖, 𝑗 = cheapest way to multiply together 𝑀/ through 𝑀0

𝐵𝑒𝑠𝑡 1, 𝑛 = min

𝐵𝑒𝑠𝑡 2, 𝑛 + 𝑟+𝑟,𝑐&
𝐵𝑒𝑠𝑡 1,2 + 𝐵𝑒𝑠𝑡 3, 𝑛 + 𝑟+𝑟-𝑐&
𝐵𝑒𝑠𝑡 1,3 + 𝐵𝑒𝑠𝑡 4, 𝑛 + 𝑟+𝑟.𝑐&
𝐵𝑒𝑠𝑡 1,4 + 𝐵𝑒𝑠𝑡 5, 𝑛 + 𝑟+𝑟1𝑐&
…
𝐵𝑒𝑠𝑡 1, 𝑛 − 1 + 𝑟+𝑟&𝑐&

𝐵𝑒𝑠𝑡 𝑖, 𝑗 = min
02+

34/
𝐵𝑒𝑠𝑡 𝑖, 𝑘 + 𝐵𝑒𝑠𝑡 𝑘 + 1, 𝑗 + 𝑟/𝑟35+𝑐0

𝐵𝑒𝑠𝑡 𝑖, 𝑖 = 0

Save to M[n]

Read from M[n] 
if present



Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify the recursive structure of the problem
• What is the “last thing” done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems
• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest
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3. Select a good order for solving subproblems

• In general:
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𝐵𝑒𝑠𝑡 𝑖, 𝑗 = cheapest way to multiply together 𝑀/ through 𝑀0

𝐵𝑒𝑠𝑡 1, 𝑛 = min

𝐵𝑒𝑠𝑡 2, 𝑛 + 𝑟+𝑟,𝑐&
𝐵𝑒𝑠𝑡 1,2 + 𝐵𝑒𝑠𝑡 3, 𝑛 + 𝑟+𝑟-𝑐&
𝐵𝑒𝑠𝑡 1,3 + 𝐵𝑒𝑠𝑡 4, 𝑛 + 𝑟+𝑟.𝑐&
𝐵𝑒𝑠𝑡 1,4 + 𝐵𝑒𝑠𝑡 5, 𝑛 + 𝑟+𝑟1𝑐&
…
𝐵𝑒𝑠𝑡 1, 𝑛 − 1 + 𝑟+𝑟&𝑐&

𝐵𝑒𝑠𝑡 𝑖, 𝑗 = min
02+

34/
𝐵𝑒𝑠𝑡 𝑖, 𝑘 + 𝐵𝑒𝑠𝑡 𝑘 + 1, 𝑗 + 𝑟/𝑟35+𝑐0

𝐵𝑒𝑠𝑡 𝑖, 𝑖 = 0

Save to M[n]

Read from M[n] 
if present



3. Select a good order for solving subproblems
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3. Select a good order for solving subproblems

𝑗 =
= 𝑖
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3. Select a good order for solving subproblems

𝑗 =
= 𝑖
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3. Select a good order for solving subproblems

𝑗 =
= 𝑖
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𝐵𝑒𝑠𝑡 1,3 = min 𝐵𝑒𝑠𝑡 1,1 + 𝐵𝑒𝑠𝑡 2, 3 + 𝑟+𝑟,𝑐-

𝐵𝑒𝑠𝑡 1,2 + 𝐵𝑒𝑠𝑡 3, 3 + 𝑟+𝑟-𝑐-

𝑟+𝑟,𝑐- = 30 ⋅ 35 ⋅ 5 = 5250
𝑟+𝑟-𝑐- = 30 ⋅ 15 ⋅ 5 = 2250
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3. Select a good order for solving subproblems

7875

𝑗 =
= 𝑖
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3. Select a good order for solving subproblems

To find 𝐵𝑒𝑠𝑡(𝑖, 𝑗): Need all preceding 
terms of row 𝑖 and column 𝑗

Conclusion: solve in order of diagonal

𝑗 =
= 𝑖



Matrix Chaining
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𝐵𝑒𝑠𝑡 𝑖, 𝑗 = min
02+

34/
𝐵𝑒𝑠𝑡 𝑖, 𝑘 + 𝐵𝑒𝑠𝑡 𝑘 + 1, 𝑗 + 𝑟/𝑟35+𝑐0
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𝐵𝑒𝑠𝑡 1,6 = min

𝐵𝑒𝑠𝑡 1,1 + 𝐵𝑒𝑠𝑡 2, 6 + 𝑟!𝑟"𝑐#
𝐵𝑒𝑠𝑡 1,2 + 𝐵𝑒𝑠𝑡 3, 6 + 𝑟!𝑟$𝑐#
𝐵𝑒𝑠𝑡 1,3 + 𝐵𝑒𝑠𝑡 4, 6 + 𝑟!𝑟%𝑐#
𝐵𝑒𝑠𝑡 1,4 + 𝐵𝑒𝑠𝑡 5, 6 + 𝑟!𝑟&𝑐#
𝐵𝑒𝑠𝑡 1,5 + 𝐵𝑒𝑠𝑡 6, 6 + 𝑟!𝑟#𝑐#

15125

𝑗 =
= 𝑖



Run Time

1. Initialize 𝐵𝑒𝑠𝑡[𝑖, 𝑖] to be all 0s
2. Starting at the main diagonal, working to the upper-right, 

fill in each cell using:
1. 𝐵𝑒𝑠𝑡 𝑖, 𝑖 = 0

2. 𝐵𝑒𝑠𝑡 𝑖, 𝑗 = min
02+

34/
𝐵𝑒𝑠𝑡 𝑖, 𝑘 + 𝐵𝑒𝑠𝑡 𝑘 + 1, 𝑗 + 𝑟/𝑟35+𝑐0

31

Θ(𝑛,) cells in the Array

Θ(𝑛) options for each cell

Θ(𝑛-) overall run time

Each “call” to Best() is a 
O(1) memory lookup



Backtrack to find the best order

3232

“remember” which choice of 𝑘 was the minimum at each cell

0 15750 7875 9375 11875
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𝐵𝑒𝑠𝑡 1,6 = min

𝐵𝑒𝑠𝑡 1,1 + 𝐵𝑒𝑠𝑡 2, 6 + 𝑟!𝑟"𝑐#
𝐵𝑒𝑠𝑡 1,2 + 𝐵𝑒𝑠𝑡 3, 6 + 𝑟!𝑟$𝑐#
𝐵𝑒𝑠𝑡 1,3 + 𝐵𝑒𝑠𝑡 4, 6 + 𝑟!𝑟%𝑐#
𝐵𝑒𝑠𝑡 1,4 + 𝐵𝑒𝑠𝑡 5, 6 + 𝑟!𝑟&𝑐#
𝐵𝑒𝑠𝑡 1,5 + 𝐵𝑒𝑠𝑡 6, 6 + 𝑟!𝑟#𝑐#

15125

𝐵𝑒𝑠𝑡 𝑖, 𝑗 = min
02+

34/
𝐵𝑒𝑠𝑡 𝑖, 𝑘 + 𝐵𝑒𝑠𝑡 𝑘 + 1, 𝑗 + 𝑟/𝑟35+𝑐0

𝐵𝑒𝑠𝑡 𝑖, 𝑖 = 0
31
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𝑗 =
= 𝑖



Matrix Chaining

33

30

35

×𝑀! 35

15

×𝑀"
15

5

×𝑀# 5

10

×
𝑀$

10

20

×
𝑀% 20

25

𝑀&

𝐵𝑒𝑠𝑡 𝑖, 𝑗 = min
02+

34/
𝐵𝑒𝑠𝑡 𝑖, 𝑘 + 𝐵𝑒𝑠𝑡 𝑘 + 1, 𝑗 + 𝑟/𝑟35+𝑐0

𝐵𝑒𝑠𝑡 𝑖, 𝑖 = 0 0 15750 7875 9375 11875

0 2625 4375 7125 10500

0 750 2500 5375

35000 1000

50000

0

1 2 3 4 5 6
1

2

3

4

5

6

𝐵𝑒𝑠𝑡 1,6 = min

𝐵𝑒𝑠𝑡 1,1 + 𝐵𝑒𝑠𝑡 2, 6 + 𝑟!𝑟"𝑐#
𝐵𝑒𝑠𝑡 1,2 + 𝐵𝑒𝑠𝑡 3, 6 + 𝑟!𝑟$𝑐#
𝐵𝑒𝑠𝑡 1,3 + 𝐵𝑒𝑠𝑡 4, 6 + 𝑟!𝑟%𝑐#
𝐵𝑒𝑠𝑡 1,4 + 𝐵𝑒𝑠𝑡 5, 6 + 𝑟!𝑟&𝑐#
𝐵𝑒𝑠𝑡 1,5 + 𝐵𝑒𝑠𝑡 6, 6 + 𝑟!𝑟#𝑐#

15125

𝑗 =
= 𝑖

31
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Storing and Recovering Optimal Solution

• Maintain table Choice[i,j] in addition to Best table
– Choice[i,j] = k means the best “split” was right after Mk

– Work backwards from value for whole problem, Choice[1,n]
– Note: Choice[i,i+1] = i because there are just 2 matrices 

• From our example:
– Choice[1,6] = 3.   So [M1 M2 M3] [M4 M5 M6]
– We then need Choice[1,3] = 1.   So [(M1) (M2 M3)]
– Also need Choice[4,6] = 5.  So [(M4 M5) M6]
– Overall: [(M1) (M2 M3)] [(M4 M5) M6]

34



Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones
– Or: If S is an optimal solution to a problem, then the components of S are 

optimal solutions to sub-problems
• Idea:

1. Identify the recursive structure of the problem
• What is the “last thing” done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

35



Longest Common Subsequence

36

Given two sequences 𝑋 and 𝑌, 
find the length of their longest 
common subsequence 

Example:
𝑋 = 𝐴𝑇𝐶𝑇𝐺𝐴𝑇
𝑌 = 𝑇𝐺𝐶𝐴𝑇𝐴
𝐿𝐶𝑆 = 𝑇𝐶𝑇𝐴

Brute force: Compare every 
subsequence of 𝑋 with 𝑌
Ω(26)

Applications other than bioinformatics?
Of course, Including version control!
http://cbx33.github.io/gitt/afterhours3-1.html

http://cbx33.github.io/gitt/afterhours3-1.html


Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify the recursive structure of the problem
• What is the “last thing” done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems
• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

37



1. Identify Recursive Structure

Let 𝐿𝐶𝑆 𝑖, 𝑗 = length of the LCS for the first 𝑖 characters of 𝑋, first 𝑗 character of 𝑌
Find 𝐿𝐶𝑆(𝑖, 𝑗):

38

𝑋 = ATCTGCGT
𝑌 = 𝑇𝐺𝐶𝐴𝑇𝐴T

𝐿𝐶𝑆 𝑖, 𝑗 = 𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1

X = ATCTGCGA
Y =  TGCATAC

𝐿𝐶𝑆 𝑖, 𝑗 = 𝐿𝐶𝑆 𝑖, 𝑗 − 1

Case 1: 𝑋 𝑖 = 𝑌[𝑗]

Case 2: 𝑋 𝑖 ≠ 𝑌[𝑗]
X = ATCTGCGA
Y =  TGCATAC

𝐿𝐶𝑆 𝑖, 𝑗 = 𝐿𝐶𝑆 𝑖 − 1, 𝑗

𝐿𝐶𝑆 𝑖, 𝑗 =
0 if 𝑖 = 0 or	𝑗 = 0
𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1 if 𝑋 𝑖 = 𝑌[𝑗]
max(𝐿𝐶𝑆 𝑖, 𝑗 − 1 , 𝐿𝐶𝑆 𝑖 − 1, 𝑗 ) otherwise



Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify the recursive structure of the problem
• What is the “last thing” done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems
• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest
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1. Identify Recursive Structure

40

X = ATCTGCGT
Y =  TGCATAT

𝐿𝐶𝑆 𝑖, 𝑗 = 𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1

X = ATCTGCGA
Y =  TGCATAC

𝐿𝐶𝑆 𝑖, 𝑗 = 𝐿𝐶𝑆 𝑖, 𝑗 − 1

Case 1: 𝑋 𝑖 = 𝑌[𝑗]

Case 2: 𝑋 𝑖 ≠ 𝑌[𝑗]
X = ATCTGCGA
Y =  TGCATAC

𝐿𝐶𝑆 𝑖, 𝑗 = 𝐿𝐶𝑆 𝑖 − 1, 𝑗

𝐿𝐶𝑆 𝑖, 𝑗 =
0 if 𝑖 = 0 or	𝑗 = 0
𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1 if 𝑋 𝑖 = 𝑌[𝑗]
max(𝐿𝐶𝑆 𝑖, 𝑗 − 1 , 𝐿𝐶𝑆 𝑖 − 1, 𝑗 ) otherwiseSave to M[i,j]

Read from M[i,j] 
if present

Let 𝐿𝐶𝑆 𝑖, 𝑗 = length of the LCS for the first 𝑖 characters of 𝑋, first 𝑗 character of 𝑌
Find 𝐿𝐶𝑆(𝑖, 𝑗):



Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify the recursive structure of the problem
• What is the “last thing” done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems
• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

41



3. Solve in a Good Order

42

𝐿𝐶𝑆 𝑖, 𝑗 =
0 if 𝑖 = 0 or	𝑗 = 0
𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1 if 𝑋 𝑖 = 𝑌[𝑗]
max(𝐿𝐶𝑆 𝑖, 𝑗 − 1 , 𝐿𝐶𝑆 𝑖 − 1, 𝑗 ) otherwise

0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1

0 0 1 1 1 2 2 2

0 0 1 2 2 2 2 2

0 1 1 2 2 2 3 3

0 1 2 2 3 3 3 4

0 1 2 2 3 3 4 4

𝑋 = 𝐴 𝑇 𝐶 𝑇𝑇 𝐺 𝐴
1 2 3 74 5 60𝑌 =

0

1

3
4
5
6

2
𝑇

𝐶
𝐴
𝑇
𝐴

𝐺

To fill in cell (𝑖, 𝑗) we need cells 𝑖 − 1, 𝑗 − 1 , 𝑖 − 1, 𝑗 , (𝑖, 𝑗 − 1)
Fill from Top->Bottom, Left->Right (with any preference)
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LCS Length Algorithm
LCS-Length(X, Y) // Y for M’s rows, X for its columns
1. n = length(X)  // get the # of symbols in X
2. m  = length(Y) // get the # of symbols in Y
3. for i = 1 to m M[i,0] = 0 // special case: Y0

4. for j = 1 to n  M[0,j] = 0 // special case: X0
5. for i = 1 to m // for all Yi
6. for j = 1 to n  // for all Xj
7. if ( X[i] == Y[j] )
8. M[i,j] = M[i-1,j-1] + 1
9. else M[i,j] = max( M[i-1,j], M[i,j-1] )
10. return M[m,n]   // return LCS length for Y and X



Run Time?

44

𝐿𝐶𝑆 𝑖, 𝑗 =
0 if 𝑖 = 0 or	𝑗 = 0
𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1 if 𝑋 𝑖 = 𝑌[𝑗]
max(𝐿𝐶𝑆 𝑖, 𝑗 − 1 , 𝐿𝐶𝑆 𝑖 − 1, 𝑗 ) otherwise

0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1

0 0 1 1 1 2 2 2

0 0 1 2 2 2 2 2

0 1 1 2 2 2 3 3

0 1 2 2 3 3 3 4

0 1 2 2 3 3 4 4

𝑋 = 𝐴 𝑇 𝐶 𝑇𝑇 𝐺 𝐴
1 2 3 74 5 60𝑌 =

0

1

3
4
5
6

2
𝑇

𝐶
𝐴
𝑇
𝐴

𝐺

Run Time: Θ(𝑛 ⋅ 𝑚) (for 𝑋 = 𝑛, 𝑌 = 𝑚)



Reconstructing the LCS

45

𝐿𝐶𝑆 𝑖, 𝑗 =
0 if 𝑖 = 0 or	𝑗 = 0
𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1 if 𝑋 𝑖 = 𝑌[𝑗]
max(𝐿𝐶𝑆 𝑖, 𝑗 − 1 , 𝐿𝐶𝑆 𝑖 − 1, 𝑗 ) otherwise

0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1

0 0 1 1 1 2 2 2

0 0 1 2 2 2 2 2

0 1 1 2 2 2 3 3

0 1 2 2 3 3 3 4

0 1 2 2 3 3 4 4

𝑋 = 𝐴 𝑇 𝐶 𝑇𝑇 𝐺 𝐴
1 2 3 74 5 60𝑌 =

0

1

3
4
5
6

2
𝑇

𝐶
𝐴
𝑇
𝐴

𝐺

Start from bottom right,
if symbols matched, print that symbol then go diagonally
else go to largest adjacent 



Reconstructing the LCS

46

𝐿𝐶𝑆 𝑖, 𝑗 =
0 if 𝑖 = 0 or	𝑗 = 0
𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1 if 𝑋 𝑖 = 𝑌[𝑗]
max(𝐿𝐶𝑆 𝑖, 𝑗 − 1 , 𝐿𝐶𝑆 𝑖 − 1, 𝑗 ) otherwise

0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1

0 0 1 1 1 2 2 2

0 0 1 2 2 2 2 2

0 1 1 2 2 2 3 3

0 1 2 2 3 3 3 4

0 1 2 2 3 3 4 4

𝑋 = 𝐴 𝑇 𝐶 𝑇𝑇 𝐺 𝐴
1 2 3 74 5 60𝑌 =

0

1

3
4
5
6

2
𝑇

𝐶
𝐴
𝑇
𝐴

𝐺

Start from bottom right,
if symbols matched, print that symbol then go diagonally
else go to largest adjacent 



Reconstructing the LCS
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𝐿𝐶𝑆 𝑖, 𝑗 =
0 if 𝑖 = 0 or	𝑗 = 0
𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1 if 𝑋 𝑖 = 𝑌[𝑗]
max(𝐿𝐶𝑆 𝑖, 𝑗 − 1 , 𝐿𝐶𝑆 𝑖 − 1, 𝑗 ) otherwise

0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1

0 0 1 1 1 2 2 2

0 0 1 2 2 2 2 2

0 1 1 2 2 2 3 3

0 1 2 2 3 3 3 4

0 1 2 2 3 3 4 4

𝑋 = 𝐴 𝑇 𝐶 𝑇𝑇 𝐺 𝐴
1 2 3 74 5 60𝑌 =

0

1

3
4
5
6

2
𝑇

𝐶
𝐴
𝑇
𝐴

𝐺

Start from bottom right,
if symbols matched, print that symbol then go diagonally
else go to largest adjacent 



Top-Down Solution with Memoization

48

LCS-Length(X, Y) // Y is M’s cols.
1. n = length(X)
2. m  = length(Y)
3. Create table M[m,n]
4. Assign -1 to all cells M[i,j]
// get value for entire sequences
5. return LCS-recur(X, Y, M, m, n)

LCS-recur(X, Y, M, i, j)
1. if (i == 0 || j == 0) return 0
// have we already calculated this subproblem?
2. if (M[i,j] != -1) return M[i,j]
3. if ( X[i] == Y[j] )
4. M[i,j] = LCS-recur(X, Y, M, i-1, j-1) + 1
5. else
6.    M[i,j] = max( LCS-recur(X, Y, M, i-1, j),

LCS-recur(X, Y, M, i, j-1) )
7. return M[i,j]

We need two functions; one will be recursive.



In Season 9 Episode 7 “The Slicer” of the hit 90s TV show 
Seinfeld,  George discovers that, years prior, he had a heated 

argument with his new boss, Mr. Kruger. This argument  
ended in George throwing Mr. Kruger’s boombox into the 

ocean. How did George make this discovery?
49https://www.youtube.com/watch?v=pSB3HdmLcY4

https://www.youtube.com/watch?v=pSB3HdmLcY4




Seam Carving

• Method for image resizing that doesn’t scale/crop the image

51



Seam Carving

• Method for image resizing that doesn’t scale/crop the image
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Seam Carving

• Method for image resizing that doesn’t scale/crop the image

53

Cropped Scaled Carved



Cropping

• Removes a “block” of pixels

54

Cropped



Scaling

• Removes “stripes” of pixels

55

Scaled



Seam Carving
• Removes “least energy seam” of pixels from bottom to top
– https://www.aryan.app/seam-carving/ (also see Wikipedia page)
– http://rsizr.com/ - old, uses Flash L

56

Carved

https://www.aryan.app/seam-carving/
http://rsizr.com/


Seattle Skyline

57



Energy of a Seam

• Sum of the energies of each pixel
– 𝑒 𝑝 = energy of pixel 𝑝

• Many choices
– E.g.: change of gradient (how much the color of this pixel differs from 

its neighbors)
– Particular choice doesn’t matter, we use it as a “black box”

58



Identify Recursive Structure

Let 𝑆 𝑖, 𝑗 = least energy seam from the bottom of the image up 
to pixel 𝑝/,0

59

𝑝',)



Finding the Least Energy Seam

60

𝑝*,+

Want the least energy seam going from bottom to top, so delete:

min
G

34+
𝑆(𝑛, 𝑘)

𝑛

𝑚



Computing 𝑆(𝑛, 𝑘)

Assume we know the least energy seams for all of 
row 𝑛 − 1
(i.e. we know 𝑆(𝑛 − 1, ℓ) for all ℓ)

61

𝑝*,+

Known 
through 
𝑛 − 1

𝑚



Computing 𝑆(𝑛, 𝑘)

62

Assume we know the least energy seams for all 
of row 𝑛 − 1 (i.e. we know 𝑆(𝑛 − 1, ℓ) for all ℓ)

S(n-1,k-1)

𝑝&,3

S(n-1,k) S(n-1,k+1)

S(n,k)



Computing 𝑆(𝑛, 𝑘)

63

Assume we know the least energy seams for all 
of row 𝑛 − 1 (i.e. we know 𝑆(𝑛 − 1, ℓ) for all ℓ)

S(n-1,k-1)

𝑝&,3

S(n-1,k) S(n-1,k+1)

S(n,k)

𝑆 𝑛, 𝑘 = 𝑚𝑖𝑛 𝑆 𝑛 − 1, 𝑘 − 1 + 𝑒(𝑝&,3)

𝑆 𝑛 − 1, 𝑘 + 𝑒(𝑝&,3)

𝑆 𝑛 − 1, 𝑘 + 1 + 𝑒(𝑝&,3)



Seam Carving

• Details left to you! Unit C Programming assignment
– Note: Python or Java implementations only this time

64



Repeated Seam Removal

65

𝑛

𝑚

Only need to update pixels dependent on the removed seam
2𝑛 pixels change Θ(2𝑛) time to update pixels

Θ(𝑛 +𝑚) time to find min+backtrack


