CS 4102: Algorithms - Unit C

 Dynamic Programming
Co-instructors: Robbie Hott and Tom Horton

Spring 2022

CS4102 Algorithms

Warm Up

How many ways are there to tile a $2 \times n$ board with dominoes?

How many ways to tile this:

With these?

Warm Up

How many ways are there to tile a $2 \times n$ board with dominoes?

Two ways to fill the final column:

$\operatorname{Tile}(n)=\operatorname{Tile}(n-1)+\operatorname{Tile}(n-2)$

$$
\operatorname{Tile}(0)=\operatorname{Tile}(1)=1
$$

Today's Keywords

- Maximum Sum Continuous Subarray
- Domino Tiling
- Dynamic Programming
- Log Cutting

CLRS Readings

- Chapter 15
- Section 15.1, Log/Rod cutting, optimal substructure property
- Note: r_{i} in book is called Cut() or C[] in our slides. We use their example.
- Section 15.3, More on elements of DP, including optimal substructure property
- Section 15.2, matrix-chain multiplication (later example)
- Section 15.4, longest common subsequence (even later example)

How to compute Tile (n) ?

Tile(n): if $n<2$: return 1
return Tile($n-1$)+Tile($n-2$)

Problem?

Recursion Tree

Computing Tile (n) with Memory

Initialize Memory M
Tile(n):

$$
\text { if } n<2 \text { : }
$$

return 1
if $M[n]$ is filled:
return $\mathrm{M}[\mathrm{n}]$
$\mathrm{M}[\mathrm{n}]=$ Tile($\mathrm{n}-1$)+Tile($\mathrm{n}-2$) return $\mathrm{M}[\mathrm{n}]$

Computing Tile (n) with Memory - "Top Down"

Initialize Memory M
Tile(n):
if $\mathrm{n}<2$:
return 1
if $\mathrm{M}[\mathrm{n}]$ is filled:
return $\mathrm{M}[\mathrm{n}]$
$\mathrm{M}[\mathrm{n}]=$ Tile($\mathrm{n}-1$)+Tile($\mathrm{n}-2$) return $\mathrm{M}[\mathrm{n}]$

M
1
1
2
3
5
8
13

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the (optimal) solutions to smaller ones
- Idea:

1. Identify recursive structure of the problem

- What is the "last thing" done?

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the (optimal) solutions to smaller ones
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory

Generic Divide and Conquer Solution

def myDCalgo(problem):

if baseCase(problem):
solution = solve(problem)
return solution for subproblem of problem: \# After dividing
subsolutions.append(myDCalgo(subproblem))
solution = Combine(subsolutions)
return solution

Generic Top-Down Dynamic Programming Soln

```
mem = {}
def myDPalgo(problem):
    if mem[problem] not blank:
        return mem[problem]
    if baseCase(problem):
        solution = solve(problem)
        mem[problem] = solution
        return solution
    for subproblem of problem:
    subsolutions.append(myDPalgo(subproblem))
    solution = OptimalSubstructure(subsolutions)
    mem[problem] = solution
    return solution
```


Computing Tile (n) with Memory - "Top Down"

Initialize Memory M

Tile(n):
if $\mathrm{n}<2$:
return 1
if $M[n]$ is filled:
return $\mathrm{M}[\mathrm{n}]$
$\mathrm{M}[\mathrm{n}]=$ Tile($\mathrm{n}-1$) + Tile($\mathrm{n}-2$) return $\mathrm{M}[\mathrm{n}]$

M
1
1
2
3
5
8
13

Recursive calls happen in a predictable order

Better Tile (n) with Memory - "Bottom Up"

Tile(n):
Initialize Memory M
$\mathrm{M}[0]=1$
$\mathrm{M}[1]=1$
for $\mathrm{i}=2$ to n : $M[i]=M[i-1]+M[i-2]$
return $M[n]$

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the (optimal) solutions to smaller ones
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

More on Optimal Substructure Property

- Detailed discussion on CLRS p. 379
- If A is an optimal solution to a problem, then the components of A are optimal solutions to subproblems
- Examples (we'll see these come up later):
- True for coin-changing
- True for single-source shortest path
- True for knapsack problem

Log Cutting

Given a log of length n
A list (of length n) of prices $P(P[i]$ is the price of a cut of size i) Find the best way to cut the log

Select a list of lengths $\ell_{1}, \ldots, \ell_{k}$ such that:

$$
\sum \ell_{i}=n
$$

to maximize $\sum P\left[\ell_{i}\right]$

Greedy won't work

- Greedy algorithms (next unit) build a solution by picking the best option "right now"
- Select the most profitable cut first

Greedy won't work

- Greedy algorithms (next unit) build a solution by picking the best option "right now"
- Select the "most bang for your buck"
- (best price / length ratio)

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

1. Identify Recursive Structure

$P[i]=$ value of a cut of length i
$\operatorname{Cut}(n)=$ value of best way to cut a log of length n

$$
\operatorname{Cut}(n)=\max \left\{\begin{array}{l}
\operatorname{Cut}(n-1)+P[1] \\
\operatorname{Cut}(n-2)+P[2] \\
\cdots \\
\operatorname{Cut}(0)+P[n]
\end{array}\right] \quad \operatorname{Cut}\left(n-\ell_{k}\right) \quad .
$$

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

3. Select a Good Order for Solving Subproblems

Solve Smallest subproblem first

$$
\operatorname{Cut}(0)=0
$$

3. Select a Good Order for Solving Subproblems

Solve Smallest subproblem first

$$
\operatorname{Cut}(1)=\operatorname{Cut}(0)+P[1]
$$

3. Select a Good Order for Solving Subproblems

Solve Smallest subproblem first

$$
\operatorname{Cut}(2)=\max \left\{\begin{array}{l}
\operatorname{Cut}(1)+P[1] \\
\operatorname{Cut}(0)+P[2]
\end{array}\right.
$$

3. Select a Good Order for Solving Subproblems

Solve Smallest subproblem first

$$
\operatorname{Cut}(3)=\max \left\{\begin{array}{l}
\operatorname{Cut}(2)+P[1] \\
\operatorname{Cut}(1)+P[2] \\
\operatorname{Cut}(0)+P[3]
\end{array}\right.
$$

3. Select a Good Order for Solving Subproblems

Solve Smallest subproblem first

$$
\operatorname{Cut}(4)=\max \left\{\begin{array}{l}
\operatorname{Cut}(3)+P[1] \\
\operatorname{Cut}(2)+P[2] \\
\operatorname{Cut}(1)+P[3] \\
\operatorname{Cut}(0)+P[4]
\end{array}\right.
$$

Initialize Memory C
Cut(n):
$\mathrm{C}[0]=0$
for $\mathrm{i}=1$ to n : // log size
best = 0
for $\mathrm{j}=1$ to i : // last cut best $=\max ($ best, $C[i-j]+P[j])$
$C[i]=$ best
return C[n]
Run Time: $O\left(n^{2}\right)$

How to find the cuts?

- This procedure told us the profit, but not the cuts themselves
- Idea: remember the choice that you made, then backtrack

Remember the choice made

Initialize Memory C, Choices Cut(n):

```
C[0] = 0
for i=1 to n:
    best = 0
    for j = 1 to i:
        if best < C[i-j] + P[j]:
                        best =C[i-j] + P[j]
    Choices[i]=j Gives the size
    C[i] = best
```

return $\mathrm{C}[\mathrm{n}]$

Reconstruct the Cuts

- Backtrack through the choices

Example to demo Choices[] only. Profit of 20 is not optimal!

Backtracking Pseudocode

$\mathrm{i}=\mathrm{n}$
while $\mathrm{i}>0$:
print Choices[i]
$\mathrm{i}=\mathrm{i}$ - Choices[i]

Our Example: Getting Optimal Solution

i	0	1	2	3	4	5	6	7	8	9	10
$\mathrm{C}[\mathrm{i}]$	0	1	5	8	10	13	17	18	22	25	30
Choice[i]	0	1	2	3	2	2	6	1	2	3	10

- If n were 5
- Best score is 13
- Cut at Choice[n]=2, then cut at Choice[n-Choice[n]]= Choice[5-2]= Choice[3]=3
- If n were 7
- Best score is 18
- Cut at 1 , then cut at 6

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

Mental Stretch

How many arithmetic operations are required to multiply a $n \times m$ Matrix with a $m \times p$ Matrix?
(don't overthink this)

Mental Stretch

How many arithmetic operations are required to multiply a $n \times m$ Matrix with a $m \times p$ Matrix?
(don't overthink this)

- multiplications and additions per element
- $n \cdot p$ elements to compute
- Total cost: $m \cdot n \cdot p$

Matrix Chaining

- Given a sequence of Matrices $\left(M_{1}, \ldots, M_{n}\right)$, what is the most efficient way to multiply them?

Order Matters!

$$
\begin{aligned}
& c_{1}=r_{2} \\
& c_{2}=r_{3}
\end{aligned}
$$

- $\left(M_{1} \times M_{2}\right) \times M_{3}$
- uses $\left(c_{1} \cdot r_{1} \cdot c_{2}\right)+c_{2} \cdot r_{1} \cdot c_{3}$ operations

Order Matters!

$$
\begin{aligned}
& c_{1}=r_{2} \\
& c_{2}=r_{3}
\end{aligned}
$$

Order Matters!

$$
\begin{aligned}
& c_{1}=r_{2} \\
& c_{2}=r_{3}
\end{aligned}
$$

- $\left(M_{1} \times M_{2}\right) \times M_{3}$
$-\operatorname{uses}\left(c_{1} \cdot r_{1} \cdot c_{2}\right)+c_{2} \cdot r_{1} \cdot c_{3}$ operations
$-(10 \cdot 7 \cdot 20)+20 \cdot 7 \cdot 8=2520$
- $M_{1} \times\left(M_{2} \times M_{3}\right)$
- uses $c_{1} \cdot r_{1} \cdot c_{3}+\left(c_{2} \cdot r_{2} \cdot c_{3}\right)$ operations
$-10 \cdot 7 \cdot 8+(20 \cdot 10 \cdot 8)=2160$

$$
\begin{gathered}
M_{1}=7 \times 10 \\
M_{2}=10 \times 20 \\
M_{3}=20 \times 8 \\
c_{1}=10 \\
c_{2}=20 \\
c_{3}=8 \\
r_{1}=7 \\
r_{2}=10 \\
r_{3}=20
\end{gathered}
$$

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

1. Identify the Recursive Structure of the Problem

$\operatorname{Best}(1, n)=$ cheapest way to multiply together M_{1} through M_{n}

1. Identify the Recursive Structure of the Problem

$\operatorname{Best}(1, n)=$ cheapest way to multiply together M_{1} through M_{n}

1. Identify the Recursive Structure of the Problem

$\operatorname{Best}(1, n)=$ cheapest way to multiply together M_{1} through M_{n}

1. Identify the Recursive Structure of the Problem

$\operatorname{Best}(1, n)=$ cheapest way to multiply together M_{1} through M_{n}

$$
\operatorname{Best}(1,4)=\min \left\{\begin{array}{l}
\operatorname{Best}(2,4)+r_{1} r_{2} c_{4} \\
\operatorname{Best}(1,2)+\operatorname{Best}(3,4)+r_{1} r_{3} c_{4} \\
\operatorname{Best}(1,3)+r_{1} r_{4} c_{4}
\end{array}\right.
$$

1. Identify the Recursive Structure of the Problem

- In general:

$$
\begin{aligned}
& \operatorname{Best}(i, j)=\text { cheapest way to multiply together } M_{i} \text { through } M_{j} \\
& \operatorname{Best}(i, j)=\min _{k=i}^{j-1}\left(\operatorname{Best}(i, k)+\operatorname{Best}(k+1, j)+r_{i} r_{k+1} c_{j}\right) \\
& \operatorname{Best}(i, i)=0
\end{aligned}
$$

$$
\operatorname{Best}(1, n)=\min \left\{\begin{array}{l}
\operatorname{Best}(2, n)+r_{1} r_{2} c_{n} \\
\operatorname{Best}(1,2)+\operatorname{Best}(3, n)+r_{1} r_{3} c_{n} \\
\operatorname{Best}(1,3)+\operatorname{Best}(4, n)+r_{1} r_{4} c_{n} \\
\operatorname{Best}(1,4)+\operatorname{Best}(5, n)+r_{1} r_{5} c_{n} \\
\ldots \\
\operatorname{Best}(1, n-1)+r_{1} r_{n} c_{n}
\end{array}\right.
$$

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

2. Save Subsolutions in Memory

- In general:

$$
\begin{aligned}
& \operatorname{Best}(i, j)=\text { cheapest way to multiply together } M_{i} \text { through } M_{j} \\
& \operatorname{Best}(i, j)=\min _{k=i}^{j-1}\left(\operatorname{Best}(i, k)+\operatorname{Best}(k+1, j)+r_{i} r_{k+1} c_{j}\right) \\
& \operatorname{Best}(i, i)=\underbrace{}_{\text {Read from } \mathrm{M}[\mathrm{n}]}
\end{aligned} \quad \begin{aligned}
& \begin{array}{l}
\text { if present }
\end{array} \\
& \operatorname{Best}(1, n)=\min \left[\begin{array}{l}
\operatorname{Best}(2, n)+r_{1} r_{2} c_{n} \\
\operatorname{Best}(1,2)+\operatorname{Best}(3, n)+r_{1} r_{3} c_{n} \\
\operatorname{Best}(1,3)+\operatorname{Best}(4, n)+r_{1} r_{4} c_{n} \\
\operatorname{Best}(1,4)+\operatorname{Best}(5, n)+r_{1} r_{5} c_{n} \\
\ldots \\
\operatorname{Best}(1, n-1)+r_{1} r_{n} c_{n}
\end{array}\right.
\end{aligned}
$$

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

3. Select a good order for solving subproblems

- In general:

$$
\begin{aligned}
& \operatorname{Best}(i, j)=\text { cheapest way to multiply together } M_{i} \text { through } M_{j} \\
& \operatorname{Best}(i, j)=\min _{k=i}^{j-1}\left(\operatorname{Best}(i, k)+\operatorname{Best}(k+1, j)+r_{i} r_{k+1} c_{j}\right) \\
& \operatorname{Best}(i, i)=\underbrace{}_{\text {Read from } \mathrm{M}[\mathrm{n}]} \\
& \text { Save to } \mathrm{M}[\mathrm{n}] \\
& \operatorname{Best}(1, n)=\min \left[\begin{array}{l}
\operatorname{Best}(2, n)+r_{1} r_{2} c_{n} \\
\operatorname{Best}(1,2)+\operatorname{Best}(3, n)+r_{1} r_{3} c_{n} \\
\operatorname{Best}(1,3)+\operatorname{Best}(4, n)+r_{1} r_{4} c_{n} \\
\operatorname{Best}(1,4)+\operatorname{Best}(5, n)+r_{1} r_{5} c_{n} \\
\ldots \\
\operatorname{Best}(1, n-1)+r_{1} r_{n} c_{n}
\end{array}\right.
\end{aligned}
$$

3. Select a good order for solving subproblems

3. Select a good order for solving subproblems

3. Select a good order for solving subproblems

3. Select a good order for solving subproblems

3. Select a good order for solving subproblems

3. Select a good order for solving subproblems

Matrix Chaining

Run Time

1. Initialize Best $[i, i]$ to be all $0 s \quad \Theta\left(n^{2}\right)$ cells in the Array
2. Starting at the main diagonal, working to the upper-right, fill in each cell using:
3. Best $[i, i]=0$

4. $\operatorname{Best}[i, j]=\min _{k=i}^{j-1}\left(\operatorname{Best}(i, k)+\operatorname{Best}(k+1, j)+r_{i} r_{k+1} c_{j}\right)$

$$
\Theta\left(n^{3}\right) \text { overall run time }
$$

Backtrack to find the best order

"remember" which choice of k was the minimum at each cell

$$
\begin{aligned}
& \operatorname{Best}(i, j)=\min _{k=i}^{j-1}\left(\operatorname{Best}(i, k)+\operatorname{Best}(k+1, j)+r_{i} r_{k+1} c_{j}\right)
\end{aligned}
$$

Matrix Chaining

Storing and Recovering Optimal Solution

- Maintain table Choice[i,j] in addition to Best table - Choice[i,j] = k means the best "split" was right after M_{k} - Work backwards from value for whole problem, Choice[1,n]
- Note: Choice[i,i+1] = i because there are just 2 matrices
- From our example:
- Choice $[1,6]=3$. So $\left[M_{1} M_{2} M_{3}\right]\left[M_{4} M_{5} M_{6}\right]$
- We then need Choice $[1,3]=1$. So $\left[\left(M_{1}\right)\left(M_{2} M_{3}\right)\right]$
- Also need Choice $[4,6]=5$. So $\left[\left(M_{4} M_{5}\right) M_{6}\right]$
- Overall: $\left[\left(M_{1}\right)\left(M_{2} M_{3}\right)\right]\left[\left(M_{4} M_{5}\right) M_{6}\right]$

Dynamic Programming

- Requires Optimal Substructure
- Solution to larger problem contains the solutions to smaller ones
- Idea:

1. Identify the recursive structure of the problem

- What is the "last thing" done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems

- "Top Down": Solve each recursively
- "Bottom Up": Iteratively solve smallest to largest

